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ABSTRACT:

Terrestrial laser scanning is increasingly usedrghitecture and building engineering for as-bmitidelling of large and medium
size civil structures. However, raw point cloudsieled from laser scanning survey are generallydiatctly ready for generation of
such models. A manual modelling phase has to bertaicn to edit and complete 3D models, which nsecindoor or outdoor
environments. This paper presents an automateckguoe to turn raw point clouds into semanticallyi@red models of building
interiors. The developed method mainly copes witheametric complexity typical of indoor scenes wjtrevalence of planar
surfaces, such as walls, floors and ceilings. Aattaristic aspect of indoor modelling is the laageount of clutter and occlusion
that may characterize any point clouds. For thésoe the developed reconstruction pipeline wagydedito recover and complete
missing parts in a plausible way. The accuracyhef fpresented method was evaluated against traglittoanual modelling and
showed comparable results.

1. INTRODUCTION modelling. However, they generally operate undere th
assumption that the surface being modelled is ivelst free

In the last years a great attention has been paidhé from obstructions. Even if this may be a reasonamle-
development of automated techniques for generati@s-built  requisite for outdoor scanning, in indoor enviromtseobjects
building models starting from point clouds acquirdy like pieces of furniture and wall-hangings frequgnmay
Terrestrial Laser Scanners (TLS), see Pu et @11 Haala occlude the wall surfaces, making the modellingopm much
and Kada (2010), and Remondino (2011). Indeed, émadd  more challenging.
for indoor modelling is largely increasing for difent purposes This paper presents an automatic method for maodgelli
(scheduled maintenance, preservation and docuri@mtat predominantly planar indoor environment on the Hai TLS
facility management, security, feeding Building Imf@tion  data. This topic can be addressed a@stomatic indoor
Models). In conjunction, the increase in the auttomaof  reconstruction (AIR). The presented methodology aims at
acquisition and registration of laser scans, alomith a  generating reliable models despite of the presehsggnificant
reduction of the instrumental cost, has allowedrgdr number  amounts of clutter and occlusion, which frequertlcur in
of operators to widely use this surveying methodplo building indoor. In particular, gaps in the inpuatal can be
However, once laser point clouds are acquired digdesl, the  recognized and filled by detecting occluded regiams! by
process of turning them into a vector model i$ stigely based modelling windows or door openings. First, surfaces
on the manual modelling of each architectural el@m@o  representing the room walls, ceiling and floor eréracted in
improve this aspect, automation in the reconsiagtipeline is  robust way. Then, to understand the nature of simhs, a ray-
essential to speed up the processing workflow anpréserve  tracing algorithm is used to identify regions tiaa¢ occluded
the economic sustainability of the project. In &@iddi, an  from every viewpoint and to distinguish these regidrom
important transition to Building Information Modiel§ (BIM) openings in the surface (e.g., due to doorwaysiodaws).
is taking place in the Architecture, Engineeringnda The most experiences reported in the literature @ebsect.
Construction domain (AEC — Azhar, 2011). Indeed, iBIBl  1.2) concern the use of static TLS, but the refptovements
model not only the geometric aspects are considéredalso in the indoor mobile mapping systenase opening new great
semantic information can be included for a deepepossibilities to this field (Biswas and Veloso, 2R1Although
understanding of existing buildings. Thus, an a@®d mobile systems are expected to offer a lower pi@gisthey
methodology for geometric modelling should presentmay offer a higher productivity fostering real wagplications.
interoperability with BIM domain. However, the lac&f  Also it should be mentioned that other data soutbas laser
automated approaches to understand the indoor ifgild scanning have to be carefully considered in theecluture to
structures captured in raw data is still underlim@dhe AEC  provide point clouds useful for indoor modelling:
(Okron et al., 2010). photogrammetry, low-cost 3D imaging systems (initigd
The automatic reconstruction of building models feen gaming devices), triangulation scanners, and maqiitene 3D
mostly restricted to building outer envelope, whitefar lower  scanners. However, in those cases the data precsiml
interest was paid to indoor modelling. The automati resolution may be lower than with static TLS.
reconstruction of buildings’ exterior shares manpperties The structure of the paper is organized as folloBection 2
(and problems) with the issues associated with dndo gives an outlook on the entire modelling approsgstction 3
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focuses on the extraction of the contour of groplashe, which
in the most inner rooms also allows modelling trextical
walls, with the exception of doors and windows. Hussible
presence of occlusions and window/door detectiadeat with
in Section 4. Section 5 reports some examples pifcgtions to
real case studies Finally, Section 6 draws somelgsions.

1.2 Related work

Several methods have been proposed in the reterstlire for
production of building fagades models by using TIE® and

2. INDOOR RECONSTRUCTION OVERVIEW

The developed methodology forautomatic indoor
reconstruction(AIR) takes as input a set of registered scans
with a known ‘up’ direction and the location of teeanner in
the room. All these prerequisites can be easilpiobtl in the
practice. Indeed, scan registration is a well-gddgiroblem, and
methods to manually or automatically register scame
available both in scientific and commercial softev@ackages,
see a review in Previtali et al. (2014).

Moreover, the alignment of the vertical axis ofund reference

Vosselman, 2009; Ripperda and Brenner, 2009). Thesgystem(GRS) along the plumb line, that is also the dimtf

approaches operate under the assumption that tfazeleing
modelled is relatively unobstructed. Whether thiaynbe a

reasonable assumption for outdoor scanning, in adndo

environments generally some pieces of furniture mayerate
occlusions. For fagade modelling, in the case dflusions
model-based approaches are used (Becker, 2009; d(wakss
et al., 2009). In particular, they assume thatateuded region
is part of a repeated pattern and a top-down psiogss used
to predict these patterns and to replace pendirtg @see
Previtali et al.,, 2013b). However, in the case nofeiior
modelling, repetitive patterns of walls and windoare more
unlikely to be identified and ad-hoc algorithms usbto clutter
are needed.

Currently, model reconstruction and visualization generic
indoor scenes is still a difficult task (Furukawtaaé, 2009). In
fact, the reconstruction of interiors is mostlyfpemed by using

walls, can be easily obtained by levelling oneistataken as
reference. Moreover, due to the limited verticateasion of
walls and the 1-2 centimetre precision requiredAlR, such
procedure may suffice. Alternatively, if the vedlidirection is
unknown, the orientation can be estimated usintisits on
data. For example, a room usually is schematiceltyesented
by two large parallel, continuous planes (floor @eding), and
by at least four walls which are vertical smalléanes. These
simple considerations may be exploited to detedthvplanes
represent walls and the orthogonal direction toflier/ceiling
can be used to establish the ‘up’ direction. Ofrseuhere may
be a few exceptions to these rules, especiallyistotical and
special buildings (e.g., industrial, military, fhigi management
buildings). On the other hand, the proposed proeeds
focusing on modelling common rooms in modern catsions,
which represent the large majority of the cases.€fficiency,

interactive or semi-automatic approaches (Cycfone the algorithm operates independently on each rdorthe case
Pointool€,...). Many researchers have studied the problem obne would like to link together more rooms, staddachniques

building interior reconstruction using laser scagndata (El-
Hakim et al., 1997; Hahnel et al., 2003; Thrun kt 2004;
Budroni and Boehm, 2005; Okron et al., 2010; Adantdnler,
2011). For some works the emphasis was given oatioge
visually realistic models rather than geometricaltgurate ones
(e.g., El-Hakim et al., 1997). Many authors usedSTdata to
construct detailed models of walls. Thrun et alO0@®)

used in surveying and laser scanning practice havée
implemented.

The first step in the presented approach (Figs Hetection and
estimate of the surfaces to be modelled, i.e.,syvakiling and
floor.

developed a plane extraction method based ofexipectation— [ Registered Point Clouds ] | ScanLocations ‘
maximization’ algorithm, while Hahnel et al. (2003) used a [
‘plane sweepapproach to find planar regions. However, even if

these algorithms work well for extracting planatgb@s from
the laser data, they do not explicitly recognize gemantic
identity of any components, namely walls, ceilingad floors.
In addition, several works (Hahnel et al., 2003yrurhet al.,
2004, Budroni and Béhm 2005) do not consider theusion
problem because they focused on modelling of hgiweith no
furniture or other potentially occluding objecth€lproblem of
detecting doors is specifically addressed in Didafifio et al.
(2014), who makes integrated use of TLS and image. d

‘Context-basedbuilding modelling was studied by Cantzler

(2003), Nichter and Hertzberg (2008), and Rusu.€Ra08).
These approaches rely on hand-coded rules. Rec&aibpula
et al. (2011) used a graphical model to representextual
relationships for recognizing objects in indoor reee using
3D+colour images (RGBD) from a Microsoft Kin&csensor
(Zhang, 2012). However, defined rules are usuatiitléd and
break down in the case of noisy measurements ifisignt
lack in the data.

A very specific area of indoor modelling, which hasen the
topic of intense efforts towards automation, isré@onstruction
of industrial environments. These scenes are ctaized by
repetitive elements such as beams or pipes. Custate of the

art in commercial reconstruction tools is manuale-pr

segmentation in combination with automated modding
(Rabbani et al., 2007).
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Figure 1. Workflow of the developed methods &artomatic
indoor modelling(AIR) of building rooms.

However, due to occlusions and clutter some wallsy rhe
missing in the data set. For this reason an autorpedcedure
is implemented to complete missing elements in augble
way. To achieve this, the developed algorithm ipooates
some architectural priors on indoor scenes, notably the
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prevalence of orthogonal intersections between swaluch
scenes are addressed as ‘Legoland’ scenes in EO(&D10).
Once the surfaces describing the room are defirthd,
remaining steps operate on each region individudly the
second phase, each planar surface is analysedemtifydand
model the occluded regions and openings by usimy-éracing
algorithm. Openings in the data are detected byguksibelling
information while contemporarily a further classition is
performed to take apart windows and doors. Finalbgluded
regions are completed in a realistic way.

The output consists of a set of labelled planaches (walls,
floor, and ceiling), adjacency maps indicating whpatches are
connected to one another, and a set of openingstddtwithin
each planar surface. These patches are inters@dtedone
another to form a simple surface-based model ofdben. The
geometric models of the room, along with any sernant
information, may be combined together to deriveemantically
enriched modeof the room in CityGML and/or IFC format
(Groger and Plumer, 2012).

3. GROUND PLAN CONTOUR DETECTION

The first step of the reconstruction process isdbtection of
ground plan contours. The general workflow is pnése in
Figure 2. First, surfaces (walls, roof and ceilinghich
constitute the ‘box’ of the room to be modelled detected.
This stage is accomplished by using the segmentati@tegy
described in Previtali et al. (2013a). However, nsca
segmentation based on range images techniques lsarba
used (Zeiback and Filin, 2007; Kang et al., 2013).

{ Registered Point Clouds J

]
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|
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{

v
Roof Surface l

l Detected Wall Surfaces l

|
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}

Surface Extraction

l

Reconstructed Wall
Surfaces

l Room Surfaces }

Figure 2. Pipeline for ground plan contour detactio

The workflow of the segmentation strategy is présgnin
Figure 3. In this implementation major attentiorsvgeid to the
reduction of so called ‘bad-segmentation’ problernmleed,
spurious results may be due to the fact that paaitstituting
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extracted planes (i.e., similarity of normal vestor
perpendicular distance between planes and intéveeatf
planes).

Once the point cloud segments have been detectdista
semantic classification is done to detect roof amdling.
Indeed, by analysing the detected segments, thiagcean be
identified as the non-vertical plane having the dovheight.
Conversely the roof is detected as the non-ventilzale located
at the highest level. In this way, the distancefficeiling to roof
can be also worked out (Fig. 4a).

TLS Point Cloud
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Maximum consensus
plane
Connected
componet analysis

Connected components
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.
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Connected
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<=

Segmented model

Figure 3. Workflow of developed segmentation praced

v

At this stage the floor plan of the room has talbtermined. To
this end, the walls of the room need to be detedtiedvever,
this problem is made more difficult due to possiblietter and
occlusions. Some walls may have not been sensethdsy
scanner and may miss in the point cloud. For thason, a
proper completion is necessary to reconstructptaasible way
these pending walls (Fig. 4b). A first rough flgolan of the
room can be obtained by projecting the points lghunto the
ceiling onto a horizontal plane. Indeed, the adtjais of the
ceiling surface, due to its location, is generddlys influenced
by clutter and occlusion than other surfaces inrttoen.

Usually rooms with a standard usage feature aivelgtlarge
free area on the floor surface for walking and mgvaround.
The horizontal plane is discretized into cells ige® x . The
cell sizef is set equal to the mean sampling resolution @& th
point cloud.Thena binary occupancy raster mafBORM) is
generated where pixels having value one repressist where
TLS data are available, while zero value pixelsaalés with no
data. Starting from this binary image it is possild derive
pixels representing the boundary of ‘occupied’ selhich

the maximum consensus to RANSAC planes may be derivepresent a first rough floor plan. Due to possiitelusions,

from different objects. The developed strategysttie minimize
this problem by including topology information ihet process.
Indeed, points belonging to the same object sholoéd
sufficiently close while groups of points belongitoydifferent
objects should have a gap area. For this reasdopaogy
measure is introduced in the segmentation procegs
identifying objects corresponding to a single otgeaf interest.
Similarly, once all objects are detected, over-segped parts
are combined together considering topology progertf the

such plan may contain some spurious boundariesthe ones
not associated to a wall (Fig. 4c). To validate tisained
boundaries a check is done against the segmentasofis. In
particular, only vertical segments falling insitke tcells labelled
as boundary are considered as real wall surfadgs4#).

bin indoor modelling applications, a single missismgall wall

may jeopardize the entire reconstruction of therflolan. In the
developed strategy, such gaps are filled by incarptg
additional, unseen ‘pending’ walls (Chauve at alQ1®.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

doi:10.5194/isprsannals-11-5-281-2014

283



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-5, 2014
ISPRS Technical Commission V Symposium, 23 — 25 June 2014, Riva del Garda, Italy

Indeed, it can be observed that generally walls ratgually
perpendicular in indoor environments. For this oeapending’
walls are guessed as orthogonal to the detecteld aatl are
added from the boundary of the detected ones &ay. To
obtain a continuous floor plan from ‘detected’ apending’
walls, a procedure based oall complex labellings applied.
As a first step a 2D arrangement (Edelsbrunnet.e1836) is
set up by using both ‘detected’ and ‘pending’ wallkhe
arrangement generates a partitioning of the origsace
domain into convex polygonal cells (Fig. 5b). Ontaving

derived thecell complexthe floor plan reconstruction problem

can be formulated as an optimal binary labellingeifs in the
complex Each cell is labelled as ‘empty’ or ‘occupiedydathe
floor plan can be extracted as the union of alefacseparating
an occupied cell from an ‘empty’ one, obtainingstiway an
intersection-free boundary. This labelling problénhandled
within the framework of minimuns-t cut (Reif, 1983) on the

cell-adjacency graplG = (V,E) of the partitioning, where the

verticesV are the cells of the polygonakll complexand the
edges<E link adjacent cells, i.e., they correspond to feets of
thecomplex

c d.

Figure 4. Detection of room surface for ‘Classroaiata set:
(a) detected ceiling and floor; (b) some wall pams

cells forming the inner part of the room might beoareously
labelled as ‘empty’ or vice-versa (Fig. 5c). Fdrather cells an
equal unary weight is associated to edges joirtiegcells to the
‘source and to the sinK because there is no a priori knowledge
about the occupancy of the cell. Weights of renmgjnédges
between cells are fixed equal to the length ofeatige between
the cells. This means that thet cut problem is aimed at
minimizing the length of guessed walls segmentg.(bd). To
performs—t cut the Kolmogorov's max-flonalgorithm is used
(Boykov and Kolmogorov, 2004). Once having computesS-
T partitioning, the boundary of the ‘occupied’ celld the
polygon partition gives the floor plan. Finally,ivag obtained
the floor plan and having previously defined thdimg-floor
distance, the surfaces constituting the room car&enstructed
with easy.

<« >
> & »
a b
O Sou
S
el | @ Sdoutx d
Figure 5. Cell complex construction and labelling for

‘Classroom’ data set: (a) detected primitives with
‘pending’ walls; (b) inducedell complexinitial (c)
and final (d) labelling of theell complex

4. OCCLUSION LABELLING
Once all surfaces of the room’s ‘box’ are detectgrningsare

looking for. Detection of the boundaries of opesinguch as
windows or doors in a wall, is usually a complesktawhile in

are missing (in red circles) due to occlusions; (c)fagade reconstruction applications windows are gdiye

binary occupancy raster mapf the ceiling with

detected as holes in the point cloud, this assumpibes not

walls (green segments) and spurious boundaries (regenerally hold for indoor environments. Indeedpaisclusions

segments); and (d) detected wall surfaces.

Starting from the available data, some cells candibectly
categorized as ‘occupied’. In particular, all cedlscupied by
points belonging to the ceiling can be directlyigised to sef.
In a similar way, cells bordering an ‘occupied’ Icaind
separated from it by a detected wall segment arasempty.
For this reason, the weights of edges joining siek’ (t) to
cells labelled as ‘occupied’ are set to infinitdueaand, in a
similar way, edges joining thedurce’ (s) to ‘empty’ cells are
set to infinite. Then, the weights of edges betweem
‘occupied’ cells and between two ‘empty’ cells aset to
infinite and weights of edges connecting an ‘emmwd an
‘occupied’ cell are set to zero. In this way, itpevented that

and clutter produce significant holes in the palaud which
have to be distinguished from real openings. Te #md an
occupancy analysis is accomplished. The developettiad is
based onray-tracing labellingand BORM generation (Adan
and Huber, 2011). The occupancy of the scannedespauid
also be done by using tizempster-Shafer theory of evidence
(Shafer, 1976). In this case the spatial occup@ogpresented
by so-calledbelief massedescribing the state of the space (e.g.,
‘empty’ or ‘occupied’) in the nearby of a point plowever,
definition of proper belief masses relies, in gaheon a series
of parameters (Hebel et al, 2013), which may bécdit to set
up. In order to cope with this limitation a simplapproach
based on a few and intuitive parameters was designe

In this step each surface is separately proces3ede having
previously defined the wall surface, points repn¢ieg inliers
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for the plane under analysis can be easily recegniZhe
detected plane is then discretized into cells o€ 8ix g and
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On the other hand if the mean distance is largarBhdistance,
the cell is labelled as ‘empty.’ Aftamy-tracing labelling for

then a BORM (denoted ad) is generated on the basis on any scansK labels for each pixel are obtained (Fig. 7). Thén

whether inlier points are detected at each pixetion or not.
Without additional information, it is not possitie distinguish
between a pixel that is truly empty and one thamisrely
occluded. This problem can be overcome by usiraydracing

the labels are combined in a final occupancy na@adopting
the following labelling rule:

If L,(i)=empty and L, (i) =occludedlj = 12...,K =>L (i) = occluded

labelling to detect occlusions between the sensor and the

surface being modelled. For this reason the scagnloications
(position and attitude) should be known in advance.

4.1 Ray-tracing labelling

Let S = {S.,S,...,S} be the set oin scan standpoints for the
room to be modelled. For each scan posifigra labellingLy is
generated by tracing a ray from the scan locatoeach pixel
Pi(X,Y,Z) labelled as ‘empty’ inMy. The knowledge of the
rotation matrixR, and the position vector,Tof the generic

standpointS, can be exploited to compute the coordinates of

any pointsP; in the intrinsic reference syster(iRS) of the
instrument:

Xirs =Ry (Xi-Ty) 1

Then from vectorxgsthe spherical coordinates (rangk

vertical angleo, horizontal angled) can be derived. Relation
between cartesian and spherical coordinates isllasvé:

XIRS cos a -cos 0
Yirs| =d-|cos a -sin 6

ZIRS sin a

@

Having defined the cell location in spherical caoates, the
20-nearest neighbour poin{Samet, 2006) foP; can be easily
defined. As a measuring distance betwBeand other points?
and o angles are used. In the case the 20-nearest meighb
points have angular distanag §) far larger than the predefined
angular scanning resolution, this would mean tlateflected
signal come to the laser scanner due to the presefian
opening. In this case the pixelis labelled as ‘empty.’

Figure 6. Ray-tracing labelling principle: point ® marked as

In other words, a cell is considered as ‘occludédit is
occluded in any scans.

Having obtained the BORM, openings can be easilyctideby
identifying the labels of the cells.

t |
ﬁ bm
| O Occupied ® Occluded ® Opening |

inaed 'ed

———

Figure 7. Occlusion labelling (‘Classroom’ data set)
Reflectance images of Scan 1 (a) and Scan 2 (b)
used to model the wall; cell labelling for Scanc} (
and Scan 2 (d).

4.2 Classification of openings into windows and doors

A procedure similar to the one described in Prévia al.
(2013a) for building outdoors is used to perforrassification
of openings into windows and doors and to iderttifgir shape.

occluded because its nearest neighbour pointsr(greén particular a hierarchical classification treeused (Fig. 8).

points) have a shorter distance from scanner.

Conversely, if the angular distance is compatibléhwihe
predefined scanning resolution, the mean distahtieeonearest
neighbours is evaluatet},..,= mean ¢;,d,,... ), See also Fig.
6. In particular, in the case the mean distandevier thanP,
distance, this would mean thgtis occluded by some points in
the scan and the cell is consequently labelled.

Openings are classified as doors when they interagih

ground floor.

Once the raw shape of the openings is determingxspon
indoor architecture are added to generate the rommel. In
particular, the prevalence in building rooms oésht lines and
orthogonal intersection is exploited to add addgioconstrain
to enforce the modelling process.
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Whole
polygons

teacher desk and many tables and seats for studerttse
classroom. In addition, a recess of the room itiglyroccluded
by another tiny wall.

The first step for AIR is the segmentation of thénpeloud.
Parameters in Table 1 were used.

A 2

| Walls | | Floor | | Ceiling
RANSAC plane thresholel lcm
RANSAC normal threshold 20°
Labelling - -
Bitmap cell sizel lcm
Bitmap cell size for wall detection 5cm

, g Table 1. Parameters used for indoor modelling dfi lnl@ata sets
Window | | Doo (‘Classroom’ and ‘Office’).

Figure 8. Hierarchical classification tree, oramjgmonds are |n Figure 4 segmentation results are presenteddistihction
conditions while blue rectangles represent roompetween room elements (floor, ceiling and walls)siown.
elements. Once having defined the detected wall surfaces, stgho

primitives are added and the complex arrangemerseisup
(Fig. 5). Finally, occupancy maps are generated aibrthe
5. APPLICATIONS AND ACCURACY EVALUATION detected wall surfaces. The obtained room modaidsented in

) ) Figure 9a-d while results of the geometric accurafythe

The procedure for indoor modelling was tested witha sets  ,odel are presented in Figure 10. As expectedntimber of

featuring different characteristics in terms of mo@eometry correctly detected edges decreases as the toleiac@ases.

and data densityTwo examples are illustrated here to presentyowever, this decrease presents a significant dtgadgty in
the main advantages and disadvantages of this thetheeal o rrespondence of T = 4.0 mm. This means thatdberacy of
applications. . the detected edge is about this magnitude. Howeser,

The results achieved by the proposed approachetereked in - important element needs to be observed. Manual tivglef a

order to quantify the geometric accuracy of theawtstd vector point cloud is indeed influenced by human intertien and

models. In order to do that a manual reconstrudiom the — he definition of breaklines with accuracy highban 2.0-3.0
same data set was performed. In the literatureigtésnsidered 1, is almost impossible also for a skilled operator

as the most precise method to extract a vector hrfooim a
point cloud (Nex and Rinaudo, 2009). For this reasam
experienced operator performed the segmentationthef
building room starting from the point cloud. ‘Matumodels
were then compared with the automatically generatess. In
particular, the detected breaklines were compasetinanual’
benchmarking models. First, the accuracy of thenstucted
edges was derived by comparing the ground trutlitiposof
each line with the position estimated by the autmma
algorithm. In particular, for each edge thbsolute modelling
error is defined as the absolute magnitude of the diffee
between the ground truth and the model position.eége is
considered as correctly detected if the distandevdmn the
manually generated edge and the closest autontgtical
generated edge is lower than a predefined thresholthen the
reliability of reconstructed edges is evaluateccosnparing the
number of commission and omission errors. In paldic a
commission(or | Type) error is defined as the probability of
erroneously detecting an edge. It is evaluated has ratio
between the number of wrong breaklines and thé totmber
of real ones. Conversely, ammission (or Il Type) error is
defined as the probability that a real edge is teded. It is
evaluated as the ratio between undetected edgeshantbtal
number of existing ones.

c. d.
Figure 9. Geometric reconstruction of ‘Classroontadset: (a)
room model with overlaid the original point cloud;

i . . . . (b) wireframe model of the reconstructed room; (c-
The first test consists in the modelling of a undity d) final 3D room model from two different
classroom. The dimensions of the room are 8 m %53 m.

Two scans were acquired inside the room, each stimgiof

approx. 28 million points. A FARO-FOCUS 3D laser swan
(www.faro.com) was adopted, which is based on thesp-shift
principle for range measurement. This data set eptss
significant occlusions and clutter due to the pmeseof the

5.1 ‘Classroom’ data set

viewpoints.
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Figure 10. Accuracy evaluation of edge segmentatsults for
the ‘Classroom’ data set.

5.2 ‘Office’ data set

The second example consists in the modelling afféoe room
characterized by having a complex ground planectontThe
room is approximately 12 mx8.5 mx3 m. In this cHsee
scans were acquired with a FARO-FOCUS 3D laser sgaim
this case, the average number of points per easts sonsisted
of approx. 44 million points. The same segmentatiarameters
adopted in the previous example have been used$ezelable
1). In Figure 11 a summary of the main processteg for the
‘Office’ data set are shown.

Figure 11. Geometric reconstruction of ‘Office’ daset: (a)

Also in this case, it can be noticed that the aacyiof the wall
and opening boundaries is similar to the one obtdé with
manual modelling of the point cloud, confirming theality of
results obtained in the first example (Fig. 12).
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Figure 12. Accuracy evaluation of edge segmentatsalts for
the ‘Office’ data set.

6. CONCLUSIONS

In the last years, indoor reconstruction of exiptiniildings has
been attracting more and more interest in the tactural and
building engineering domain. Terrestrial laser stag proved
to be an adequate technique for a fast and reladgaisition of
primary data. However, the processing workflow &rivke the
final building model from the original point clouths been a
time consuming and fully manual procedure up umtilv. This
paper presented a robust method for automatic stwamion of
the interior architecture of room buildingauiomatic indoor
modelling— AIR).

Given a point cloud of the building indoor and tkean
locations, the overall shape of the room is recoostd as a 3D
model provided in CAD format. During the processiag
recognition step is also performed between roomeatbj
allowing a semantic representation of the entirentoto be
possibly exported in IFC and CityGML formats. Thiption
will allow importing the reconstructed semanticadiyriched
model into Building Information Model (BIM).

Experiments with a couple of real data sets dematest that
this method could work well despite the high levefsclutter
and missing data in the point clouds. The geomatauracy of
the derived models can be considered as compavatiiethe
one obtainable in a standard fully manual processiorkflow.

A major limitation to the full optimization of theaethod is due
to the Legoland-world domain assumption. Becauseutrh
assumption, walls, which build up the room volumes a
assumed as rectangular. However, more complex room
geometries such as curved surfaces or triangulis Ygich in
the case of lofts) may occur in scanning indooiiremments. In
addition, also ‘pending’ walls are assumed intefsgcin an
orthogonal way with respect to detected wall sw$ac
However, this assumption has no general validity emsome
situations obtained ground plan contours may dicanitly
differ from the actual one. However, the most roommodern
buildings follow the simple model that is considkra this
research. Thus the described method is expectedrtowell in
a large number of cases.

Future development will consider the integratiortoirthis

segmentation results; (b) detected primitives withprocedure of other types of data sources, like tpolauds

‘pending’ walls; (c) inducedtell complex (d) final
ray-tracing labelling (e) wireframe model with

coming from photogrammetric processing, triangalagcanner
and indoor Mobile Mapping Systems. The use of tleesesors

overlaid the original point cloud; and (f) final 3D may need a partially modified approach, for exaniplepply

model.

theray-tracing labellingadopted to discriminate for occlusions.
Mutual integration of more independent room intemieodels
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and indoor-outdoor modelling are other aspects thatild
deserve more investigation considering the relewvasfcthese
issues for data integration into BIM's.
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