
PROCEDURAL MODELLING FOR RECONSTRUCTION OF HISTORIC MONUMENTS

M. Koehl * , F. Roussel

TRIO / Photogrammetry and Geomatics Group, ICube Laboratory UMR 7357, INSA de Strasbourg, 24 Boulevard de la Victoire,

F-67084 Strasbourg, France {mathieu.koehl, felix.roussel}@insa-strasbourg.fr

Topic C-3: Modelling methods for architecture and archaeology

KEY WORDS: 3D modelling; Procedural modelling; Parametric model; Construction rules; Cultural heritage.

ABSTRACT:

The reconstruction of historic or archaeological monuments bases on the architectural knowledge of the architects and the
archaeologists. For the 3D modelling, we can use several technologies as the meshing of point clouds, reconstruction by geometrical
primitives and more often the completely manual reconstruction based on a geometry measured on the field. The procedural
methods of modelling also allow to build, even to reconstruct historic buildings. They are very effective when several primitives are
repeated in regular structures. In this paper, we tested the efficiency of a procedural modelling within the framework of the
modelling of the church of Turckheim, Haut-Rhin - France. This church has been built around an older chapel of the XIIth century of
which there exists no more than a bell tower. The procedural modelling allowed to reconstruct the church in the current style
borrowed from that of the XIIth century. The architectural elements built on the basis of rules were then able to be resumed to
propose hypotheses of reconstruction of the anterior chapel. Even if the procedural modelling is not the most adapted to this kind of
reconstruction, nevertheless it allowed to offer methods of original modelling in an open environment (Esri's CityEngine 2014.0)
and, what is here the most important, interoperable with other 3D products.

1. INTRODUCTION

1.1 Project context

Turckheim is a small village situated in the department of the
Haut-Rhin in Alsace, France. (Figure 1).
At the heart of the Alsatian vineyard, this city holds numerous
historic monuments of which its church. To understand the aim
of the project described in this paper, it is important to be
interested in the history of this church. Indeed there are
numerous historic events which explain its renovation and even
its partially reconstruction. The first mention of a Christian
sanctuary to Turckheim is dated from 898. This one has been
replaced in 12th century by a Romanic building (chapel) of
which remains today only the bell tower. Destroyed by a
lightning in 1661, the bell tower was then reconstructed and
enhanced. In 1736, it was again repaired further to the damages
undergone during the passage of a tornado. In 1791, the city
endows the church with an organ. Last milestone, the church is
the prey of flames in 1978. The organ as all the heart of the
church will then has been restored again (1983). From this
heavy and rich past it remains unfortunately and as it is often
the case only very few documents and available information
except for some facts told in diverse papers. But as regards to
the geometry, the positioning, the physical characteristics of the
initial work, there rest only few elements. Some hypotheses of
positions and ground trace were well given by various
historians or archaeologists. Thus the project of acquisition and
3D modelling has to allow to supply the current state of the
building to be able to be used as base to new investigations and
to the generation of new hypotheses about the locations and the
historic forms of this church and its original chapel.
To allow the modelling, topographic survey and the inside and
outside scans via terrestrial laser-scanner (TLS) has been
realized and used.

Figure 1: Location of the project
Turckheim – Alsace – France (GoogleEarth imagery)

A first method described in (Koehl, 2014) was performed in a
CAD environment (Bentley Microstation) by using the
possibilities of partial display of the point clouds and by using
especially the familiar tools of CAD engine. This first method
required long manual work, but allows a detailed approach by
using the principles and the methods known for modelling in a
CAD environment.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W3, 2015
25th International CIPA Symposium 2015, 31 August – 04 September 2015, Taipei, Taiwan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W3-137-2015

137

This project had to define if the use of a software that proposes
procedural modelling, in particular the ESRI's CityEngine
2014.0 package would gain efficiency in this context of
modelling of existing object, then to see if the same
environment could be used to realize easily simulations within
the framework of archaeological restorations applied to the
today disappeared chapel.
This paper will begin with the description of the object of the
study, then with that of the environment of modelling, to show
then the different phases of elaboration and process of
modelling.

1.2 Modelling environment

CityEngine is a three-dimensional modelling software
application developed now by Esri. It is specialized in the
generation of 3D urban environments with the procedural
modelling approach. City Engine enables the efficient creation
of detailed large-scale 3D city models with merely a few clicks
of the mouse instead of the time-exhaustive and work intensive
method of object creation and manual placement. The
acquisition of CityEngine is aiming to push the innovations in
3D GIS and geodesign technology (Sostaric, 2012). In fact, the
realism of computer graphics images requires the creation of
objects (or scenes) of increasing complexity, which leads to
very huge costs. Procedural modelling can help to automate the
creation process, to simplify the modification process or to
generate multiple variations of an object instance.
CityEngine is experienced for mass modelling (Mueller et al.,
2012) with more or less random generations. But the examples
and applications in the field of modelling of very detailed
scenes with modelling patterned after the reality is still rare and
limited.
That is why, it could be interesting to use this software
application in order to represent places. Experts and laymen
study historical structures closely. Digital models of these
elements of our cultural heritage are valuable tools for analysis,
reconstruction, and virtual display. While the focus of cultural
heritage digitization is still on 3D modelling of important major
monuments, there are often additional demand for modelling
larger settlements. Such settlements might be interesting or
might only form the context for a monument.
While archaeologists have detailed architectural knowledge of
the monuments and the settlements they study, they have little
formal training in CAD or computer graphics modelling
packages. Procedural modelling tools such as the CityEngine
can bridge this gap, providing a user-friendly, high level
interface and filling in detail where the archaeological record is
incomplete (Piccoli, 2013).
With the objective to reduce the time and facilitate the
generation of 3D plans, we created libraries of rules files and
textures applied to Turckheim Church.

2. MATERIAL AND METHODS

2.1 The description of the church

We separate the church into two main areas. The nave and the
steeple. The nave is split into four other parts. The choir, the
nave, the collateral and the transept (Figure 2). The steeple is
split into two parts. The steeple and the porch (Figure 3).
Some assumptions of positions and right-of-way were well
issued by different historians or archaeologists. The acquisition
and 3D modeling project must therefore provide the current
state of the edifice to serve as the basis of new investigations
and for the generation of new hypotheses on the locations and

historical shapes of this church and its original chapel (Figure
4).
We initially had at our disposal a lot of data. We had a point
cloud from outside and inside of the church obtained from a
terrestrial laser scanning survey. We had a photogrammetric
survey of the interior and exterior of the church.
We finally also used photographs to create realistic textures for
the model.

Figure 2: From left to right: the back of the nave, the steeple,
the front of the nave

Figure 3: Red: nave. Green: collateral. Blue: transept. Yellow:

choir. Purple: steeple. White: porch.

Figure 4: Hypothetic situation of the Sainte-Anne's chapel (2)

versus actual church (1)

2.2 CityEngine as modelling environment

(Mueller, 2007) defined a number of ground breaking
techniques for the procedural modelling of 3D architectural
contents which make up the foundation of CityEngine today.
CityEngine has been presented for the first time outside of the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W3, 2015
25th International CIPA Symposium 2015, 31 August – 04 September 2015, Taipei, Taiwan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W3-137-2015

138

research community in 2009 as a commercial product
(Procedural inc.). Then it was acquired in 2011 by Esri, one of
the most powerful and well-known GIS Company. The main
usefulness and highlight of CityEngine is to supply 3D contents
from GIS data and also generate scenes and 3D models. Once
the database loaded in CityEngine such as DTM, roads axes,
footprints of buildings, vegetation, etc., the application of
procedural rules can help to build the 3D entities. To better
understand the process of generating 3D models, construction
rules of 3D entities have been analysed and assigned in order to
model a historic castle, the Engelbourg, Thann, France (Koehl
et al., 2014). (Piccoli, 2013) presented also a very complete
overview of the potential use of CityEngine in archaeological
projects.
CityEngine is a ‘Procedural Modelling Application’. This
means that CityEngine uses rules to generate the 3D Model
according to the process described in Figure 5.

Figure 5: General process of model generation

Beginning from the base form, we have to describe construction
rules translated in CGA language allowing to modulate the
forms (extrusion, division, repetition, etc.). To write a rule, the
user can use a rule editor that works in a direct visual mode or
means code writing.
The textual way allows to edit live code in particular to
comment it so it will be able to share it and reuse it in other
applications, while the visual way will be more intuitive to
analyze a complex flow of the same type of rules.
Rules are then applied to reference entities (faces) what allows
the complete reconstruction of the 3D object. This application
of rules can be made entity by entity or on several entities at the
same time if they contain form similarities. In this case the
dimensions can afterwards be adapted through individual
parameters.

2.3 Edition of reconstruction rules applied to facades

There exist also other software applications allowing to edit
rules, particularly in the case of facades for which we can use a
"wizard" (Mueller et al., 2007). The "facade Wizard" is an
adapted tool allowing the user to create complex CGA rule
models for facades. One of the advantages is that no CGA
codes is needed to be written by the user, it is directly generated
by CityEngine as background task. So complex architectural
structures can be generated in an effective and fast way. This
"wizard" uses as first entry an image of the facade. The image
can directly be ortho-rectified by using a simple algorithm
based on 4 coplanar points. As a result, the ortho-image in
.PNG format can then be segmented in a following stage.
At this stage, the facade is going to be divided horizontally into
floors or levels, then every level is going to be vertically
divided into columns, doors or windows, etc.

Every individual rule or the aggregation of all the rules can then
be attributed to every face of the facade.

2.4 The CGA language

This part introduces the basics of the CGA shape grammar of
CityEngine. We will analyze a finished rule file which contains
all steps to create a basic building.

Building attributes
Building attributes are normally defined on the very beginning
of the rule file (although they can be put anywhere in the rule
file). These attributes are used through the whole rule set and
appear in the CGA "attribute mapping area" of the "Inspector",
where their values can be set and modified outside the CGA
grammar editor as well.

attr groundfloor_height =4
attr floor_height = 3.5
attr tile_width =3
attr height = 11
attr wallColor = "#fefefe"

Window asset
The window asset used for the creation of the simple building is
defined here. The current asset is loaded from the project's
assets folder, found in the navigator.

// geometries
window_asset = "facades/window.obj"

Lot rule
The creation of the building starts now. Our first rule is called
"Lot". Remember the assigned start rule in the "Inspector". The
mass model is created with the extrude operation:

Lot -->
Extrude (heights) Building

Building rule
Usually in the next step, such a mass model can be divided into
its facades by applying the component split.

Building -->
Comp(f) (front: Frontfacade | side: Sidefacade |
top: Roof)

This rule splits the shape named Building, the mass model, into
its faces by applying a component split. This results in a front
shape (usually the main front facade with entrance), several side
shapes as Facades, and a Roof shape.
In a first step, the facade can be decomposed into Floors.
Afterwards, the floors are further broken down into elements
we call Tiles (floor subdivisions). A tile consist usually of wall
and window elements. This subdivision scheme can be
implemented in the CGA shape grammar as follows (Figure 6):

Figure 6: Split organization

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W3, 2015
25th International CIPA Symposium 2015, 31 August – 04 September 2015, Taipei, Taiwan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W3-137-2015

139

Frontfacade rule

Frontfacade -->
Split(y) { groundfloor height : Groundfloor
 | {~floor_height : Floor}* }

The FrontFacade rule splits the front face into a ground floor
shape (of predefined 4 m. height) and repeating (using the
repeat operator ' * ') upper floor shapes (of approximate
predefined 3.5 m. height). The tilde operator ' ~ ' guarantees
that no matter how high the building actually is, always a full
number of upper floors is created. Especially for front facades,
the appearance of the ground floor is often different from the
other floors. It differs not only due to the fact that it has an
entrance, but often also due to different floor heights, different
window appearances, other colors, and so on.

Sidefacade rule
The Sidefacade rule splits the side facades into floor shapes.
Therefore, the subdivision split is performed in the same way to
assure that the floor heights are in synch with the front facade.

Sidefacade -->
Split(y) { groundfloor height : Floor
 | {~floor_height : Floor}* }

Floor rule
The Floor rule is a typical example of a subdivision of a floor
into tiles (of approximate predefined width 3 m.). To make the
floor design slightly more interesting, we also split away a wall
element of width 1 m. on each side.

Floor -->
Split(x){1 : Wall
| {~tile width : Tile }*
| 1 : Wall]

Groundfloor rule
The Groundfloor rule refines the ground floor shape with a
similar subdivision split, with the difference that an entrance is
placed on the right. The following Figure 7 depicts the extruded
mass model on the left side and the described decomposition
into floors and tiles on the right.

Figure 7: Extruded mass model and decomposition into floors
and tiles

Tile rule
After the initial facade structure has been defined, the tiles can
be modeled:

Tile -->
Split(x){ ~1: Wall
 | 2: split(y){ 1:Wall | 1.5:Window | ~1:Wall }
 |~1: Wall }

The Tile rule defines the appearance of the tile by splitting
along x- and y-axis (with a nested split). We can notice that in
this design the wall elements are floating (with tilde) and that
the window has a fixed size: 2 m. in width and 1.5 m. in height.

EntranceTile rule

EntranceTile -->
Split(x) { ~1: SolidWall
| 2: split(y) {2.5: Door | ~2: SolidWall }
|~1: SolidWall }

The EntranceTile rule defines the entrance shape in a similar
way as the tile shape (but obviously with no wall on the
bottom).

Window, Door and Wall rules
Finally, the last rules replace the geometry of the Window,
Door and Wall shapes with the corresponding assets, position
them and set the texture:

Window -->
s('1, '1, 0.4)
t(0,0,-0.25)
i(window asset)

Door -->
s('1, '1, 0.1)
t(0, 0, -0.5)
i("builtin:cube")

Wall -->
Color(wallColor)

SolidWall 
color(wallColor)
s('1, '1, 0.4)
t(0, 0, -0.4)
i("builtin:cube:notex")

Via the operation t(x,y,z), the current shape is translated -
0.25 m. in the z-direction. By this way the windows and
textures are set back 0.25 m. into the facade. Afterwards the
insert operation i(objectname) inserts an asset into the
current scope. If the dimensions are not set like in the Window
or Door rules, the sizes are adapted automatically - otherwise
the given dimensions are used. Via the operation s(x,y,z) the
size of the scope can be set in the Wall rule. The width and
height of the scope are not affected since relative coordinates
are used: the x and y dimensions of the current scope are scaled
by one ('1) resulting in no change. The z dimension is set to -
0.4 resulting in a wall with a thickness of 0.4 m. (pointing
inwards).
When we put all the above rules together, we get the final un-
textured simple building (Figure 8):

Figure 8: Final un-textured model

Texture Declaration
Like the assets, we define the textures we will use at the
beginning of the rule file. The textures are loaded from the
assets folder. We have to add the following new lines to our
rule file below the window_asset declaration.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W3, 2015
25th International CIPA Symposium 2015, 31 August – 04 September 2015, Taipei, Taiwan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W3-137-2015

140

// textures
frontdoor_tex = "…/texture1.tif"
wall_tex = "…/texture2.tif"
dirt_tex = "…/Texture3.tif"
roof_tex = "…/Texture4.tif"

Now, we add the two first lines to the Frontfacade and the
Sidefacade rules:

Frontfacade -->
SetupProjection(0, scope.xy, 1.5, 1, 1)
SetupProjection(2, scope.xy, scope.sx, scope.sy)
Split(y) { groundfloor height : Groundfloor
 | {~floor_height : Floor}* }

Sidefacade -->
SetupProjection(0, scope.xy, 1.5, 1, 1)
SetupProjection(2, scope.xy, scope.sx, scope.sy)
Split(y) { groundfloor height : Floor
 | {~floor_height : Floor}* }

The setupProjection() command prepares the UV
coordinate projections on the facades for color (channel 0) and
dirtmap (channel 2), projected onto the scope.xy plane,
therefore scope.xy, is set as second parameter.
The brick texture (channel 0) will be repeated every 1.5 m in X
and every 1 m in Y axis, whereas the dirtmap (channel 2) will
span over the whole facade and therefore uses scope.sx and
scope.sy as size parameters.

Again, we have to add the lines to the subsequent rules:

Door -->
s('1, '1,0.1)
t(0, 0, -0.5)
texture(frontdoor_tex)
i("builtin:cube")

Wall -->
Color(wallColor)
Texture(wall_tex)
Set(material.dirtmap, dirt_tex)
projectUV(0 projectUV(2)

SolidWall -->
color(wallColor)
s('1, '1, 0.4)
t(0, 0, -0.4)
texture(wall_tex)
set(material.dirtmap, dirt_tex)
i(builtin:cube:notex")
projectUV(0) projectUV(2)

Wall and SolidWall use the UV's prepared in the Facade rules.
Besides choosing the textures for color and dirt channel, we
also need to project the UV's on those two channels.
Below is the final building model (Figure 9).

Figure 9: Final textured building

2.5 CGA rules applied for church reconstruction

For the creation of the 3D model of the church, we use the same
process of creation decomposed in the following phases:
a) Creation of the project
b) Creation of the scene
c) Import of the data
We import in this stage, the 2D vector data of the footprint of
the church.
d) Creation of the rules file
e) Writing the rules file

The first part includes the modelling of the main building:
- Attributes: this model rests on 5 different attributes
corresponding to the main geometrical dimensions.
- Assets: an asset is an essential entity for the creation of a
detailed model. An asset is an entity in the .OBJ format created
here with another modeler (like Trimble Sketchup).

Our project contains 4 main assets:
- The Lot rule: the actual creation of the building begins at this
stage. The first rule is called the Lot. The mass model is created
with an extrusion operation. A second rule allows to create the
internal walls.
- Building rules: during this stage, the model of mass is divided
into facades (FrontFacade, BackFacade, SideFacadeL,
SideFacadeR, TopFacade) just like the inside (FrontFacadeInt,
BackFacadeInt, SideFacadeIntL, SideFAcadeIntR). These
facades are then cut in faces.
- FrontFacade rule: this rule cuts the front face in several
variable and adjustable levels by a parameter.
- GroundFloorFront: the ground floor is divided horizontally
into an entrance surrounded with two wall of FrontFacade.
- WallFrontFacade and EntranceFrontFacade rules: here we
divide WallFrontFacade into SoilStrip, WallClassical,
HigherStrip, etc.
All this decomposition were made by analyzing the
architectural structure of FrontFacade (and farther also of all
other facades).
- Assets insertion: we insert then assets after new subdivisions
and the preparation of the surfaces.
The main front facade will be used as illustration of this asset
insertion and as its resizing fitted to the geometry of the
building (Figures 10).
As we can see, the detailed elements cannot be directly
modelled without difficulties with CityEngine.
Then we use then assets created by means of other modelers:
we summarize below the various methods of asset generation.

Figure 10-a: Division of the
ground floor

Figure 10-b: Complementary
subdivision of the ground

floor

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W3, 2015
25th International CIPA Symposium 2015, 31 August – 04 September 2015, Taipei, Taiwan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W3-137-2015

141

Figure 10-c: Subdivision of
first level

Figure 10-d: Asset insertion

Figure 10-e: Door asset
insertion

Figure 10-f: Column asset
insertion

Figure 10-g: Asset insertion
for door ornament

Figure 10-h: Texture

3. MODELLING PROCESS

3.1 Use of point cloud measured by TLS

From a point cloud, we can generate meshes by using the mesh
software associated to scanners. However, the import of these
meshes is not adapted to CityEngine who represents all the
edges in a visible way. Thus an excessive large number of
meshes does not allow an interesting description.

3.2 Creation of objects by means of CityEngine modeler

The manual creation of assets is possible in CityEngine, but
tools and available functions are relatively limited. The only
accessible geometries are polylines that will be difficult to size
exactly.

3.3 Creation of the object by means of the Sketchup
modeler

Sketchup is an accessible and well spread modeler, offering
multiple tools and well adapted to fine modelling. Having
drawn the object on Sketchup, it's possible to export it in
Wavefront .OBJ and Collada .DAE formats, which can be
directly imported in CityEngine.
Another advantage of Sketchup is the importance of users'
community which shares numerous 3D objects in an Internet
accessible library called 3D Warehouse. Some simple
modifications often allow to use already existing objects and to
adapt them to our needs.
The Figure 11 shows an example of window asset created under
Sketchup and optimized under Blender.

Figure 11: Visualization in CityEngine after normals
recalculation and the triangulation optimization in Blender

4. RESULTS

4.1 The model of the church

The Figures 12 show the results obtained for the outside of the
church. The bell tower is particularly interesting because of its
geometry which is not simply extrudable from a face. The back
parts in form of circular shape must be decomposed into
polygons with large number of sides because CityEngine does
not manage directly circular objects.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W3, 2015
25th International CIPA Symposium 2015, 31 August – 04 September 2015, Taipei, Taiwan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W3-137-2015

142

Figures 12: Modelling results

4.2 Exterior of the church and hypotheses for the
disappeared chapel

The model of the church includes all the rules of construction
and assets of the associated architectural details. The existence
of a chapel built in the XIIth century is proved true, but only
hypotheses allow to locate it even today. Archaeologists' works
allowed to supply such proposals. We find in the Figure 13 a
proposal of the original footprint.

Figure 13: Hypothesis of footprint of the Sainte-Anne's chapel
(in red the disappeared part)

We can reuse rules established for the modelling of the church
for the hypothetical reconstruction of the chapel (Figure 14).

4.3 Interior part of the church

The inside of the church was also modelled. A Web scene was
exported to allow an access there. The Figure 15 illustrates the
inside of the church.

Figure 14: Modelling of the church and the addition of the

chapel of the XIIth century.

Figure 15: Inside of the church.

5. DISCUSSION AND CONCLUSION

Through this project we have tried to handle the problem of
detailed modelling by testing the possibilities of use of
CityEngine and procedural modelling.
We can tell at first rather long handling of CityEngine, because
it is necessary to master the various tools. But this handling is
also necessary within the framework of other modelers.
The CGA language is well documented and numerous examples
are accessible (CityEngine Blog, 2015; CityEngine Tutorial
2015). However it is not very obvious to manage especially that
it is very specific to this environment.
The unique use of CityEngine does not allow to reach models
with sufficient detailed resolutions. Indeed, it seems efficient to
work in parallel with other modelers to be able to develop
objects or parts of detailed objects as assets.
Thus, in one hand the implemented method did not proficient
within the outline of an isolated modelling. On the other hand,
the procedural modelling becomes interesting once we have to
model several objects having similar constitutions. This has
proved to be very interesting, in particular in the case of the
disappeared chapel which has been reconstructed from elements
developed for the nave.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W3, 2015
25th International CIPA Symposium 2015, 31 August – 04 September 2015, Taipei, Taiwan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W3-137-2015

143

Operation
Efficient use

of CityEngine

Comments

Learning time +
Good documentation, adapted to
complete virtual cities

GUI +
Complete GUI, complex for
sample operations

Time for modelling
setting-up

+
Allows integration of many
different formats

DTM ++
Construction and integration
from GIS data

Integration of basic
outlines

++
Integration from GIS and CAD
datasets

Modelling of basic
outlines

++
Extrusion tools, including for
complex forms

Modelling of facades /
faces

++
To decomposition in horizontal
and vertical subsections

Modelling from ortho-
images

+ Works well in classical cases

Modelling of curved
elements

- To decompose into polygons

Integration of existing
models

++
Use of other modelers for
complex details

Export /
Interoperability

+ Towards GIS or classical formats

Texture ++ Easy application
Rendering ++ Several renderings available

Efficiency of unique
model

-
Writing of a rule for a single
operation is not effective in this
case

Writing of rules +
Simple for simple rules, CGI
scripts

Re-use of rules ++
Simple but requires a
decomposed end structured
writing of rules

Creation of rules
library

++
Interesting for re-use in case of
massive modelling.

Export and web
visualization

++
Web service for remote
consultation

However, we were able to show on the basis of this project, that
a realistic modelling was practicable. Numerous exchange
formats offered by CityEngine in import and export profit to
this promising environment. Indeed, the model can be
transmitted and published, exported easily even towards a GIS
to enrich it besides semantic and descriptive data.

REFERENCES

Chege, P., and Kamau, R. 2012. 3D City models in ArcGIS and
CityEngine, Experience Geopower in the east Africa, 3-5 Oct,
ESRI, Eastern Africa, 2012.

CityEngine Tutorial: Essential Skills.
Retrieved February, 2015, from:
https://www.youtube.com/watch?v=fLPrAnyyGlg&list=PLWG
P11THb9EowkYZ3_0L¬dZTFcyeqO2zy

CityEngine Blog: CityEngine Starter Project 2 -Rule file set up,
attribute generation and reporting.
Retrieved February, 2015, from:
http://cityengine.blogspot.fr/%202013/09/starter-project-2.html

Creating Smart 3D City Models with Esri CityEngine.
Retrieved February, 2015, from:
https://www.youtube.com/watch?v=zScyrwQLf0k

Di Angelo, M., Ferschin, P. and Paskaleva, G., 2012. Shape
Grammars for Architectural Heritage, (April), 1st International
Conference on Architecture & Urban Design, Proceedings 19,
Tirana, Albania, pp. 107–116.

Dylla K., Frischer, B., Mueller, P., Ulmer, A., Haegler, S.,
2009. Rome Reborn 2.0: A Case Study of Virtual City

Reconstruction Using Procedural Modelling Techniques,
Proceedings CAA conference. pp. 62–66.

Edvardsson, K. N., 2013. 3D GIS modelling using ESRI´s
CityEngine: A case study from the University Jaume I in
Castellón de la plana Spain, MSc (Geospatial Technologies)
Thesis, University Jaume I in Castellón de la Plana Spain.

Fedczyszyn, J., 2013. Intégration de modèles de sites
historiques sous forme de modélisation paramétrique dans
CityEngine, Projet de Recherche Technologique INSA
Strasbourg, 20 pages.

Geoplanit, 2014. A very quick Rule Wizard for CityEngine
tutorial | GeoPlanIT.
Retrieved February, 2015, from:
http://www.geoplanit.co.uk/?page_id=457

Hohmann, B., Havemann, S., Krispel, U. and Fellner, D. 2010.
A GML shape grammar for semantically enriched 3D building
models, Computers & Graphics, Elsevier, 34, pp. 322–334.

Jacquot, K., 2010. Restitution des plans reliefs datant du XIXème
siècle, Mémoire de Master Design Global, ENSA de Nancy,
Univ. Poincaré Nancy I, INPL, pp.25– 51.

Koehl, M., 2008. SIG 3D ET 3D dans les SIG : Application aux
modèles patrimoniaux. HAL archives-ouvertes.fr, 15 pages.

Koehl, M., Fedczyszyn, J., 2014. Modelling historic site as
parametric model. Application to the Engelbourg castle -
Thann, France. 3DGeoInfo proceedings, Dubai, pp. 169-183.

Mueller, P., 2007. PhD Thesis, ETH Computer Vision Lab.
Zürich, Switzerland.

Mueller, P., Zeng, G., Wonka, P., and Gool, L. V. (2007).
Image-based Procedural Modeling of facades. In: SIGGRAPH
'07: Proceedings of the 34th Annual Conference on Computer
Graphics and Interactive Techniques, volume 26, New York,
NY, USA. ACM. 10 pages.

Mueller, P., Zeng, G., Wonka, P. and Van Gool, L. 2012. Mise
en œuvre du logiciel CityEngine pour la modélisation 3D d’un
territoire urbain.

Pal Singh, S., Jain, K. and Ravibabu Mandla, V., 2014. Image
based Virtual 3D Campus modelling by using CityEngine.
American Journal of Engineering, 2(1), pp.1–10.

Piccoli, Ch., 2013. CityEngine for Archaeology. In: 3D GIS for
mapping the Via Appia. VU University Amsterdam, (2013).

Schirmer, P. and Kawagishi, N., 2011. Using shape grammars
as a rule based approach in urban planning -a report on practice,
eCAADe 29 City Modelling, pp. 116-124.

Specht, M. and Van Maren, G., 2014. Creating and sharing
Rule Packages with CityEngine. In Creating and sharing Rule
Packages.
Available at:
http://video.esri.com/watch/3266/creating-and-sharing-rule-
packages-with-cityengine

Sostaric, Z., 2012. Using CityEngine 2012 for Geodesign, Esri
Asia Pacific User Conference, November 5-7, Auckland, New
Zealand, 2012.

Watson, B. et al., 2008. Procedural Urban Modelling in
Practice. IEEE Computer, (June), pp. 18–26.
Available at:
http://www.peterwonka.net/Publications/pdfs/2008.CGA.Watso
n.ProceduralModelingTutorial.pdf

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W3, 2015
25th International CIPA Symposium 2015, 31 August – 04 September 2015, Taipei, Taiwan

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-5-W3-137-2015

144

