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ABSTRACT:

For geometric camera calibration using a test field and bundle block adjustment it is crucial to identify markers in images and label
them according to a known 3D-model of the test field. The identification and labelling can become challenging, especially when the
imaging system incorporates strong unknown distortion. This paper presents an algorithm, that automatically completes the labelling of
unlabelled anonymous marker candidates given at least three labelled markers and a labelled 3D-model of the test field. The algorithm
can be used for extracting information from images as a pre-processing step for a subsequent bundle block adjustment. It identifies an
unlabelled marker candidate by referencing it to two, three or four already labelled neighbours, depending on the geometric relationship
between the reference points and the candidate. This is achieved by setting up a local coordinate system, that reflects all projection
properties like perspective, focal length and distortion. An unlabelled point is then represented in this local coordinate system. These
local coordinates of a point are very similar in the corresponding 3D-model and in the image, which is the key idea of identifying an
unlabelled point. In experiments the algorithm proofed to be robust against strong and unknown distortion, as long as the distortion
does not change within a small sub-image. Furthermore no preliminary information about the focal length or exterior orientation of the
camera with respect to the test field is needed.

1. INTRODUCTION

When a camera is used for metric applications or within a net-
work of cameras, the interior orientation of the camera must be
known. The interior orientation of a camera is not precisely pre-
dictable, so it needs to be calibrated. The result of a calibration
is usually a set of parameters describing the interior orientation
(Brown, 1971), (Kraus, 2007). The usual procedure for geomet-
ric camera calibration using a test field is basically the following:

1. Take a couple of pictures of a well-known test field
2. Detect/Find markers (image processing)
3. Identify/Label markers
4. Estimate initial exterior orientation for each camera picture
5. Calculate bundle block adjustment with distortion model

A marker is considered some visible feature in the image, that
can be (easily) detected and its position in the image can be mea-
sured precisely. Circular markers or checker-boards are most
commonly used. Let’s consider a marker to be found, if it was
detected and its position has been measured. A found marker is
still anonymous in the sense, that it is not known, which marker
was found. It is only assured, that at the determined position,
there is a marker.

Doing the calibration manually can take a lot of time, so it is
desirable to have fast and automatic calibration facilities. Espe-
cially the third step, the identification and labelling of markers, is
time consuming when performed manually. Therefore this paper
will deal with the automation of the third step, the identification
or labelling of already found, but anonymous, markers. The pre-
sented algorithm is independent of the type of markers, because it

operates only the position of the markers. No information about
the exterior or interior orientation or the focal length of the cam-
era is needed. The key idea of the algorithm is to exploit the
property, that distortion is approximately constant in a small sub-
image. This means, if only a small sub-image is considered, then
the non-linearities introduced by distortion can be neglected. The
task of the algorithm is the following: Given three to four labelled
image points, a set of unlabelled image points and a labelled 3D-
model of the position of the markers. Determine the correct label
for all other found (yet anonymous) markers.

There are already successful approaches towards this challenge.
For example there is the possibility to attach some identification
code to the marker (Fiala, 2004), (Atcheson et al., 2010). In
(Ahn and Rauh, 1998) a collection of commonly used circular
coded targets is presented. Another option is to use so called ex-
terior orientation devices, which are basically a set of markers
with a known geometric constellation, as mentioned in (Fraser
and Edmundson, 2000) and (Fraser, 1997). Given a set of known
points and the exterior orientation of the camera, there is the clas-
sic approach to forward-project object points into the image us-
ing collinearity equations or homographies (Hartley and Zisser-
man, 2004). Forward projection maps a 3D-model onto the focal
plane of a virtual camera. The commercial software Australis
implements such a technique under the name "driveback". To
do this, information about the exterior and interior orientation of
the camera is needed. The exterior orientation can be estimated
by many techniques, e.g. using 2D or 3D Direct Linear Trans-
form (DLT) (Abdel-Aziz and Karara, 1971), (Luhmann, 2000),
(Kraus et al., 1997) from three or four points respectively or
close-form solutions as proposed in (Horn, 1987) or (Zeng and
Wang, 1992). If the imaging system contains unknown distor-
tion, forward-projection as well as homographies will indicate
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wrong positions. Furthermore the initial estimation of the camera
pose can be significantly difficult, if not even impossible. It is
possible to estimate local homographies for different regions of
an image, which would also adapt for the local projection prop-
erties. In contrast to the aforementioned methods the presented
algorithm is not restricted to 2D→ 2D projections, but adapts it-
self to the local dimensionality of the test field. In cases were full
3D information is needed, the algorithm will eventually set up a
3D→ 2D projection. On the other hand, if target points reside on
a line, it is sufficient to use only two reference points, resulting
in a 1D → 2D projection. Furthermore there is no need for an
explicit estimation of the exterior orientation.

Identifying markers is a task similar to star constellation iden-
tification. A recent overview about this topic can be found in
(Spratling and Mortari, 2009).

Following this introduction, there is a description of the key ideas
and principles of the algorithm. The third section will talk about
performance and characteristics as well as limits by showing
some examples. In the last chapter there is a conclusion and out-
look for further activities.

2. ALGORITHM DESCRIPTION

2.1 Input Data

The required input data is:

• A labelled 3D-model of the marker positions
• A set of unlabelled marker positions found from a preceding

image processing step
• Three or four (in rare cases two) labelled markers

It is noteworthy, that there is absolutely no requirement towards
the type of marker (circles, ellipses, crosses, corners, chess-board
fragments, retro-reflectivity etc.), as only its position is used for
further calculations. The number of needed initial markers de-
pends on the dimensionality of the test field. For planar test fields,
three points suffice.

To provide modularity, the presented algorithm is not designed to
being able to identify the initial markers on its own. That means,
it relies on external help, e.g. manual identification of mark-
ers, constellation identification (see exterior orientation devices
in (Fraser and Edmundson, 2000) or for an overview about as-
tronomical star constellation detection approaches (Spratling and
Mortari, 2009)), or sophisticated image processing—possibly in
conjunction with coded targets. The use of local coordinates (see
section 2.3) can also be used to describe the neighbourhood of a
point. Such a description can be stored in a database and searched
for based on markers detected in an unlabelled image. This tech-
nique has already been successfully implemented by the author
been implemented, but is not part of this paper.

2.2 Basis and Coordinate System

This and the following subsection will recall some basics in linear
algebra and give some definitions used in this paper. A point P
in an image can be described by two coordinates, let’s call them
p = (uP,vP)T . Coordinates need to be interpreted with respect to
a basis. The most commonly used (canonical) basis is:

Bc =
(

1 0
0 1

)
=
(
b1 b2

)
= I2

It is the identity matrix of dimension 2 × 2. The variables b1
and b2 are basis vectors. Where the units of the basis vectors
may be for example pixels or some metric unit like millimetres.
Interpreting coordinates p = (uP,vP)T of a point P with respect
to a basis B = (b1,b2) is the following equation:

P = B · p = B ·
(

uP

vP

)
= b1 ·uP +b2 · vP (1)

To characterise a point Q in a three-dimensional space can be
done analogously:

Q = B ·
xQ

yQ

zQ

= b1 · xQ +b2 · yQ +b3 · zQ (2)

A coordinate system consists of an origin O an a basis B. If the
origin O = (uO,vO)T of an image coordinate system happens not
to be (0,0), the interpretation of coordinates given with respect
to basis B shall be done regarding also the origin:

P = B · p+O = B ·
(

uP

vP

)
+O = b1 ·uP +b2 · vP +O (3)

That means, (B · p) is a vector starting from point O.

The same applies also in the three-dimensional case.

2.3 Local Bases and Coordinate Systems

It is possible, to build another 2D-basis B` from any two other
vectors, that are linearly independent. For the 2D case, it means,
that they are not collinear (parallel). The index ` in B` indicates
a so called "local" basis. Such a basis can be constructed from
three (reference) points, which do not reside on a straight line,
let’s call them O`,R1,R2. These three points shall be chosen local
to another point P, i.e. from the neighbourhood of P. One point,
O`, is selected as the origin of the local coordinate system. Then
the difference vector between each of the points R1,R2 and the
origin O` is calculated: b`i := Ri−O`. Using these two vectors
b1,b2 as basis vectors, the local basis B` can be defined as B` :=(
b`1 b`2

)
. Now it is possible, to characterise any other point

P with reference to either the canonical coordinate system with
basis Bc and origin Oc = (0,0) by pc = (uP

c ,vP
c )T or to the local

coordinate system with basis B` and origin O` by p` = (uP
` ,vP

` )T

P = Bc ·
(

uP
c

vP
c

)
= Bc · pc = B` · p` +O` = B` ·

(
uP
`

vP
`

)
+O` (4)

Translating coordinates from one coordinate system to another
can be calculated using matrix inversion of a basis:

B−1
` · (Bc · pc−O`) = p` , pc = B−1

c · (B` · p` +O`) (5)

Figure 1 depicts the above mentioned relationships.

One property of a local basis or a local coordinate system is, that
it reflects the local properties of the image with respect to per-
spective and distortion. That means, the local coordinates p` of
a point P with respect to the local coordinate system with basis
B` and origin O` constructed from some nearby reference points
have the property, that they are mostly independent from any un-
derlying distortion and perspective. This makes them a robust
description of the position of a point P with respect to the known
set of three reference points O`,R1,R2.
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Figure 1: Representing a point P in the canonical coordinate sys-
tem (black) and a local coordinate system (red).

Again the same idea can be extended to a three-dimensional
space. In this case a set of four reference points O`,R1,R2,R3 is
used to construct a basis from three vectors
b`i := Ri−O`, i = 1,2,3.

2.4 Correspondence Between 3D-Model and Image

Local coordinate systems in the image and the 3D-model, that are
constructed from corresponding reference points shall be called
corresponding local coordinate systems. Having set up a pair of
corresponding local coordinate systems, it is possible to predict
the position pI in the image from the position pM of the corre-
sponding point in the 3D-model. This is in fact easy through the
use of corresponding local coordinate systems. As stated earlier,
the local coordinates of a point are vastly independent of perspec-
tive and distortion. The main differences between the 3D-model
and the image are, aside from the dimensionality, due to perspec-
tive and distortion (neglecting some noise). This means the local
coordinates of the point in the 3D-model pM

` are quite the same
as for the image pI

`. Henceforth it is straightforward, to predict
the position of a point by the following steps:

1. Get canonical coordinates in the 3D-model pM
c

2. Translate to local coordinates in the 3D-model pM
`

3. Transfer local coordinates to the image pI
`

4. Translate to canonical coordinates in the image pI
c

The following formulae will show the steps 2 – 4 for the (special)
case, that the unlabelled point resides on the plane spanned by
three reference points. This means, that the "local basis" BM

` in
the 3D-model is not any longer a proper 3D-basis, but an under-
determining set (see subsection 2.8) of two vectors spanning a
plane that incorporates all four points (unlabelled point and three
reference points).

PM = BM
c ·

uPM

c
vPM

c
wPM

c

= BM
` ·
(

uPM

`

vPM

`

)
+OM

` = BM
` · pM

` +OM
`

pM
` =

(
uPM

`

vPM

`

)
≈
(

uPI

`

vPI

`

)
= pI

` , fundamental assumption

BI
` · pI

` +OI
` = BI

` ·
(

uPI

`

vPI

`

)
+OI

` = BI
c ·
(

uPI

c
vPI

c

)
= BI

c · pI
c = PI

(6)

Having the predicted coordinates pI
c in the image space, it is

straight forward to find that element from the set of unlabelled
markers with minimal distance to the predicted position pI

c. The
label of PM is used to label that nearest neighbour P̂I .

2.5 Stability Considerations

To check, if coordinates expressed in local bases are numerically
stable, the angle between the basis vectors is calculated. If the
angle is within the range of 20 .. 160 degrees, the basis can be
considered stable. The allowed range is chosen more or less arbi-
trarily and is not the result of detailed investigation.

To check the stability of a three-dimensional basis, it should also
be tested, if the third basis vector is pointing sufficiently outside
the plane formed by the first and second basis vector. If it is not,
the system of three vectors would be nearly linearly dependent,
which will lead to poorly defined coordinates even for nearby
points. The proposed condition can be expressed having the third
basis vector not being approximately perpendicular to the normal
of the plane b1×b2 formed by the first and second basis vector:

|�(b3,b1×b2)−90◦|> 10◦ (7)

Furthermore it can be useful to allow only bases, which are de-
rived from basis vectors of similar lengths. This can be achieved
by the constraint, that the ratio between the lengths of longest and
the shortest basis vector may not exceed a certain number a.

maxi(|bi|2)
mini(|bi|2) < a (8)

Each pair of local bases is constructed from points of the neigh-
bourhood of an unlabelled point. This has several positive conse-
quences: Firstly, the projection including distortion is implicitly
accounted for. Secondly, the local coordinates of the unlabelled
point are small (0.5 .. 2.5) and therefore similar in the order of
magnitude. The second part is advantageous in terms of stability.
Any long basis vector will have the tendency to break the as-
sumption, that the neighbourhood is local in terms of constancy
of distortion. If the ratio described in (8) is large, the positional
description of the unlabelled point may become unstable and a
prediction might point to a wrong position.

2.6 Plausibility Checks

Even though the presented method is already quite robust, the
found correspondence should be checked for plausibility. Here
two commonly used checks are proposed.

First there is a test, whether the distance between the predicted
position pI

c and the position of the nearest neighbour p̂I
c is less

than a certain fraction, let’s call that number f , of the length of
the shortest basis vector of the local basis in the image.∣∣∣p̂I

c− pI
c

∣∣∣< f ·min
j

(∣∣∣bI
` j

∣∣∣) , f < 1 (9)

The shortest basis vector is a good estimator for the smallest oc-
curring distance between markers in the considered neighbour-
hood. The prediction should find a marker within a small fraction
of this distance to avoid ambiguities. A smaller f makes the test
more reliable, whereas a larger f accepts predictions even for
strongly distorted areas. In general f should be at most 0.5 to
detect ambiguities.

Second there is a test, that the second nearest neighbour p̃I
c is

at least g times further away than the very nearest neighbour p̂I
c.
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The number g should be greater than 1.∣∣∣p̂I
c− pI

c

∣∣∣ ·g <
∣∣∣p̃I

c− pI
c

∣∣∣ , g > 1 (10)

2.7 Final Test

As a last step all labelled markers can be tested for geometric
consistency within their neighbourhood. For each point a stable
local coordinate system is set up. For a quite large number of
neighbouring points the image to 3D-model correspondence is
verified. If expected points from the 3D-model cannot be found in
the image or vice versa the label of the marker should be removed.
In this way only extremely plausible labels are maintained.

2.8 Over- and Under-Determining Sets of Vectors

In the previous sections it was shown, how to describe the po-
sition of a point with respect to a local coordinate system con-
structed from a set of nearby reference points. If the set of ref-
erence points happens to contain one point more than the dimen-
sion of the space to be characterised, there is a good chance, that
a valid basis (spanning the full space) can be constructed.

However if there are not enough points, obviously the full space
cannot be spanned. A set of vectors spanning only a sub-space
shall be called under-determining set. Only a hyper-plane or
something even less dimensional can be described from an under-
determining set of vectors. If a 3D-point resides on the same
plane spanned by three reference points, this point can still be
characterised unambiguously. Analogously it is possible to char-
acterise a new point from two reference points, if all three points
(unlabelled and reference points) lie on a common line.

On the other hand, if a set of vectors is larger than the dimension-
ality of the space spanned, the vectors are linearly dependent.
Such a system shall be called over-determining set of vectors.
Each point in the space can be described by different linear com-
binations of these vectors. In other words, there is not a unique
set of coordinates characterising a certain point in the space. But
if a set of coordinates is given, it will evaluate to exactly one point
in that space.

So far in 2.4 there has been only a description on how to work
with proper bases. But it is also possible to use full 3D-co-
ordinates in the 3D-model and to use them in conjunction with
an over-determining set of vectors in the image space. Analo-
gously it is possible to describe a point in the 3D-model by only a
single vector, if the unlabelled point lies on the same line as two
reference points. This will then be evaluate in the image with an
under-determining set of vectors.

2.9 Choosing the Next Unlabelled Point

As already mentioned, the fundamental assumption is, that for la-
belling an unlabelled point, a local coordinate system being con-
structed from nearby reference points. This indicates which point
to choose next for labelling. A point, that has three (or four in
a full 3D case) labelled neighbours and the distance to them is
minimal should be investigated next for a given labelling state.

3. TESTS AND RESULTS

3.1 Accuracy Consideration and Simulations

Quantifying the power of a labelling algorithm could be done us-
ing two indicators: Coverage and Accuracy. Coverage is the ra-
tio between detected (image pre-processing) markers and labelled

markers. Accuracy is the ratio between correctly labelled and la-
belled (correctly and incorrectly) markers.

It was found for this algorithm that coverage strongly depends
on the marker detector (image pre-processor), which makes it a
not very useful measure for this very algorithm. As can be seen
from the two representative images 3 and 4 in the next subsection,
the coverage is generally around 100 % (all detected markers get
labelled), where the marker detection density is sufficiently high.

Concerning accuracy it is challenging to get a set of experimen-
tal ground-truth data. Creating this manually is extremely time-
consuming. Using bundle-block adjustment with automatic point
rejection is also difficult as a rejected point can also be rejected, if
the measured coordinates are to rough, due to low image quality.

In order to test, if the algorithm works well or not, a simulator
was set up. A camera with random focal length, distortion (de-
scribed by the parameters as introduced by Brown and used in
Australis) and exterior orientation was simulated to image mark-
ers of the targets presented in the next subsection. As mentioned
earlier, only the marker positions are of interest. The main tasks
of the simulator is henceforth to project the 3D-coordinates of the
markers into the simulated camera using the collinearity equa-
tion. In a second step these positions were displaced according
to the randomly generated distortion and some additive Gaussian
noise accounting for measurement imperfections. The viewing
angles were chosen to sometimes image the target only partially
and sometimes totally. Furthermore about 10 % of the markers
have been removed in order to simulate an (unrealistically bad)
image pre-processor. As initial information one random marker
and three of its neighbours were selected. This guarantees that
the initial information is correct. It is noteworthy that currently
the algorithm expects the given markers to be reliable.

The results are better to explain than to put into numbers. Some
random distortions and exterior orientations destroyed the neigh-
bourhood relationships completely, so that in these cases the cov-
erage was nearly none. In contrast, if the resulting marker dis-
tribution was at least somewhat realistic, the coverage was found
to be usually around 95 % or more for planar targets. If the al-
gorithm approaches the non-planar edges of the 3D-target, it is
sometimes able to hop over the edge. In general it needs to set
up full 3D local coordinate system, which was not always pro-
vided by the random settings. For this reason the coverage was
sometimes far less than for the planar targets, depending on the
imaged parts of the target and the initial markers. It is therefore
impossible to give a meaningful number of average coverage for
this test. The reason is, that the parts of the target, which were
imaged, had been chosen randomly as well. The probability that
the algorithm steps over an edge is highly dependent on the parts
of the target seen in the image.

3.2 Experimental Results

The algorithm was tested with different cameras and several 2D
and 3D test fields, some of them can be seen in the figures 2, 3 and
4. The detection of markers (image processing) was done follow-
ing an exercise held at the Albert-Ludwigs-Universität Freiburg
(Rahmann and Burkhardt, n.d.). It is a basic and fast blob de-
tector, which does not find every marker in any case. Every de-
tected marker is indicated in the images with a red plus (+) and a
number (the subsequently determined label). If there is a marker
without any red plus (+) or number, this means, that no marker
has been detected by the image pre-processor here. Accordingly
these markers could not be labelled during the subsequent cal-
culations. If the attached number is zero (0), no suitable label
could be found. Following the blob detection, the position of the
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markers is refined using an ellipse fit on the edge-pixels of each
marker. This detector (blob plus ellipse fit) is quite fast and re-
jects some points of low image quality. That is the reason, why
there are markers, which are not considered at all.

Figure 2: 3D test field imaged with surveying camera

Figure 3: 3D test field imaged with a strongly distorting lens.
Bottom right edge corresponds to the bottom edge in figure 2.
Blue numbers were manually given as initial reference points.
Red numbers were automatically found. Zero (0) indicates, that
no suitable label was found. Few markers have not been identified
as markers by the image pre-processor.

Labelling 2D test fields or planar parts of 3D test fields works
perfectly fine as long as the markers are found during the image
pre-processing. Even for images taken with a strongly distorting
lens the labelling was successful as can be seen in figures 3 and 4.
In early implementation it was observed in rare cases, that labels
were put wrongly if several conditions—breaking the fundamen-
tal assumption of working in a small sub-image—appeared at the
same time. The problem was, that in a relatively large region sev-
eral markers were not detected. This created some isolated found

Figure 4: 2D test field imaged with a strongly distorting lens.
Blue numbers were manually given as initial reference points.
Red numbers were automatically found. Zero (0) indicates, that
no suitable label was found. Few markers have not been identified
as markers by the image pre-processor.

markers, whose neighbours were too far away for a proper pre-
diction due to a strong distortion. This type of mislabelling can
be detected and rejected by sanity checks, for example by not al-
lowing unlabelled points to be too far away from the local origin.
This example indicates, that the found markers on the test field
should have a certain proximity to each other in order to work
safely without explicit sanity checks. The necessary proximity is
strongly dependent on the distortion of the camera. In any case, it
is not essential that the markers are placed in some sort of regular
grid in contrast to checker board calibration. As the algorithm
works solely on the position of found markers, it is completely
independent of the type of markers used, as long as there is a
suitable image pre-processor.

If a 3D test field is to be labelled, the construction of a stable
local basis in the 3D-model can be a bit more challenging than
in 2D due to the fact, that another nearby reference point outside
the plane spanned by the first two basis vectors is needed. If a
fourth close-by reference point is found, everything works fine.
In figure 3 the labelling result for a 3D test field is shown. There
are three reference points depicted in blue. They reside on the
central plane of the test field (labels starting with 8 or 9). Two
interesting phenomena are visible: On the bottom right side of
the target, there are a few isolated detected markers, which are
outside the central plane. They could not be labelled, because no
stable local 3D-coordinate system could be established from the
nearby points from the central plane. In order to overcome at least
small inclinations, the algorithm can be tuned to use local 2D-
coordinates in environments, where the unlabelled point is "not
too far away" from the plane covered by the 2D-coordinates. This
enables the algorithm to label also 3D test fields that are locally
quasi planar with only three initial reference points. Examples
for this case are the three other sides next to the central plane.

A broad comparison to existing commercial close-range photo-
grammetry software-packages would be an interesting
benchmark. Such a survey would be expensive and time consum-
ing and can therefore not be part of the current study. Further-
more it is usually not known, which algorithms are implemented
in closed-source software.
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At last some trivia: Visualising the course of the labelling pro-
cess shows, that usually neighbouring points are chosen as next
point to be labelled. Indicating the reference points and the unla-
belled point produces an unlabelled point being chased by three
to four reference points. This looks similar to the good old game
Pac-Man. For this reason, the algorithm received the nick name
"Waka Waka", which is the classic sound connected with
Pac-Man.

4. CONCLUSION AND OUTLOOK

A new algorithm was presented, that is able to complete the la-
belling of anonymous markers detected by an image pre-pro-
cessor with no information in advance about the camera. Tests
show that the algorithm is robust also against strong distortion,
which makes it a handy tool also for the calibration of strongly
distorting wide-angle lenses.

A very useful extension is, to automatically detect the initial ref-
erence points. This can for example be accomplished by using
coded markers. Another possibility is to geometrically describe
the neighbourhood of a marker in the image and to find a corre-
sponding description in the 3D-model. The latter has successfully
been implemented, but is not subject of this paper.

It is possible to derive an algorithm, that finds corresponding
markers in two images of the same scene based on sets of found
anonymous markers. This would give the opportunity to label
an unknown test field in two or more images consistently. This
feature would facilitate initial surveys of test fields.

Making the algorithm robust against wrong initial markers would
be a nice extension. If wrong initial markers are provided, the
algorithm will tend to return a very small number of labels. In
fact it would be better to refuse working with a distinct warning,
that the initial markers might be wrong.
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