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ABSTRACT:

In the context of remote sensing image classification, Markov random fields (MRFs) have been used to combine both spectral and
contextual information. The MRFs use a smoothing parameter to balance the contribution of the spectral versus spatial energies, which
is often defined empirically. This paper proposes a framework to estimate the smoothing parameter using the probability estimates from
support vector machines and the spatial class co-occurrence distribution. Furthermore, we construct a spatially weighted parameter to
preserve the edges by using seven different edge detectors. The performance of the proposed methods is evaluated on two hyperspectral
datasets recorded by the AVIRIS and ROSIS and a simulated ALOS PALSAR image. The experimental results demonstrated that the
estimated smoothing parameter is optimal and produces a classified map with high accuracy. Moreover, we found that the Canny-based
edge probability map preserved the contours better than others.

1. INTRODUCTION

Hyperspectral imaging sensors provide a huge amount of data
with rich spatial, spectral and temporal resolution information.
These images have attracted much attention in the remote sens-
ing community and have opened the doors to variety of new ap-
plications and challenges, which need to employ both spectral
and spatial information for accurate data analysis and classifica-
tion (Camps-Valls et al., 2014). Markov random fields (MRFs)
as undirected graphical models are common methods for incor-
porating both spectral and contextual information (Chen et al.,
2010a). They are formulated as the minimization of an energy
function which consists of spectral and spatial energy terms and
an important term which plays a key controlling role known as
smoothing parameter (Aghighi et al., 2014). Larger values of the
smoothing parameter result in over-smoothed classified maps and
too small values do not fully utilize the available spatial informa-
tion (Tolpekin and Stein, 2009). Several attempts have been made
to estimate the smoothing parameter, which would maximize the
image classification accuracy. Derin and Elliott (1987) employed
the least squares method, but the performance of their method
was limited by the choice of suitable data samples (Derin and El-
liott, 1987, Tso and Mather, 1999). A number of studies have ex-
amined heuristic optimization algorithms to estimate the smooth-
ing parameters, such as iterative conditional estimation (Salzen-
stein and Pieczynski, 1997), genetic algorithms (Tso and Mather,
1999), simulated annealing (Li et al., 2012), and Ho-Kashyap
optimization method which was used for automatic weight pa-
rameters determination in the context of supervised classification
by using training data (Serpico and Moser, 2006). In the recent
years, Tolpekin and Stein (2009) demonstrated a new smooth-
ing parameter estimation technique for super-resolution mapping
based on class separability, the neighbourhood system size and
the configuration of class labels. Then, Li et al. (2012) added lo-
cal properties in estimating the optimal smoothing parameter and
developed their spatial adaptive method. However, both meth-
∗Corresponding author.

ods introduced another parameter, which was set as a constant
empirical value. Moreover, both methods suffered from simi-
lar covariance assumptions for the classes. Thus, we proposed
a robust smoothing parameter estimation framework to overcome
their limitations (Aghighi et al., 2014). One of the limitations of
the described methods is that they were developed based on the
assumption of the Gaussian class conditional distribution (Aghighi
et al., 2014), (Tolpekin and Stein, 2009) and (Li et al., 2012). Al-
though the Gaussian distribution is widely applied in many of
image labelling applications, this assumption may not be tenable
for remotely sensed mixed pixels (Xu et al., 2005). Moreover,
some practical data such as polarimetric synthetic aperture radar
(PolSAR) data are non-Gaussian (Doulgeris et al., 2008).

Another common drawback of contextual based classification ap-
proaches is that they generate unreliable classification results near
edges between the land covers (Moser et al., 2013), or remove
the edges of small features. Therefore, several attempts have
been made to develop the edge-preserving methods, which have
been used during the MRF optimization process. For instance,
line processes (Moser et al., 2013) and (Solberg et al., 1996) and
adaptive neighborhood systems (Hegarat-Mascle et al., 2007), are
both based on the assumption of using an ideal edge map. How-
ever, each image band may provide different or even conflict-
ing information based on its wavelength. Therefore, some other
methods such as fuzzy no-edge/edge function using Sobel mask
(Tarabalka et al., 2010), edge probability map using Canny oper-
ator (Aghighi et al., 2014) and graduated increase edge penalty
(Yu and Clausi, 2008) were introduced in previous studies.

This article presents a novel robust framework for the smooth-
ing parameter estimation which is not dependent on assumptions
of a specific statistical distribution of the image data (Section
2.1). This contextually adaptive smoothing parameter estima-
tion method is proposed on the basis of the balance of spatial
and spectral energies and the global spatial frequency distribution
of a co-occurrence class label. For this purpose, we have intro-
duced a new spectral energy change function and two new con-
cepts called the class label co-occurrence matrix of the categories
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(CLCMC) and global class label co-occurrence matrix of the cat-
egories (GCLCMC), which can all be computed using pairwise
coupling of probability estimates from support vector machines
(SVM) one-versus-one classification outputs. Furthermore, we
compared seven different edge filters to incorporate the edge in-
formation into the MRF framework: Canny, Sobel, Roberts, Pre-
witt, Laplacian of Gaussian, curvature edge indicator, graduated
edge penalty. The performance of the proposed method is eval-
uated using two hyperspectral images collected by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) and the Reflec-
tive Optics System Imaging Spectrometer (ROSIS) (Section 3).
Finally, conclusions are drawn in Section 4.

2. PROPOSED METHOD

In the development of our new smoothing parameter estimation
framework, we denote an image by Y =

{
Yi ∈ RB, i = 1,2, · · · ,m},

where B is a number of spectral channels, and m is a number
of pixels. Let Ω = {ω1,ω2, . . . ,ωM} be a set of M thematic
classes of interest. The classification task consists in assigning
for each pixel Yi a class label l j, yielding the classification map
L = {` j, j = 1,2, · · · ,m}.

2.1 The Potts MRF model

The optimal classification map L∗ given the image Y can be gen-
erated by solving the maximization problem for the a posteriori
probability (MAP) decision rule (1).

L∗ = argmax
L
{p(L|Y )}= argmax

L
{p(Y |L) p(L)} (1)

where, p(Y | L) is the class-conditional distribution and p(L) is
the prior probability distribution. Based on the complexity of (1)
which involves the optimization of a global distribution model
of the image and due to the equivalence of MRF and Gibbs ran-
dom field (Duggin and Robinove, 1990), (Geman and Geman,
1984), this optimization problem can be simplified and resolved
by minimizing the sum of local posterior energies (2) (Geman
and Geman, 1984):

U (L|Y ) = U (Y |L)+U (L) . (2)

In this research, we applied expectation-maximization (EM) al-
gorithm (Levitan and Herman, 1987) to compute the MAP. In
Equation (2), U(Y | L) and U(L) denote spectral and spatial en-
ergy terms, respectively. The spatial term U(L) is defined by
using the Potts model, which penalizes different class labels for
neighboring pixels (3):

U (L) = ∑
Y j∈Ni

W
(
` j
)(

1−δ
(
`i, ` j

))
(3)

where, ` j is the class label of a pixel Y j which is a member of
the symmetric neighborhood for pixel Yi denoted by Ni. In this
equation, δ

(
`i, ` j

)
is the Kronecker delta function (δ

(
`i, ` j

)
=

1 i f `i = ` j and δ
(
`i, ` j

)
= 0 i f `i 6= ` j. In Equation (3),

W (` j) denotes the weight of contribution from pixel ` j ∈ Ni to
the spatial energy term and can be modeled as:

W
(
` j
)

= q×φ
(
` j
)

(4)

where, 0≤ q < ∞ and ∑
` j∈Ni

φ
(
` j
)

= 1. In these equations, q con-

trols the overall magnitude of weights and consequently the spa-
tial energies; thus, larger values of q leads to smoother solutions
(Tolpekin and Stein, 2009). Here, φ

(
` j
)

inversely depends to
d
(
`i, ` j

)
which is a geometric distance between the pixel `i and

its spatial neighbors ` j ( 5) (Li et al., 2012).

φ
(
` j
)

=
1
η

(
d
(
`i, ` j

)
r

)−g

(5)

where, r is the spatial resolution, η is a normalization constant to
∑

` j∈Ni

φ
(
` j
)

= 1 and g is a power-law index which is assumed to

be one. By substitution (3- 5) in (2) we can write (2) as (6).

U (L|Y ) = U (Y |L)+q ∑
Y j∈Ni

φ
(
` j
)(

1−δ
(
`i, ` j

))
(6)

In order to normalize U(L | Y ), we multiply (6) by 1/(1+q):

(L|Y ) ∝
1

1+q
U (Y |L)+

q
1+q ∑

Y j∈Ni

φ
(
` j
)(

1−δ
(
`i, ` j

))
(7)

We call q/(1+q) smoothing parameter and denote it by λ ; there-
fore, 1/(1+q) can be written as 1−λ . As mentioned, the opti-
mal classified map L∗ depends on the maximization of the poste-
rior probability (1) or the minimization of local posterior energies
(2 or 7), thus the absolute value of U(L | Y ) in (7) is not impor-
tant. From Equation (8) and on, U(L | Y ) is referred to as the
normalised energy.

U (L|Y ) = (1−λ )U (Y |L)+λ ∑
Y j∈Ni

φ
(
` j
)(

1−δ
(
`i, ` j

))
(8)

The spectral energy U(Y | L) can be computed as (9) (Tarabalka
et al., 2010):

U (Y |L) =−ln{P(Yi|`i)} (9)

In order to estimate the smoothing parameter, consider that a
given pixel i with the true label `i = α is assigned to an incor-
rect class label `i = β . Therefore, based on (1) we can infer that:

p(`i = β |Yi)≤ p(`i = α|Yi) (10)

Which is same as (11)

U (`i = α|Yi)≥U (`i = β |Yi) (11)

By substituting the corresponding terms in (11) and solving this
inequality equation, we will have the local likelihood energy change
∆U ι

αβ and the change of a local prior energy which is simplified

as ∆UP
αβ = qψαβ . Furthermore, λ for each pair of classes (α and

β ) can be estimated by (12) (Aghighi et al., 2014):

λαβ =
1

1+ ψαβ
∆U l

αβ

(12)

Due to the assumption of Gaussian class conditional densities,
the value of ∆U ι

αβ was defined as a Mahalanobis distance us-
ing the equal covariance matrix for all the classes in the case of
(Tolpekin and Stein, 2009, Li et al., 2012); or using the mean
of the covariance of each pair of classes in the case of (Aghighi
et al., 2014). However, this assumption may not be tenable for
remotely sensed mixed pixels (Xu et al., 2005). Thus, in order
to avoid the Gaussian distribution assumption we propose a new
equation to compute the change in the likelihood energy as:

∆U ι
αβ =−ln |{P(Yi|`i = β )}−{P(Yi|`i = α)}| (13)

where, P(Yi | `i) can be estimated by pairwise coupling of prob-
ability estimates from one-versus-one SVM outputs (Wu et al.,
2004). In order to compute ∆U ι

αβ , the image pixels are catego-
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Table 1: Global matrix of ∆U ι
αβ for the image’s selected pixels

∆U ι
1,1 = 0 ∆U ι

1,2 . . . ∆U ι
1,M

∆U ι
2,1 ∆U ι

2,2 = 0 . . . ∆U ι
2,M

. . . . . . 0 . . .
∆U ι

M,1 ∆U ι
M,2 . . . ∆U ι

M,M = 0

rized based on the computed class labels and the pixels of each
category are sorted in descending order based on the maximum
probability in each pixel. Then, by employing the SVM accu-
racy assessment results, the minimum value between user and
producer accuracies of each class are used to select the propor-
tion of pixels with the higher probability in each category. These
selected pixels in each category are assumed to be reliably clas-
sified.

For a given pixel amongst the selected pixels of each category,
the maximum probability should belong to the P(Yi | `i = α) and
other probabilities of that pixel belong to P(Yi | `i = β ). Then
the means of pixels in each category were computed using ∆U ι

αβ
(13). In the next step, each mean vector of ∆U ι

αβ is normalized
and a square matrix of ∆U ι

αβ with size M was generated (see
Table 1). This matrix is a zero diagonal square matrix, because
each element on its diagonal indicates ∆U ι

αα is zero.

Then, the class label of the neighbours of each pixel in each cate-
gory are extracted to compute the CLCMC and GCLCMC, which
are square matrices of size M. Let NP be the number of pixels
for a class ωi; since the second order MRF neighboring system
is chosen, each pixel Yi is surrounded by NS = 8 pixels Yi. The
CLCMC index is calculated for pixels of each class ωi as:

CLCMCCωi,ω j =
1

NP×Ns

NP

∑
i=1

Ns

∑
s=1

δ (`c,ωi)δ
(
`s,ω j

)
(14)

CLCMCωi,ω j shows the probability of co-occurrence of class ωi
with other classes ω j. In this equation, `c is the class label of a
given pixel (i) of the category and `s is the class label of surround-
ing pixel s. Due to the MRF neighboring concept which says that
1) a site cannot be a neighbor with itself i /∈ N′i ; and 2) the neigh-
borhood relationship is mutual (i ∈ N j⇐⇒ j ∈ Ni) (Levitan and
Herman, 1987), CLCMC is converted to GCLCMC to show the
global spatial frequency distribution of each pair of classes in the
image:

GCLCMCωi,ω j = CLCMCωi,ω j +CLCMCω j ,ωi (15)

The index of GCLCMC indicates the probability that a given pixel
with true label (α) is misclassified as a false label (β ) due to the
spatial energy. Therefore, ψαβ for each pair of classes (ψαβ ) is
the corresponding element of GCLCMC matrix for classes α and
β . Although the general concepts of the CLCMC and GCLCMC
indexes are similar to the concepts of class label co-occurrence
matrix of the blocks (CLCMB) and global class label co-occurrence
matrix of the blocks (GCLCMB) which we proposed earlier (Aghighi
et al., 2014), for this paper both CLCMC and GCLCMC are nor-
malized and indicate the probability of co-occurrence of class ωi
with another classes ω j in each category over the whole image.

In the next step, the global matrix ∆U ι
αβ and ψαβ are used to

compute λαβ for each pair of classes using Eq. (12). Finally, the
optimized smoothing parameter λ ∗ is computed by averaging the
estimated smoothing parameter λαβ for each pair of classes ( 16)
(Aghighi et al., 2014):

λ ∗ =
∑M

α=1 ∑M
β=1 λαβ

M (M−1)
(16)

2.2 Edge preserving

The first step for preserving the edges is to determine the edge lo-
cations. Hence, we employed five of the best known edge detec-
tion methods including to Canny (Canny, 1986), Sobel (Roushdy,
2006), Roberts (Jain et al., 1995), Prewitt (Prewitt, 1970), Lapla-
cian of Gaussian (Marr and Hildreth, 1980) to extract the binary
edge map Ii, as well as utilize the different curvature indicators to
generate the curvature edge indicator Di in each case (21) (Chen
et al., 2010b). Since conflicting information is derived from the
different wavelengths in hyperspectral images, Ii and Di were
computed for each image band (B-band). Then a one-band edge
probability map from the B-band image (nb) is computed by us-
ing (17) for the Canny, Sobel, Roberts, Prewitt and Laplacian of
Gaussian as well as (18) for different curvature indicators.

w(i) = 1− 1
nb

nb

∑
i=1

I(i) , 0 < w(i) ≤ 1 (17)

w(i) = 1− 1
nb

nb

∑
i=1

D(i)

max
(

D(i)

) (18)

In order to preserve the small structures and edges in the classified
map, the spatial energy component (3) can be formulated as (19
or 20)(Aghighi et al., 2014).

UE
spatial (Yi) = ∑

Y j∈Ni

w(i)
(
1−δ

(
`i, ` j

))
(19)

UE
spatial (Yi) = ∑

Y j∈Ni

g(∇s)
(
1−δ

(
`i, ` j

))
(20)

where the superscript E refers to the edge probability map and
w(i) can be computed using (17 or 18) based on edge detection
method and g(∇s) can be calculated using (24).

2.3 Different curvature indicator

This edge indicator was developed by Chen et al (2010) and called
different curvature indicator. It can effectively distinguish edges
from areas with flat and ramp intensity distributions in the image
data (Chen et al., 2010b). The difference curvature Di for a given
pixel i of the image is defined as:

D(i) =
∣∣∣∣∣∣uηη (i)

∣∣∣− ∣∣∣uεε (i)

∣∣∣∣∣∣ , (21)

where uηη and uεε represent the second derivation of the gradi-
ent ∇u and perpendicular to ∇u, respectively, and |.| denotes the
absolute value

uεε =
u2

xyuxx +2uxuyuxy +u2
xuyy

u2
x +u2

y
(22)

uηη =
u2

xuxx +2uxuyuxy +u2
yuyy

u2
x +u2

y
. (23)

In these equations, ux and uxx denote the first and second deriva-
tion in x, respectively, uy and uyy are the first and second deriva-
tion in y, respectively, and uxy indicates the first derivation in y
of the first derivation in x. Table 2 summarizes the behaviour
analysis of the different curvature edge indicator.

2.4 Graduated edge penalty

In order to use the graduated edge penalty, we defined the edge
penalty term g(∇s) which can be any monotonically decreasing
function of edge strength. In this function, the penalty decreases
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Table 2: Behaviour analysis of the different curvature edge indi-
cator (Chen et al., 2010)

uηη uεε Di
Edge pixel large small large
Flat and ramp pixel small small small
Noise pixel large large small

as the edge strength increases between two groups of pixels as-
signed to different classes; thus all the edges pixels are not pe-
nalized equally. The penalty function is formulated as (Yu and
Clausi, 2008):

g(∇s) = e−(∇s/K)2
, (24)

where ∇s represents the normalized gradient magnitude (∇s ∈
[0,1]) as the edge strength measurement on site s. K is a positive
value that controls the strength of the edge penalty term. By in-
creasing K to infinity, all the edges penalties are equal to 1; and by
gradually increasing K, the edges are penalized differently based
on the strength or weakness of the edge gradient magnitude (Yu
and Clausi, 2008). In order to calculate ∇s, Equation (25) which
is based on the gradient magnitude

√
ϑ on site s was used (Yu et

al., 2012):
∇s =

√
ϑ/maxs∈S

√
ϑ , (25)

where ϑ can be computed using (Lee and Cok, 1991):

ϑ =
1
2

(
ps +qs +

√
(ps +qs)2−4

(
psqs− ts2

))
(26)

Each of the variables of (26) can be estimated as:

ps =
Nb

∑
b=1

(
∂Y

(b)
i

∂x

)2

(27)

ts =
Nb

∑
b=1

(
∂Y

(b)
i

∂x

)(
∂Y

(b)
i

∂y

)
(28)

qs =
Nb

∑
b=1

(
∂Y

(b)
i

∂y

)2

(29)

In order to compute ϑ , its items can be calculated using:

psqs− ts2 =
Nb

∑
b1=1

Nb

∑
b2=1

(
∂Y

(b1)
i

∂x
∂Y

(b2)
i

∂y
− ∂Y

(b2)
i

∂x
∂Y

(b1)
i

∂y

)2

(30)
Therefore, psqs− ts2 ≥ 0 and ps +qs ≥ λ . Since

ps +qs =
Nb

∑
b=1

(
∂Y

(b)
i

∂x

)2

+

(
∂Y

(b)
i

∂y

)2

=
Nb

∑
b=1
‖ ∇Y

(b)
i ‖2,

(31)

where ∂Y
(b)

i
∂x and ∂Y

(b)
i

∂y denote the first partial derivatives of the

bth univariate band of image Y on site i with respect to vertical
and horizontal directions.

3. EXPERIMENTAL RESULTS AND DISCUSSION

In order to compare the performance of the proposed method with
our previous method (Aghighi et al., 2014), the same sets of train-
ing and test pixels for each image were selected by the stratified
random method (Foody, 2004), which can be found in (Aghighi et
al., 2014). In this research, two benchmark hyperspectral datasets
and all classes were collected to evaluate the proposed smoothing
parameter estimation method.

1) The Indian Pines image: This hyperspectral image was recorded
by the AVIRIS sensor from Indian Pines test site which was an
agricultural area in North-western Indiana, USA. The image com-
prises 145 by 145 pixels with 20 m/pixel spatial resolution and
200 spectral bands within a wavelength range of 0.4 to 2.5 m. The
reference map contains sixteen classes, namely Alfalfa, Corn-
notill, Corn-min, Corn, Grass-pasture, Grass-trees, Grass-pasture-
mowed, Hay-windrowed, Oats, Soybean-notill, Soybean-mintill,
Soybean clean, Wheat, Woods, Buildings-Grass-Trees-Drives and
Stone-Steel-Towers.

2) The Pavia University image: The Pavia University hyperspec-
tral image was recorded by ROSIS sensor from Pavia district in
north Italy (Figure 2(a)). This dataset comprising of 610 by 340
pixels with spatial resolution of 1.3m and 103 spectral bands. The
reference map (Figure 2(b)) contains sixteen classes, namely as-
phalt, meadows, gravel, trees, painted metal sheets, bare soil, bi-
tumen, self-blocking bricks and shadows.

In order to evaluate the procedure on non-Gaussian data, we also
simulated a 210 by 250 pixel test image using fully polarized
L-band data from Phased Array type L-band Synthetic Aperture
Radar (PALSAR) sensor at the Japanese Advanced Land Observ-
ing Satellite (ALOS)(Pantze et al., 2014). The quad polarizations
data (HH, HV, VH and VV) was selected to reach the best clas-
sification results (Doulgeris et al., 2011). After pre-processing of
the data using software package (NEST version 5.0.12) provided
by ESA (European Space Agency), some samples of five class,
namely water, forest, urban, farm and open field were extracted.
Then, they utilized to produce a simulated PALSAR data (Fig.
1(b)), such that each class has at least on boundary to every other
classes (Fig. 1(a)) (Doulgeris et al., 2011). The produced data is
non-Gaussian distributed due to using high resolution image and
highly textured regions (Doulgeris et al., 2011).

(a) (b)

(c) (d)

Figure 1: Simulated PALSAR data . (a) Reference data ((1) wa-
ter, (2) Forest, (3) Farm, (4) Urban and (5) Open field). (b) Sim-
ulated image (R (VH), G (HV), and B (HH)). (c) SVM pixelwise
classification map. (d) SVMMRFclassification map.

In this research, the probabilistic one-versus-one SVM classifi-
cation method was adopted as a nonlinear classifier through the
use of Gaussian radial basis function (RBF) kernel for hyper-
spectral data (Tarabalka et al., 2010), as well as for simulated
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ALOS PALSAR data (Sambodo and Indriasari, 2014). The opti-
mal SVM parameter C and γ were chosen by fivefold cross valida-
tion (Aghighi et al., 2014). The SVMLIB library (Chang and Lin,
2011) was used to estimate the probability of individual classes
for each pixel and produce the classification map (see Fig. 1(c)
and Fig. 1(c)). Then, the results of SVM classification were
used to estimate the smoothing parameter λ ∗ for both hyperspec-
tral dataset and classify the image using MRF (Table 3). The
smoothing parameters for simulated PALASAR data were esti-
mated based on the current method and (Aghighi et al., 2014)
(Table 4).

Table 3: The estimated smoothing parameter (λ ∗) for MRF
Studying area Indian pines Pavia University

λ ∗ 0.976 0.943

Table 4: The estimated smoothing parameter (λ ∗) for simulated
ALOS PALASAR data

Methodology (Aghighi et al., 2014) Current method
λ ∗ 0.785 0.895

In order to compare the efficiency of the proposed parameter es-
timation method with (Aghighi et al., 2014) and (Tarabalka et al.,
2010), both hyperspectral datasets were used. Then, the λ ∗ value
derived in this paper was employed to manage the contribution
of spectral and spatial energies for the both non-edge based MRF
method (Fig. 1(d)) and the edge-based MRF (Fig. 1(e)) by us-
ing our previous edge probability map (Aghighi et al., 2014) (see
Table 5).

The difference between results obtained by applying the proposed
method and (Aghighi et al., 2014) are about -0.48 precent and
with (Tarabalka et al., 2010) are +2.8 precents. Furthermore,
comparisons of the accuracy of maps produced using λ ∗ and
those produced by (Tarabalka et al., 2010) show that the overall
accuracy of the classification by SVMMRF E for the University
of Pavia data have increased by 6.27 percent and 0.1 percent for
the Indian Pines data (Table 5). Then we evaluated the statistical
significance for each pair of corresponding classification maps in
terms of accuracy by using McNemars test with the 5% signifi-
cance level (Zhang et al., 2011). Due to the calculated χ2 and Z
values, the null hypothesis (H0) of no significant difference be-
tween two corresponding maps accuracy values of this paper and
(Aghighi et al., 2014) is not rejected for both Indian Pines and
University of Pavia images. However, the null hypothesis (H0)
of no significant difference between two corresponding maps ac-
curacy values of this paper and (Tarabalka et al., 2010) for the
University of Pavia is rejected.

In another experiment for non-Gaussian dataset, we utilized SVMMRF
to classify PALSAR simulated image using both estimated smooth-
ing parameters (Table 4). The difference between results derived
by λ ∗ and (Aghighi et al., 2014) is about 1.9 percent (Table 6).

We evaluated the statistical significance for both Pines and Uni-
versity of Pavia classified maps in terms of accuracy by using Mc-
Nemars test with the 5% significance level (Zhang et al., 2011).
According to the calculated χ2 and Z values, the null hypothesis
(H0) of no significant difference between the classified map ac-
curacy values using λ ∗ and (Aghighi et al., 2014) is not rejected.
Moreover, the classification accuracy in percentage for each class
of for PALSAR images is presented in Table 7).

As mentioned in Section 2.2, different edge preserving maps are
produced using Canny, Sobel, Roberts, Prewitt, Laplacian of Gaus-
sian operators, different curvature indicator and the graduated

Table 5: Overall accuracy assessment of the classified maps
for SVMMRF method with different smoothing parameters and
SVM for AVIRIS and ROSIS images

Smoothing
Indian pines Pavia University

Parameter
SV MMRF SV MMRF
NE E NE E

(Aghighi et al., 2014) 91.8 92.3 91.5 94.1
(Tarabalka et al., 2010) 92.1 91.8 86.9 87.6

λ ∗ 91.2 91.9 90.8 93.9
SVM 82.2 82.2 82.2 82.2

edge penalty (17, 18, 24). Then, the new edge preserving in-
formation was incorporated in the MRF using the spatial energy
term (19, 20) to produce the SVMMRF E maps (Table 8).

Table 8 reports the global classification accuracies for all the
datasets using seven edge preserving methods. The computed
overall accuracies and Kappa coefficients in this research show
that SVMMRF E using the edge probability map, in particular
the Canny edge method (Aghighi et al., 2014) results in the best
overall classification accuracies in these experiments. Then, Mc-
Nemars test with the 5% significance level (Zhang et al., 2011)
is used to evaluate the statistical significance between SVMMRF
E using Canny based edge probability map and other edge pre-
serving method. Due to the calculated χ2 and Z values, the null
hypothesis (H0) of no significant difference between Canny based
edge preserving method and others is not rejected for the Univer-
sity of Pavia image. However, the performance of the edge pre-
serving method depends on the datasets, the land cover classes
and the size of misclassified regions in the initial pixelwise clas-
sification map.

Table 6: Overall accuracy assessment of the classified maps for
PALSAR images

SmoothingParameter
PALSAR Simulated Image

Accuracy (%)
(Aghighi et al., 2014) 94.2

λ ∗ 96.1
SVM 91.4

Table 7: Overall accuracy assessment of the classified maps for
PALSAR images

Class label SVM (Aghighi et al., 2014) λ ∗
Water 99.9 100 100
Forest 82.1 86 86.4
Farm 66.2 86.9 87.8
Urban 84.1 95.7 96.3

Open field 81.2 79.3 78.4

4. CONCLUSION

In this article, we adress the issue of the automatic smoothing
parameter estimation to manage the contribution of the spectral
and contextual information in the context of MRF classification.
An innovative MRF smoothing parameter estimation method has
been proposed, which is not dependent on assumptions of a spe-
cific statistical distribution of the image data. This method con-
sists of employing SVM classification to produce the probabil-
ity of individual classes for each pixel, followed by two new in-
dexes named CLCMC and GCLCMC to estimate the smoothing
parameter. In addition, the performance of seven edge preserv-
ing techniques using Canny, Sobel, Roberts, Prewitt, Laplacian
of Gaussian operators, different curvature indicator and the grad-
uated edge penalty were evaluated. Experimental results have
demonstrated that the proposed method can estimate the optimal
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(a) (b) (c) (d) (e)

Figure 2: The University of Pavia. (a) Three-band colour composite. (b) Reference data. (c) SVM pixelwise classification map. (d)
SVMMRF-NEclassification map . (e)SVMMRF-Eclassification map.

Table 8: Overall accuracy assessment of the classified maps for
SVMMRF NE and SVMMRF E method using different edge pre-
serving methods; OA (Overall accuracy), AA (Average accuracy),
NE (SVMMRF NE), C (Canny), S (Sobel), R (Roberts), P (Pre-
witt), L (Laplacian of Gaussian), D.C. (Different curvature indi-
cator) and GIED (Graduated edge penalty)

The Indian Pines image
SVM NE C S R P L D.C. GIED

OA 82.2 91.2 91.9 89.9 89.5 89.9 88.7 89.6 88.9
AA 85.1 95.1 95.5 91.7 91.3 91.7 91.7 91.7 92.1
K 0.797 0.901 0.911 0.885 0.880 0.852 0.871 0.882 0.873

The Pavia University
SVM NE C S R P L D.C. GIED

OA 84.8 90.8 93.9 91.7 89.6 89.5 93.7 91.7 92.4
AA 88.0 92.7 94.1 92.6 92.3 92.3 90.6 90.2 93.5
K 0.803 0.885 0.912 0.889 0.858 0.857 0.916 0.889 0.899

smoothing parameter for both non-Gaussian and Gaussian dis-
tributed data. Furthermore, the edge probability map using Canny
filter yields accurate classification maps for both hyperspectral
datasets.
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