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ABSTRACT:

Reconstructing fine facade geometry from MMS lidar data remains a challenge: In addition to being inherently sparse, the point cloud
provided by a single street point of view is necessarily incomplete. We propose a simple framework to estimate the facade surface
with a deformable 2.5d grid. Computations are performed in a ”sensor-oriented” coordinate system that maximizes consistency with
the data. the algorithm allows to retrieve the facade geometry without priori knowledge. It can thus be automatically applied to a large
amount of data in spite of the variability of encountered architectural forms. The 2.5d image structure of the output makes it compatible

with storage and real-time constraints of immersive navigation.

1 INTRODUCTION
1.1 Motivations

We aim to automatically reconstruct a fine photorealistic facade
model (lod3). In this paper, we focus on the geometrical model-
ing. The geometry is extracted from lidar data and has to be in
accordance with the optical images acquired in the same time and
used for texture mapping. Apart from being photo-consistent, the
model has also to be sufficiently compact for scaling up.

1.2 Related Work

Facade Modeling is a vastly studied topic (Musialski et al., 2012b).

Numerous articles offer to reconstruct the facades using knowl-
edge based approaches, looking for semantic objects such as win-
dows (Pu and Vosselman, 2007), (Wang et al., 2011), assum-
ing they are regularly arranged in a grid structure (Miiller et al.,
2007). The structure information of facades is considered as nec-
essary for a good reconstruction (Becker and Haala, 2009). In-
deed, the search for well-defined objects (size, shape ...) is not
obvious in point cloud data (PCD). Grammar rules can be used to
palliate the lack of information. However the apparent simplicity
of the facade structures, and the underlying grammars is actually
complex to automatically detect, to the extent that an operator
is deemed necessary to get the desired results (Musialski et al.,
2012a).

Other methods use more general assumptions like the predom-
inance of right angles. Chauve et al. (2010) proposes to build
a 3d model from images by an arrangements of planes, adding
horizontal or vertical planes where there is an absence of infor-
mation. Although such approaches are adapted to human con-
structions, objects that do not fit the model cause strange artifacts
(Furukawa et al., 2009).

Another line of research is the detection of repetitions and sym-
metries (Pauly et al., 2008). The repetitions that are not necessar-
ily sequenced according to a grid structure (Shen et al., 2011) may
form a kind of low-level grammar. Detecting repetitions require
to deal with the uneven sampling of the ranks scan (Friedman
and Stamos, 2011). Density varies depending on the distance of
echoes to the sensor, but also on occluders. Facades are partially
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Figure 1: Point density depends on sensor location and orienta-
tion (left), and on surfaces geometry (middle). It is also decreased
by occluders like trees in front of facades (right). Thus it depends
both on acquisition (viewing angle, scanning frequency ...) and
scanned objects. Nevertheless, point density is the essence of in-
formation given by PCD.

hidden, and density decreases toward the top of the buildings. In-
stead of replacing missing parts by flat or smooth surfaces, some
papers offer to ”consolidate” and fill the holes thanks to the repet-
itive structures (Zheng et al., 2010), (Nan et al., 2010). But here
again, the detection of repetitive elements in PCD is complex and
requires manual assistance (Li et al., 2011).

Although such knowledge based approaches are promising, De-
tecting facade structures and grammars remains difficult, as ev-
idenced by the need for human intervention. In addition, such
methods cannot handle old style facades, complex ornaments,
and any unexpected object which does not match the model. Maybe
hybrid reconstructions (surface/shape) are more appropriate to
these contexts and could help the facade structure to emerge (La-
farge et al., 2013).

We opted for a low level approach, consistent as possible with
the data. Indeed, we believe that a processing step is missing in
facade modeling. Trying to detect structure into PCD imply to
manage the density variation that can both depend on underlying
objects and acquisition context (fig:1). A more “acquisition in-
dependent” data is needed. A surface may fulfill this role. Many
approaches are looking for the facade surface (Deschaud, 2010),
but start with an irregular mesh and fill the holes in a second step.
Our approach assumes the presence of a continuous surface that
is iteratively adjusted toward the 3d points.

Carving approaches use the information provided by the lidar
sensor. Even without knowing the position of the source (Shalom
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et al., 2010), it is possible to constrain the surface reconstruc-
tion by estimating the angle of view of the sensor. Surfaces thus
generated (Hadsell et al., 2009) ensure consistency with the ac-
quired data. Rather than a purely carving method, we propose
to adopt the sensor point of view. Namely, we place ourself in
a coordinate system adapted to the acquisition method. Using
such a coordinate system allows efficient and accurate results, as
for the calculation of normal (Badino et al., 2011). The bene-
fits and challenges of using the acquisition coordinate system are
well shown by Frueh et al. (2005) in particular, they explain the
reversal scan order that causes topological problems when trying
to mesh points according to acquisition order. Their choice is
to work with depth images from path segments that contain no
reversal order. In section 2.1, we will discuss the use of such
depth images where each pixel represents a lidar point (fig:3).
We also propose to reconstruct a 2.5d grid that leverages the ac-
quisition geometry and overrides the topological problems, but
our approach allows more freedom because one pixel can contain
zero, one or several points, and the grid can be computed from
any path segment.

1.3 Overview
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Figure 2: Workflow of grid fitting to the primitives.

A 2.5d grid is fitted to the geometrical primitives. In the 2.5d grid
coordinate system, any 3d point is defined by u and v that locate
the point on the grid, and h that is the depth from the u-v plane.
The main steps and the inputs of the algorithm are depicted there-
after and in figure 2.

Initialization. A vertical rectangle approximating the main fa-
cade wall is calculated as in (Demantké et al., 2012). It provides
the u-v plane and the grid boundaries. The 2.5d grid is placed on
this rectangle and the depth of each grid pixel is set to zero.

Primitive accumulation in the grid pixels. The primitives (li-
dar points, triangles or line segments) are projected onto the u-v
plane in order to accumulate the primitive depths h into the grid
pixels: for any kind of primitive, whenever the intersection be-
tween a primitive and a pixel is not empty, the primitive depth is
accumulated in the pixel.

Iterative deformation of the grid. The grid is then iteratively
deformed to draw near the primitives. An optimal h is searched
for each pixel according to the depths of the primitives that are
projected in, and according the neighboring pixel depths. Only
the h coordinates are changed, the pixels therefore move along
their iso-uv. This process is performed several times in order
to converge to a satisfactory solution, despite bad initializations,
outliers and empty pixels. The strategy for pixel depth computa-
tion serves to handle cases where many primitives have been ac-
cumulated in one pixel. The depth interpolation for empty pixel
is made locally, according to a smooth parameter explained in
section 3. Each input is independent from the others. As well,
the strategy for pixel depth computation can be chosen separately,

however if the grid resolution or some other parameter is changed
between two iterations, the primitive accumulation must be per-
formed again.

2 COORDINATE SYSTEMS

The choice of the 2.5d grid coordinate system and the correspond-
ing projection is important because it affects the primitives accu-
mulation and it determines the direction of the pixel displace-
ments (orthogonal to the u-v plane if Cartesian coordinate sys-
tem). Our first intuition was to use a Cartesian coordinate system.
This favors perpendicular angles, which are prevalent in human
buildings. However, it causes problems that could be avoided
using a more “sensor-oriented” coordinate system. That is why
we propose a generalization of the orthogonal projection called
“prismatic” projection and the associated coordinate system. The
prismatic coordinate system can be adapted to the facade and the
laser beam orientations.

In this section, we analyze the sensor coordinate system corre-
sponding to an acquisition with a rotating laser, scanning verti-
cally and perpendicular to the trajectory. We list the benefits and
the limitations of working in such a coordinate system. Then the
prismatic coordinate system is described. Finally, orthogonal and
prismatic coordinate systems are compared in the section 2.3.

2.1 Sensor coordinate system: relevance and limitations

Finding topological structure of objects from an unorganized point
cloud is complex. The most probable surface is often searched,
leaving decisions of point linking and hole filling to thresholds
or assumptions. In fact, the objects are not sampled from every
point of view. The sensor generally sees only one side of the ob-
jects, whereas a hidden part remains unknown and impossible to
reconstruct. The acquisition result is thus a partial view of the
scene. Rather than detecting the whole object volumes, the lidar
discovers an empty volume between the sensor and the objects,
“carved” by the laser beams. The object surfaces stop the laser
beams and bound the sensor visibility area. Lidar echoes are thus
located on object surfaces, and more generally at the interface
between what is seen and not seen by the sensor. Assuming that
this interface is a surface, reconstructible surface pieces (corre-
sponding to the visible part of the objects) are also pieces of this
interface. Therefore, we consider this interface and the ways to
reconstruct it. This is an image in sensor projection. Points can
be simply and rapidly meshed following the neighborhood rela-
tionships in sensor coordinate system. This ’naive” meshing has
some shortcomings, but more sophisticated techniques adopting
the sensor viewpoint may permit to benefit from sensor coordi-
nate system.

Our acquisition vehicle is equipped as in (Paparoditis et al., 2012).
The laser scans perpendicularly to the trajectory, with a vertical
angle ©. Let P(x,y, z) an echo acquired at 7 time,

— —
P(z,y,2) =S; + Rcos® U; + Rsin® V )

S is the position of the sensor at 7.

R is the distance between S, and P.

O is the angle between the horizontal plane and
the laser beam.

V is a vertical unit vector.

U, = T; x V, with T, the unit vector of the
vehicle displacement at .

Each term has specific features that imply vari-
ous accuracies and value distributions as shown
in table 1.
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Sr R S}
Accuracy de- | Positioning Lidar mea- | Mechanical
pends on system of the | surement measurement
vehicle
Accuracy is - + +++
Density Vehicle tra- | Scanned ob- | Lidar firing
depends on jectory and | jects distance | frequency
speed and angle
Distribution If constant | If  smooth | Yes
regularity ? speed surfaces

Table 1: Accuracy and Distribution of S, R and ©.
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Figure 3: The regular mesh in (7, ©) space, folding on itself in
the (x,y) space.

Figure 4: Folding of the regular mesh (purple) due to the trajec-
tory curvature.

The lidar sweep produces points at regular intervals of time 7 and
firing angles ©. Hence, point distribution in (7, ©) space is very
homogeneous and structured. A regular mesh appears if each
point is linked with the next point acquired, and with the point on
the next scanline that has the same ©. Such a mesh may fold on
itself when projected into (z,y, z) space (fig: 3). This is caused
by the reversal scan order as shown in fig: 4. The curvature of the
vehicle trajectory is the source of laser beam crossings that make
points out of sequence along 7, whereas the order is always kept
along O(fig: 5). In addition to this order reversal problem, the
neighborhood relationships established according to the sensor
geometry does not necessarily make sense in 3d space. Some ob-
jects are not surfacic, like trees, generating scattered points. The
windows, both transparent and reflective, induce the detection of
several surfaces for the same (7, ©) area. In these cases, the regu-
lar mesh is no longer adequate to represent the data. Mention may
also be made of the multi-echoes that share the same (7, ©), and
of the laser shots oriented toward the sky that generate no return-
ing” beams. In sum, the nearest neighbors in sensor geometry are
not necessarily the most suitable, because the sensor geometry is
trajectory dependant (mesh folding), and because the geometry of
the underlying objects may be too complex or sub-sampled. Nev-
ertheless, it seems interesting to work in sensor coordinate system
that highlights the almost-regular and almost-2.5d data structure.
The main hurdle is the absence of bijection due to the possible
laser beam crossings. That is why we propose the prismatic co-
ordinate system that imitates the sensor coordinate system: the
iso-uv are aligned along the laser beams as far as possible, while
ensuring a bijection between (z,vy, z) and (u, v, h): no iso-uv
crossings.

Figure 5: Scan order is kept when passing from (O, R) to (z, z).
This is not the case when passing from (7, R) to (z, y).

BII

Sensor Grid Facade Grid

Figure 6: The points are accumulated in the pixels of the facade
grid. The accumulation volume of a given pixel is shown in red.
It extends to infinity behind the grid.

2.2 Prismatic coordinate system

We propose a new way to accumulate the points in the facade
grid. The idea is to use a virtual sensor grid. For each pixel
of the facade grid, there is a corresponding pixel on the sensor
grid. Ideally, the following property is ensured: any laser beam
passing through a facade pixel passes through the corresponding
sensor pixel (fig: 6). The virtual sensor grid is positioned in order
to approach this ideal.

The function that associates prismatic coordinates (u, v, h) to the
space coordinates (z,y, z) is explained in the 2d and 3d cases.
Then a method to place the grid is proposed.

B/

Figure 7: 2d formulation

2d formulation. We place ourselves in the horizontal plane (fig:7).
We look for the (u, h) coordinates of a point P(z, y). [AA’] sym-
bolizes the sensor location, and [BB’] the facade footprint. The
laser beam is approximated by a ray [ab) that passes through P
and intersects (AA’) in @ and (BB’) in b, such that

N o

Bb=uBB’ 2)

- Y
Aa = uAA and
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The straight line (ab) is thus the iso-u of P.

The position of P on [ab) is given by h. We propose to use the
following equation that sets h as the signed distance to b normal-
ized by |abl|, b being the virtual intersection of the facade plane
and the laser beam.
— ba
h = bP. e 3)

We will show how to find u for a given point P in order to obtain
the couple (u, h). In this context, P, A, A’, B and B’ are known.

. - — . . .
As P lies on (ab), we have: aP x ab = 0 which is equivalent to:

2 WY T T BB AN DU D
u”(BB'x AA")+u(APxBB'—BPx AA"Y+ APxAB =0
C))
So we obtain a quadratic equation of the form au® + Bu+~v = 0
— —
that allows two solutions for u. Note that if AA’ and BB’ are
— —_
BB" x AA’ = 0, and the equation be-
comes fu+v7=0<u=

colinear, o« =
—%, giving us the unique solution

—_— _— .
for u. In the general case (AA’ and BB’ not colinear), one so-
lution corresponds to a degenerate case, that brings a and b far

B+ sign(B)VA
2

and A = 32 — 4oy, the two roots of the quadratic equation are

Ug = g and us = l. As lim ug = oo and lim us = 71.

a

a—0 a—

from P. One can verify that, defining ¢ =

uq is a degenerate solution and us, the searched value for w.

Special cases.
If AA” and BB’ are colinear, and ||AA’|| = ||BB’||, b is the

orthogonal projection of P on (BB’).
If |[AA’| — 0, we obtain a kind of angular projection.

B//

A//

Figure 8: 3d formulation

_— —_— ——
3d formulation. As in figure 8, AA’ L AA” and BB’ L BB".

— —
For our application, we assume that AA” and BB" are colinear.
u and v are the horizontal and vertical coordinates of P in both
the basis {AA’, AA”} and {BB’, BB"}. h is the signed dis-
tance to b.

— — —_—
Aa = uAA +vAA"

—
— —  ba

— —
b=uBB +vBB" and h:bP'\b E
a

Placing the grids. The rectangle with the B, B’ and B” cor-
ners is placed along the facade wall. The rectangle with the A,

A’ and A” corners is placed along the trajectory in order to align
laser beams with iso-uwv. For this purpose, we only adapt the hor-
izontal position of the rectangle. It is vertical with an height close
to zero because the location of the sensor is not supposed to move

vertically. H is fitted with RANSAC, by selecting randomly
pairs of laser beams. Each pair of laser beams is a potential cou-
ple AB, A’ B’ defining a prismatic coordinate system. The score
of each pair must reflect the alignment between the laser beams
and the iso-uv. The score is thus the sum of the dot products
between the laser beam and the iso-uv of each 3d point.

2.3 Comparison between Cartesian and prismatic coordi-
nate systems

The orthogonal and prismatic coordinate systems are compared
through some examples in figures 9, 10, 11 and 12. Many prob-
lems in pixel accumulation and surface reconstruction can be
avoided using a “’sensor-oriented” coordinate system such as the
prismatic one.

(b) © (C))

Figure 9: The facade in profile and a wall light are sketched.
The points are accumulated on the vertical plane, according to an
orthogonal projection (a), (b) and a prismatic projection (c), (d).
Orthogonal projection leads to accumulating points from distant
beams in a same pixel (a), causing an ambiguity in the choice of
the surface (b). prismatic projection is more consistent with the
scan (c) and leads to a surface reconstruction with less ambiguity

(d).

(a)

Figure 10: Laser beams (a). Surface reconstructed in a Cartesian
coordinate system (b) and a prismatic coordinate system (c). The
use of Cartesian coordinate system may leads to a surface that
”goes through” the wall because it is attracted by points of the
room ceiling behind the facade (1). The surface is also attracted
to a wall light (2). The surface reconstructed using the prismatic
coordinate system follows the beam trajectory, it goes trough the
window (1) and wraps the wall light (2).
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(b)

Figure 11: Loss of Accuracy

(a) Laser beams partially entering a cavity.

(b) The iso-uw (purple) are along the laser beams, points are dis-
tributed homogeneously in the pixels. This is the best configura-
tion for surface reconstruction: there is one point per pixel, there
is no ambiguity in depth computation.

(c) Orthogonal projection, iso-uv (pink) orthogonal to the wall.
Three points are accumulated in the same pixel (2) while there is
no point in some other pixels (1).

/// /%
(a) (b) ©

Figure 12: Inconsistency between the surface and the laser
beams

(a) An object hides a part of the wall behind.

(b) Prismatic coordinate system: The reconstructed surface does
not fit everywhere with the actual surfaces, but is not pierced by
the laser beams.

(c) Cartesian coordinate system: The reconstructed surface is in-
tersected by two laser beams (1).

3 DEFORMABLE GRID
3.1 Iterative deformation of the grid

We solve the problem of finding an optimal depth h for each grid
pixel as an energy minimization with a data term that shifts h
to the primitives, and a smoothness term that retains h close to
the neighboring pixels. Each iteration, the depth of each pixel is
moved from An to Ay .

hncigh hn hplxcl h

hn+l - hn + Apixel(hpixel - hn) + )\neigh(hneigh - hn) (5)

Data Term

Smoothness Term

hn : previous h
hpixel © h estimated from primitives accumulated in the pixel.
hneigh © h estimated from the neighboring pixels.

3.2 Strategy for pixel depth computation

The strategy for hpixel and hpeigh calculation may vary according to
the data or the desired output. In our case, we use a bilateral fil-
ter that allows discontinuities like at window edges, but smoothes
the wall flat surfaces. Pixel depth i2$ computed thanks to the fol-

lowing equations, where exp(— %) is denoted by G(o, z).
o

Z G(Uh, hl)hl

>~ Glon hi) ©

hpixel -

Where h; is the depth value of the ¢*" primitive accumulated in
the pixel. The Gaussian function weights the contribution of each
h;i. If an h; is far from the current depth, its contribution is low.
This allows a relative independence to the outliers. The smooth-
ness term is provided by the depth values of the eight neighbor
pixels. Hence, the neighbors depth is given by:

8
> G(on, hi)G(04,di)h;

O]

hneighbors -

i=1
8
E G(Uh, hi)G(Ud7 dl)
i=1

h; is the hpixel value of the it" neighbor pixel. d; is the distance
between the pixel center (u,v) and the i*" neighbor pixel center
(ui,v;). If the depth of a neighbor pixel is far from the current
pixel depth, its contribution is low, allowing a discontinuity at the
edge between these pixels. The values of o, and o4 have to be
fixed, one can choose the grid accuracy that is, the length of a
pixel side.

Some other strategies are possible. For instance, the closest point
from the facade plane can be kept. The median would give a
robust estimation if there are many point. Other quantile values
would be used if the closest or furthest points are looked for.

3.3 Primitives

Points / Lidar echos: If many pixels are empty of 3d points, the
iterative process may be slow to converge. A solution is to start
with a low resolution grid (large pixels). This allows to initialize
a more precise grid. This procedure can be repeated many times,
the same way a scale-space pyramid is built.

Triangles: The advantage of the triangles over the points is that
they provide surfaces. This allows the algorithm to converge
more rapidly. Thus, the triangle soup provided by sensor geome-
try can be used as input.

Line segments: Line segments extracted from scan lines can
be accumulated in grid pixels. This option is mentioned because
many papers perform processes such as classification on scan-
lines (Hadjiliadis and Stamos, 2010). simplified scanlines are
more compact than points and their projections could intersect
more pixels.

Mixed primitives:
neous primitives.

Nothing prevents to accumulate heteroge-

4 RESULTS

Figure 13: Grid constructed for a facade (left). Detail of the grid
(right).
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We display some visual results, showing the precision of the pro-
posed method, despite the low point density (fig: 13). Parameter
adjustments permits a compromise between a smooth surface as
in figure 14 (a), and more rugged and closer to the points, 14 (c).

(2) (b) (©

Figure 14: Three parameterizations for the same facade piece
(three-quarters and profile view). From left to right, the data term
increases and the smoothness term decreases. The surface be-
comes less simple and more rugged, but closer to the lidar points.
(@) Apixet = 0.01 and Apeign = 0.99
(b) )\pixel =0.10 and Aneigh =0.90
(C) )\pixe] = 0.90 and )\neigh =0.10

5 CONCLUSION AND FUTURE WORK

We presented an approach to reconstruct facade geometry from
lidar data. We aimed at surfaces consistent with the data, espe-
cially the optical images acquired in the same time. The proposed
framework allows to reconstruct 2.5d grids in a coordinate system
adapted to the sensor point of view. For this purpose, we intro-
duced a prismatic projection that is a generalization of the or-
thogonal projection and the corresponding coordinate system. It
allows to benefit from the sensor geometry while providing a co-
ordinate system topologically consistent with the 3d space. The
output 2.5d grids are suitable for immersive navigation and other
applications that need compact and detailed 3d models. They
could also be used as inputs for facade structure analysis, in par-
ticular for window detection or grammar rules extraction.

In future work, we would like to texture the grid with the optical
images. For this task, our framework should allow us to deal with
images, that are also 2.5d grids in image coordinate system, and
to project image pixels onto the reconstructed grid.
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