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ABSTRACT: 
 
Terrestrial laser scanning is increasingly used in architecture and building engineering for as-built modelling of large and medium 
size civil structures. However, raw point clouds derived from laser scanning survey are generally not directly ready for generation of 
such models. A manual modelling phase has to be undertaken to edit and complete 3D models, which may cover indoor or outdoor 
environments. This paper presents an automated procedure to turn raw point clouds into semantically-enriched models of building 
interiors. The developed method mainly copes with a geometric complexity typical of indoor scenes with prevalence of planar 
surfaces, such as walls, floors and ceilings. A characteristic aspect of indoor modelling is the large amount of clutter and occlusion 
that may characterize any point clouds. For this reason the developed reconstruction pipeline was designed to recover and complete 
missing parts in a plausible way. The accuracy of the presented method was evaluated against traditional manual modelling and 
showed comparable results.  
 
 

1. INTRODUCTION 

In the last years a great attention has been paid to the 
development of automated techniques for generation of as-built 
building models starting from point clouds acquired by 
Terrestrial Laser Scanners (TLS), see Pu et al., (2011), Haala 
and Kada (2010), and Remondino (2011). Indeed, the demand 
for indoor modelling is largely increasing for different purposes 
(scheduled maintenance, preservation and documentation, 
facility management, security, feeding Building Information 
Models). In conjunction, the increase in the automation of 
acquisition and registration of laser scans, along with a 
reduction of the instrumental cost, has allowed a larger number 
of operators to widely use this surveying methodology. 
However, once laser point clouds are acquired and aligned, the 
process of turning them into a vector model is still largely based 
on the manual modelling of each architectural element. To 
improve this aspect, automation in the reconstruction pipeline is 
essential to speed up the processing workflow and to preserve 
the economic sustainability of the project. In addition, an 
important transition to Building Information Modelling (BIM) 
is taking place in the Architecture, Engineering, and 
Construction domain (AEC – Azhar, 2011). Indeed, in a BIM 
model not only the geometric aspects are considered, but also 
semantic information can be included for a deeper 
understanding of existing buildings. Thus, an automated 
methodology for geometric modelling should present 
interoperability with BIM domain. However, the lack of 
automated approaches to understand the indoor building 
structures captured in raw data is still underlined in the AEC 
(Okron et al., 2010).  
The automatic reconstruction of building models has been 
mostly restricted to building outer envelope, while so far lower 
interest was paid to indoor modelling. The automatic 
reconstruction of buildings’ exterior shares many properties 
(and problems) with the issues associated with indoor 

modelling. However, they generally operate under the 
assumption that the surface being modelled is relatively free 
from obstructions. Even if this may be a reasonable pre-
requisite for outdoor scanning, in indoor environments objects 
like pieces of furniture and wall-hangings frequently may 
occlude the wall surfaces, making the modelling problem much 
more challenging.  
This paper presents an automatic method for modelling 
predominantly planar indoor environment on the basis of TLS 
data. This topic can be addressed as automatic indoor 
reconstruction (AIR). The presented methodology aims at 
generating reliable models despite of the presence of significant 
amounts of clutter and occlusion, which frequently occur in 
building indoor. In particular, gaps in the input data can be 
recognized and filled by detecting occluded regions and by 
modelling windows or door openings. First, surfaces 
representing the room walls, ceiling and floor are extracted in 
robust way. Then, to understand the nature of occlusions, a ray-
tracing algorithm is used to identify regions that are occluded 
from every viewpoint and to distinguish these regions from 
openings in the surface (e.g., due to doorways or windows). 
The most experiences reported in the literature (see Subsect. 
1.2) concern the use of static TLS, but the recent improvements 
in the indoor mobile mapping systems are opening new great 
possibilities to this field (Biswas and Veloso, 2011). Although 
mobile systems are expected to offer a lower precision, they 
may offer a higher productivity fostering real word applications. 
Also it should be mentioned that other data sources than laser 
scanning have to be carefully considered in the close future to 
provide point clouds useful for indoor modelling: 
photogrammetry, low-cost 3D imaging systems (including 
gaming devices), triangulation scanners, and mobile-phone 3D 
scanners. However, in those cases the data precision and 
resolution may be lower than with static TLS.   
The structure of the paper is organized as follows. Section 2 
gives an outlook on the entire modelling approach. Section 3 
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focuses on the extraction of the contour of ground plane, which 
in the most inner rooms also allows modelling the vertical 
walls, with the exception of doors and windows. The possible 
presence of occlusions and window/door detection is dealt with 
in Section 4. Section 5 reports some examples of applications to 
real case studies Finally, Section 6 draws some conclusions. 
 
1.2 Related work 

Several methods have been proposed in the recent literature for 
production of building façades models by using TLS (Pu and 
Vosselman, 2009; Ripperda and Brenner, 2009). These 
approaches operate under the assumption that the surface being 
modelled is relatively unobstructed. Whether this may be a 
reasonable assumption for outdoor scanning, in indoor 
environments generally some pieces of furniture may generate 
occlusions. For façade modelling, in the case of occlusions 
model-based approaches are used (Becker, 2009; Koutsourakis 
et al., 2009). In particular, they assume that the occluded region 
is part of a repeated pattern and a top-down processing is used 
to predict these patterns and to replace pending data (see 
Previtali et al., 2013b). However, in the case of interior 
modelling, repetitive patterns of walls and windows are more 
unlikely to be identified and ad-hoc algorithms robust to clutter 
are needed. 
Currently, model reconstruction and visualization of generic 
indoor scenes is still a difficult task (Furukawa et al., 2009). In 
fact, the reconstruction of interiors is mostly performed by using 
interactive or semi-automatic approaches (Cyclone®, 
Pointools®,…). Many researchers have studied the problem of 
building interior reconstruction using laser scanning data (El-
Hakim et al., 1997; Hahnel et al., 2003; Thrun et al., 2004; 
Budroni and Boehm, 2005; Okron et al., 2010; Adan and Huber, 
2011). For some works the emphasis was given on creating 
visually realistic models rather than geometrically accurate ones 
(e.g., El-Hakim et al., 1997). Many authors used TLS data to 
construct detailed models of walls. Thrun et al. (2004) 
developed a plane extraction method based on the ‘expectation–
maximization’ algorithm, while Hahnel et al. (2003) used a 
‘plane sweep’ approach to find planar regions. However, even if 
these algorithms work well for extracting planar patches from 
the laser data, they do not explicitly recognize the semantic 
identity of any components, namely walls, ceilings, and floors. 
In addition, several works (Hahnel et al., 2003; Thrun et al., 
2004, Budroni and Böhm 2005) do not consider the occlusion 
problem because they focused on modelling of hallways with no 
furniture or other potentially occluding objects. The problem of 
detecting doors is specifically addressed in Díaz-Vilariño et al. 
(2014), who makes integrated use of TLS and image data. 
‘Context-based’ building modelling was studied by Cantzler 
(2003), Nüchter and Hertzberg (2008), and Rusu et al. (2008). 
These approaches rely on hand-coded rules. Recently, Koppula 
et al. (2011) used a graphical model to represent contextual 
relationships for recognizing objects in indoor scenes using 
3D+colour images (RGBD) from a Microsoft Kinect® sensor 
(Zhang, 2012). However, defined rules are usually brittle and 
break down in the case of noisy measurements or significant 
lack in the data. 
A very specific area of indoor modelling, which has been the 
topic of intense efforts towards automation, is the reconstruction 
of industrial environments. These scenes are characterized by 
repetitive elements such as beams or pipes. Current state of the 
art in commercial reconstruction tools is manual pre-
segmentation in combination with automated model fitting 
(Rabbani et al., 2007). 
 

2. INDOOR RECONSTRUCTION OVERVIEW 

The developed methodology for automatic indoor 
reconstruction (AIR) takes as input a set of registered scans 
with a known ‘up’ direction and the location of the scanner in 
the room. All these prerequisites can be easily obtained in the 
practice. Indeed, scan registration is a well-studied problem, and 
methods to manually or automatically register scans are 
available both in scientific and commercial software packages, 
see a review in Previtali et al. (2014). 
Moreover, the alignment of the vertical axis of ground reference 
system (GRS) along the plumb line, that is also the direction of 
walls, can be easily obtained by levelling one station taken as 
reference. Moreover, due to the limited vertical extension of 
walls and the 1-2 centimetre precision required in AIR, such 
procedure may suffice. Alternatively, if the vertical direction is 
unknown, the orientation can be estimated using statistics on 
data. For example, a room usually is schematically represented 
by two large parallel, continuous planes (floor and ceiling), and 
by at least four walls which are vertical smaller planes. These 
simple considerations may be exploited to detect which planes 
represent walls and the orthogonal direction to the floor/ceiling 
can be used to establish the ‘up’ direction. Of course there may 
be a few exceptions to these rules, especially in historical and 
special buildings (e.g., industrial, military, facility management 
buildings). On the other hand, the proposed procedure is 
focusing on modelling common rooms in modern constructions, 
which represent the large majority of the cases. For efficiency, 
the algorithm operates independently on each room. In the case 
one would like to link together more rooms, standard techniques 
used in surveying and laser scanning practice have to be 
implemented. 
The first step in the presented approach (Fig. 1) is detection and 
estimate of the surfaces to be modelled, i.e., walls, ceiling and 
floor. 
 
 

 
 

Figure 1. Workflow of the developed methods for automatic 
indoor modelling (AIR) of building rooms. 

 
 
However, due to occlusions and clutter some walls may be 
missing in the data set. For this reason an automatic procedure 
is implemented to complete missing elements in a plausible 
way. To achieve this, the developed algorithm incorporates 
some architectural priors on indoor scenes, notably the 
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prevalence of orthogonal intersections between walls. Such 
scenes are addressed as ‘Legoland’ scenes in Förstner (2010). 
Once the surfaces describing the room are defined, the 
remaining steps operate on each region individually. In the 
second phase, each planar surface is analysed to identify and 
model the occluded regions and openings by using a ray-tracing 
algorithm. Openings in the data are detected by using labelling 
information while contemporarily a further classification is 
performed to take apart windows and doors. Finally, occluded 
regions are completed in a realistic way. 
The output consists of a set of labelled planar patches (walls, 
floor, and ceiling), adjacency maps indicating which patches are 
connected to one another, and a set of openings detected within 
each planar surface. These patches are intersected with one 
another to form a simple surface-based model of the room. The 
geometric models of the room, along with any semantic 
information, may be combined together to derive a semantically 
enriched mode of the room in CityGML and/or IFC format 
(Gröger and Plümer, 2012). 
 
 

3. GROUND PLAN CONTOUR DETECTION 

The first step of the reconstruction process is the detection of 
ground plan contours. The general workflow is presented in 
Figure 2. First, surfaces (walls, roof and ceiling) which 
constitute the ‘box’ of the room to be modelled are detected. 
This stage is accomplished by using the segmentation strategy 
described in Previtali et al. (2013a). However, scan 
segmentation based on range images techniques can also be 
used (Zeiback and Filin, 2007; Kang et al., 2013). 
 
 

  
 

Figure 2. Pipeline for ground plan contour detection. 
 
 
The workflow of the segmentation strategy is presented in 
Figure 3. In this implementation major attention was paid to the 
reduction of so called ‘bad-segmentation’ problems. Indeed, 
spurious results may be due to the fact that points constituting 
the maximum consensus to RANSAC planes may be derived 
from different objects. The developed strategy tries to minimize 
this problem by including topology information in the process. 
Indeed, points belonging to the same object should be 
sufficiently close while groups of points belonging to different 
objects should have a gap area. For this reason, a topology 
measure is introduced in the segmentation process by 
identifying objects corresponding to a single objects of interest. 
Similarly, once all objects are detected, over-segmented parts 
are combined together considering topology properties of the 

extracted planes (i.e., similarity of normal vectors, 
perpendicular distance between planes and intersection of 
planes). 
Once the point cloud segments have been detected, a first 
semantic classification is done to detect roof and ceiling. 
Indeed, by analysing the detected segments, the ceiling can be 
identified as the non-vertical plane having the lower height. 
Conversely the roof is detected as the non-vertical plane located 
at the highest level. In this way, the distance from ceiling to roof 
can be also worked out (Fig. 4a). 
 
 

 
Figure 3. Workflow of developed segmentation procedure. 
 
 
At this stage the floor plan of the room has to be determined. To 
this end, the walls of the room need to be detected. However, 
this problem is made more difficult due to possible clutter and 
occlusions. Some walls may have not been sensed by laser 
scanner and may miss in the point cloud. For this reason, a 
proper completion is necessary to reconstruct in a plausible way 
these pending walls (Fig. 4b). A first rough floor plan of the 
room can be obtained by projecting the points belonging to the 
ceiling onto a horizontal plane. Indeed, the acquisition of the 
ceiling surface, due to its location, is generally less influenced 
by clutter and occlusion than other surfaces in the room.  
Usually rooms with a standard usage feature a relatively large 
free area on the floor surface for walking and moving around. 
The horizontal plane is discretized into cells of size β x β. The 
cell size β is set equal to the mean sampling resolution in the 
point cloud. Then a binary occupancy raster map (BORM) is 
generated where pixels having value one represent cells where 
TLS data are available, while zero value pixels are cells with no 
data. Starting from this binary image it is possible to derive 
pixels representing the boundary of ‘occupied’ cells which 
represent a first rough floor plan. Due to possible occlusions, 
such plan may contain some spurious boundaries, i.e., the ones 
not associated to a wall (Fig. 4c). To validate the obtained 
boundaries a check is done against the segmentation results. In 
particular, only vertical segments falling inside the cells labelled 
as boundary are considered as real wall surfaces (Fig. 4d). 
In indoor modelling applications, a single missing small wall 
may jeopardize the entire reconstruction of the floor plan. In the 
developed strategy, such gaps are filled by incorporating 
additional, unseen ‘pending’ walls (Chauve at al., 2010). 
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Indeed, it can be observed that generally walls are mutually 
perpendicular in indoor environments. For this reason ‘pending’ 
walls are guessed as orthogonal to the detected walls and are 
added from the boundary of the detected ones (Fig. 5a). To 
obtain a continuous floor plan from ‘detected’ and ‘pending’ 
walls, a procedure based on cell complex labelling is applied. 
As a first step a 2D arrangement (Edelsbrunner et al., 1986) is 
set up by using both ‘detected’ and ‘pending’ walls. The 
arrangement generates a partitioning of the original space 
domain into convex polygonal cells (Fig. 5b). Once having 
derived the cell complex, the floor plan reconstruction problem 
can be formulated as an optimal binary labelling of cells in the 
complex. Each cell is labelled as ‘empty’ or ‘occupied,’ and the 
floor plan can be extracted as the union of all facets separating 
an occupied cell from an ‘empty’ one, obtaining this way an 
intersection-free boundary. This labelling problem is handled 
within the framework of minimum s-t cut (Reif, 1983) on the 
cell-adjacency graph G = (V,E) of the partitioning, where the 
vertices V are the cells of the polygonal cell complex and the 
edges E link adjacent cells, i.e., they correspond to the facets of 
the complex.  
 

a.  b.  

c.  d.  
 
Figure 4. Detection of room surface for ‘Classroom’ data set: 

(a) detected ceiling and floor; (b) some wall portions 
are missing (in red circles) due to occlusions; (c) 
binary occupancy raster map of the ceiling with 
walls (green segments) and spurious boundaries (red 
segments); and (d) detected wall surfaces. 

 
 
Starting from the available data, some cells can be directly 
categorized as ‘occupied’. In particular, all cells occupied by 
points belonging to the ceiling can be directly assigned to set T. 
In a similar way, cells bordering an ‘occupied’ cell and 
separated from it by a detected wall segment are set as empty. 
For this reason, the weights of edges joining the ‘sink’ (t) to 
cells labelled as ‘occupied’ are set to infinite value and, in a 
similar way, edges joining the ‘source’ (s) to ‘empty’ cells are 
set to infinite. Then, the weights of edges between two 
‘occupied’ cells and between two ‘empty’ cells are set to 
infinite and weights of edges connecting an ‘empty’ and an 
‘occupied’ cell are set to zero. In this way, it is prevented that 

cells forming the inner part of the room might be erroneously 
labelled as ‘empty’ or vice-versa (Fig. 5c). For all other cells an 
equal unary weight is associated to edges joining the cells to the 
‘source’ and to the ‘sink’ because there is no a priori knowledge 
about the occupancy of the cell. Weights of remaining edges 
between cells are fixed equal to the length of the edge between 
the cells. This means that the s–t cut problem is aimed at 
minimizing the length of guessed walls segments (Fig. 5d). To 
perform s–t cut, the Kolmogorov’s max-flow algorithm is used 
(Boykov and Kolmogorov, 2004). Once having computed the S-
T partitioning, the boundary of the ‘occupied’ cells of the 
polygon partition gives the floor plan. Finally, having obtained 
the floor plan and having previously defined the ceiling-floor 
distance, the surfaces constituting the room can be reconstructed 
with easy. 
 

a.  b.  

c. d.  
 

Figure 5. Cell complex construction and labelling for 
‘Classroom’ data set: (a) detected primitives with 
‘pending’ walls; (b) induced cell complex; initial (c) 
and final (d) labelling of the cell complex. 

 
 

4. OCCLUSION LABELLING 

Once all surfaces of the room’s ‘box’ are detected, openings are 
looking for. Detection of the boundaries of openings, such as 
windows or doors in a wall, is usually a complex task. While in 
façade reconstruction applications windows are generally 
detected as holes in the point cloud, this assumption does not 
generally hold for indoor environments. Indeed, also occlusions 
and clutter produce significant holes in the point cloud which 
have to be distinguished from real openings. To this end an 
occupancy analysis is accomplished. The developed method is 
based on ray-tracing labelling and BORM generation (Adan 
and Huber, 2011). The occupancy of the scanned space could 
also be done by using the Dempster-Shafer theory of evidence 
(Shafer, 1976). In this case the spatial occupancy is represented 
by so-called belief masses describing the state of the space (e.g., 
‘empty’ or ‘occupied’) in the nearby of a point p. However, 
definition of proper belief masses relies, in general, on a series 
of parameters (Hebel et al, 2013), which may be difficult to set 
up. In order to cope with this limitation a simpler approach 
based on a few and intuitive parameters was designed. 
In this step each surface is separately processed. Once having 
previously defined the wall surface, points representing inliers 
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for the plane under analysis can be easily recognized. The 
detected plane is then discretized into cells of size β x β and 
then a BORM (denoted as M0) is generated on the basis on 
whether inlier points are detected at each pixel location or not. 
Without additional information, it is not possible to distinguish 
between a pixel that is truly empty and one that is merely 
occluded. This problem can be overcome by using a ray-tracing 
labelling to detect occlusions between the sensor and the 
surface being modelled. For this reason the scanning locations 
(position and attitude) should be known in advance. 
 
4.1 Ray-tracing labelling 

Let S = {S1,S2,…,Sn} be the set of n scan standpoints for the 
room to be modelled. For each scan position Sk, a labelling Lk is 
generated by tracing a ray from the scan location to each pixel 
Pi(X,Y,Z) labelled as ‘empty’ in M0. The knowledge of the 
rotation matrix Rk and the position vector Tk of the generic 
standpoint Sk can be exploited to compute the coordinates of 
any points Pi in the intrinsic reference system (IRS) of the 
instrument: 
 

   xIRS�RkT�Xi-Tk�   (1) 
 
Then from vector xIRSthe spherical coordinates (range d, 
vertical angle α, horizontal angle θ) can be derived. Relation 
between cartesian and spherical coordinates is as follows: 
 

  
������������� � � ∙ 
cos 	�	 ∙ cos 	�cos 	�	 ∙ sin 	�sin 	� �  (2) 

 
Having defined the cell location in spherical coordinates, the 
20-nearest neighbour points (Samet, 2006) for Pi can be easily 
defined. As a measuring distance between Pi and other points, θ 
and α angles are used. In the case the 20-nearest neighbour 
points have angular distance (θ, α) far larger than the predefined 
angular scanning resolution, this would mean that no reflected 
signal come to the laser scanner due to the presence of an 
opening. In this case the pixel Pi is labelled as ‘empty.’  
 
 

 
Figure 6. Ray-tracing labelling principle: point P is marked as 

occluded because its nearest neighbour points (green 
points) have a shorter distance from scanner. 

 
 
Conversely, if the angular distance is compatible with the 
predefined scanning resolution, the mean distance of the nearest 
neighbours is evaluated dmean = mean (d1,d2,... d20), see also Fig. 
6. In particular, in the case the mean distance is lower than Pi 
distance, this would mean that Pi is occluded by some points in 
the scan and the cell is consequently labelled. 

On the other hand if the mean distance is larger than Pi distance, 
the cell is labelled as ‘empty.’ After ray-tracing labelling for 
any scans, K labels for each pixel are obtained (Fig. 7). Then all 
the labels are combined in a final occupancy map LF adopting 
the following labelling rule: 
 

occludediLKjoccludediLandemptyiLIf Fj ==>=∀== )(,...,2,1,)()(0
  

 
In other words, a cell is considered as ‘occluded’ if it is 
occluded in any scans. 
Having obtained the BORM, openings can be easily detected by 
identifying the labels of the cells.  
 
 

a.  b.  

 

c.   

d.  
 
Figure 7. Occlusion labelling (‘Classroom’ data set). 

Reflectance images of Scan 1 (a) and Scan 2 (b) 
used to model the wall; cell labelling for Scan 1 (c) 
and Scan 2 (d). 

 
 
4.2 Classification of openings into windows and doors 

A procedure similar to the one described in Previtali et. al. 
(2013a) for building outdoors is used to perform classification 
of openings into windows and doors and to identify their shape. 
In particular a hierarchical classification tree is used (Fig. 8). 
Openings are classified as doors when they intersect with 
ground floor. 
Once the raw shape of the openings is determined priors on 
indoor architecture are added to generate the room model. In 
particular, the prevalence in building rooms of straight lines and 
orthogonal intersection is exploited to add additional constrain 
to enforce the modelling process. 
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Figure 8. Hierarchical classification tree, orange diamonds are 

conditions while blue rectangles represent room 
elements. 

 
 

5. APPLICATIONS AND ACCURACY EVALUATION 

The procedure for indoor modelling was tested with data sets 
featuring different characteristics in terms of room geometry 
and data density. Two examples are illustrated here to present 
the main advantages and disadvantages of this method in real 
applications. 
The results achieved by the proposed approach were checked in 
order to quantify the geometric accuracy of the obtained vector 
models. In order to do that a manual reconstruction from  the 
same data set was performed. In the literature this is considered 
as the most precise method to extract a vector model from a 
point cloud (Nex and Rinaudo, 2009). For this reason, an 
experienced operator performed the segmentation of the 
building room starting from the point cloud. ‘Manual’ models 
were then compared with the automatically generated ones. In 
particular, the detected breaklines were compared to ‘manual’ 
benchmarking models. First, the accuracy of the reconstructed 
edges was derived by comparing the ground truth position of 
each line with the position estimated by the automatic 
algorithm. In particular, for each edge the absolute modelling 
error is defined as the absolute magnitude of the difference 
between the ground truth and the model position. An edge is 
considered as correctly detected if the distance between the 
manually generated edge and the closest automatically 
generated edge is lower than a predefined threshold T. Then the 
reliability of reconstructed edges is evaluated by comparing the 
number of commission and omission errors. In particular, a 
commission (or I Type) error is defined as the probability of 
erroneously detecting an edge. It is evaluated as the ratio 
between the number of wrong breaklines and the total number 
of real ones. Conversely, an omission (or II Type) error is 
defined as the probability that a real edge is undetected. It is 
evaluated as the ratio between undetected edges and the total 
number of existing ones. 
 
5.1 ‘Classroom’ data set 

The first test consists in the modelling of a university 
classroom. The dimensions of the room are 8 m × 4.5 m × 3 m. 
Two scans were acquired inside the room, each consisting of 
approx. 28 million points. A FARO-FOCUS 3D laser scanner 
(www.faro.com) was adopted, which is based on the phase-shift 
principle for range measurement. This data set presents 
significant occlusions and clutter due to the presence of the 

teacher desk and many tables and seats for students in the 
classroom. In addition, a recess of the room is partially occluded 
by another tiny wall. 
The first step for AIR is the segmentation of the point cloud. 
Parameters in Table 1 were used. 
  
 

RANSAC plane threshold ε 1 cm 

RANSAC normal threshold α 20 ° 

Bitmap cell size β 1 cm 

Bitmap cell size for wall detection 5 cm 

 
Table 1. Parameters used for indoor modelling of both data sets 

(‘Classroom’ and ‘Office’). 
 

 
In Figure 4 segmentation results are presented and distinction 
between room elements (floor, ceiling and walls) is shown. 
Once having defined the detected wall surfaces, ghost 
primitives are added and the complex arrangement is set up 
(Fig. 5). Finally, occupancy maps are generated for all the 
detected wall surfaces. The obtained room model is presented in 
Figure 9a-d while results of the geometric accuracy of the 
model are presented in Figure 10. As expected, the number of 
correctly detected edges decreases as the tolerance increases. 
However, this decrease presents a significant discontinuity in 
correspondence of T = 4.0 mm. This means that the accuracy of 
the detected edge is about this magnitude. However, an 
important element needs to be observed. Manual modelling of a 
point cloud is indeed influenced by human interpretation and 
the definition of breaklines with accuracy higher than 2.0-3.0 
mm is almost impossible also for a skilled operator.  
 
 

a. b.  

c. d.  
 

Figure 9. Geometric reconstruction of ‘Classroom’ data set: (a) 
room model with overlaid the original point cloud; 
(b) wireframe model of the reconstructed room; (c-
d) final 3D room model from two different 
viewpoints. 
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Figure 10. Accuracy evaluation of edge segmentation results for 
the ‘Classroom’ data set. 

 
 
5.2 ‘Office’ data set 

The second example consists in the modelling of an office room 
characterized by having a complex ground plane contour. The 
room is approximately 12 m×8.5 m×3 m. In this case three 
scans were acquired with a FARO-FOCUS 3D laser scanner. In 
this case, the average number of points per each scans consisted 
of approx. 44 million points. The same segmentation parameters 
adopted in the previous example have been used here (see Table 
1). In Figure 11 a summary of the main processing step for the 
‘Office’ data set are shown. 
 

a.  b.  

c. d.  

e.  f.   
 

Figure 11. Geometric reconstruction of ‘Office’ data set: (a) 
segmentation results; (b) detected primitives with 
‘pending’ walls; (c) induced cell complex; (d) final 
ray-tracing labelling; (e) wireframe model with 
overlaid the original point cloud; and (f) final 3D 
model. 

Also in this case, it can be noticed that the accuracy of the wall 
and opening boundaries is similar to the one obtainable with 
manual modelling of the point cloud, confirming the quality of 
results obtained in the first example (Fig. 12). 
 

 
 
Figure 12. Accuracy evaluation of edge segmentation results for 

the ‘Office’ data set. 
 
 

6. CONCLUSIONS 

In the last years, indoor reconstruction of existing buildings has 
been attracting more and more interest in the architectural and 
building engineering domain. Terrestrial laser scanning proved 
to be an adequate technique for a fast and reliable acquisition of 
primary data. However, the processing workflow to derive the 
final building model from the original point cloud has been a 
time consuming and fully manual procedure up until now. This 
paper presented a robust method for automatic reconstruction of 
the interior architecture of room buildings (automatic indoor 
modelling – AIR). 
Given a point cloud of the building indoor and the scan 
locations, the overall shape of the room is reconstructed as a 3D 
model provided in CAD format. During the processing a 
recognition step is also performed between room objects 
allowing a semantic representation of the entire room, to be 
possibly exported in IFC and CityGML formats. This option 
will allow importing the reconstructed semantically-enriched 
model into Building Information Model (BIM).  
Experiments with a couple of real data sets demonstrated that 
this method could work well despite the high levels of clutter 
and missing data in the point clouds. The geometric accuracy of 
the derived models can be considered as comparable with the 
one obtainable in a standard fully manual processing workflow.  
A major limitation to the full optimization of the method is due 
to the Legoland-world domain assumption. Because of such 
assumption, walls, which build up the room volume are 
assumed as rectangular. However, more complex room 
geometries such as curved surfaces or triangular walls (such in 
the case of lofts) may occur in scanning indoor environments. In 
addition, also ‘pending’ walls are assumed intersecting in an 
orthogonal way with respect to detected wall surfaces. 
However, this assumption has no general validity and in some 
situations obtained ground plan contours may significantly 
differ from the actual one. However, the most rooms in modern 
buildings follow the simple model that is considered in this 
research. Thus the described method is expected to work well in 
a large number of cases. 
Future development will consider the integration into this 
procedure of other types of data sources, like point clouds 
coming from photogrammetric processing, triangulation scanner 
and indoor Mobile Mapping Systems. The use of these sensors 
may need a partially modified approach, for example to apply 
the ray-tracing labelling adopted to discriminate for occlusions. 
Mutual integration of more independent room interior models 
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and indoor-outdoor modelling are other aspects that would 
deserve more investigation considering the relevance of these 
issues for data integration into BIM’s. 
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