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ABSTRACT:

Leaf area index (LAI) is one of the most important structural parameters of forestry studies which manifests the ability of the green
vegetation interacted with the solar illumination. Classic understanding about LAI is to consider the green canopy as integration of
horizontal leaf layers. Since multi-angle remote sensing technique developed, LAI obliged to be deliberated according to the observa-
tion geometry. Effective LAI could formulate the leaf-light interaction virtually and precisely. To retrieve the LAl/effective LAI from
remotely sensed data therefore becomes a challenge during the past decades. Laser scanning technique can provide accurate surface
echoed coordinates with densely scanned intervals. To utilize the density based statistical algorithm for analyzing the voluminous
amount of the 3-D points data is one of the subjects of the laser scanning applications. Computational geometry also provides some
mature applications for point cloud data (PCD) processing and analysing. In this paper, authors investigated the feasibility of a new
application for retrieving the effective LAI of an isolated broad leaf tree. Simplified curvature was calculated for each point in order
to remove those non-photosynthetic tissues. Then PCD were discretized into voxel, and clustered by using Gaussian mixture model.
Subsequently the area of each cluster was calculated by employing the computational geometry applications. In order to validate our
application, we chose an indoor plant to estimate the leaf area, the correlation coefficient between calculation and measurement was

98.28%. We finally calculated the effective LAI of the tree with 6 x 6 assumed observation directions.

1. INTRODUCTION

Leaf area index (LAI) is a key variable used to model many phys-
ical processes, such as canopy photosynthesis and transpiration.
It determines the size of the plant-atmosphere interface and thus
plays a critical role in the exchange of energy and mass between
the canopy and the atmosphere (Weiss et al., 2004). Therefore,
obtaining LAI effectively and accurately by using remote sensing
data has been discussed for decades.

LAI is first defined as one-sided of photosynthetic tissue per unit
ground horizontal area (Watson, 1947). At the beginning of the
LALI studies the canopy structural parameters are measured di-
rectly. It is accurate, however, time consuming and destructive
to plants (Lang and Xiang, 1986). According to the botanical
structure of the vegetation, we only consider the green plants on
the ground; leaves from the canopy are with low visible light re-
flectance except of green light. Theoretically it is possible to re-
trieve the leaf area from the canopy using optical sensed data.
Since 1960s people attempt to indirectly retrieve canopy struc-
tural parameters from optical images (Jonckheere et al., 2004).
Several ground-based commercial instruments for LAI collec-
tion have been testified, the advantages and drawbacks of each
instrument have been presented as well; moreover the potential
of the laser instruments for LAl measurement has been pointed
out acutely (Welles and Cohen, 1996). Landsat TM data and
ground-based measurements of LAI have been correlated for es-
timating effective LAI, which is the product of LAI and clumping
index. Some issues have been discussed for the LAI estimation,
which were correlated to the LAI retrieving from Landsat images
in spite the limitations of TM image (Chen and Cihlar, 1996).

The development of the optical sensor resolution improves LAI
measurement accuracy and mathematical modeling. An applica-
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tion with spectral and textural information was used for mapping
the LAI of different vegetation types, has been presented by us-
ing IKONOS images (Colombo et al., 2003). Moreover when the
land cover is stratified, spectral and textural relations are consid-
erably better for mapping LAI spatial variability for different crop
types. Encouraging result in LAI estimation by using optical data
has been obtained via data fusion process for high spatial resolu-
tion images of the LAI For achieving reliable result over a large
area, LAl measurement with auxiliary variables such as NDVI
computed from Landsat images have been combined(Hernndez et
al., 2014). However, due to the assumption of randomly located
foliage elements within the canopy, LAI obtained from gap frac-
tion (Pearcy et al., 1989) theory is not the actual LAI (Zheng and
Moskal, 2009), thus effective LAI has been proposed to describe
the result more accurately, which is obtained by considering the
clumping index affection.

Recent studies propose to utilize laser scanner for LAI estimation
since it holds good performance at range detection and the con-
sistency of the precision. Morsdorf and his colleagues evaluated
the potential of deriving effective LAI proxy by estimating a frac-
tion of first and last echo types inside the canopy. Based on the
regression results, LAI has been computed for a region, and com-
pared qualitatively to the result based on imaging spectrometry,
revealing similar spatial patterns and ranges of values (Morsdorf
et al., 2006). Effective LAI has been calculated by referring em-
pirical model from airborne LiDAR data. Due to the narrow scan
angle of the LiDAR, the parameters of the model have been es-
timated from the field investigation (Korhonen et al., 2011). An
accurate application has been developed for calculating leaf area
density (LAD) and cumulative LAI profiles of small trees (Hosoi
and Omasa, 2006). This voxel based 3-D modeling application
is implemented in the study. This model allows the LAD and
LAI of trees, which have complex spatial distributed foliage, to
be computed by direct counting of the beam-contact frequency in
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Figure 1: (a) The tree (Cinnamomum Camphora) used in this study.

original point of the coordinate system we used.

each layer using a point-quadrat method. The non-photosynthetic
tissue has to be removed as redundancy in the application so that
the damage to the plant cannot be avoided. A computational ge-
ometry based application has been published for retrieving the ef-
fective leaf area using terrestrial laser scanner (TLS) data (Zheng
and Moskal, 2012). Due to the high sampling density of TLS,
this method can be taken as a calibration tool for airborne laser
scanning and optical sensing. PCD have been discretized into
slides and the leaf area within each one has been calculated, but
the non-photosynthetic structure still cannot be removed. Non-
photosynthetic tissue removing is a challenging issue of the laser
scanner utilized LAI estimation study, especially for the canopies
which are not dense.

As a consequence of the 3-D scanners development, the prob-
lem of high quality geometrical characteristic extraction from
dense PCD is receiving increased attention (Fabio, 2003). It is
possible to distinguish leaves from non-photosynthetic structure
(branch and trunk), if one considers their geometry pattern fea-
tures from PCD. One leaf is a patch of an infinite surface, yet
the non-photosynthetic structure could be taken as the integra-
tion of cylinder segments. Surface curvature is considered as the
bending and distortion of surface patches, which holds the po-
tential to distinguish between leaves (distorted like a hinge) and
branches (composed from cylindrical segments). Intuitively, the
branch curvature should be smaller and more regular than that
of leaves, while the curvature of leaf surfaces should be sensi-
tively changed according to the leaf bend. Removing the non-
photosynthetic structures of the canopy is thus constrained by
only geometric properties that differ from leaves, though other
issues can be overcome.

PCD can be considered as the aggregation of multivariate dis-
tributed clusters according to the object location in Cartesian space.
If the point clusters in a sub-space, a voxel, can be distinguished,
the PCD can be classified into several clusters, which hold signifi-
cance for leaf area retrieval. Leaf area calculation can be achieved
by using computer scientific libraries like Computational Geom-
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etry Algorithms Library (CGAL). For clustering the points we
choose the clustering analysis packages from R platform based
on Gaussian mixture model, which is an iterative expectation-
maximization (EM) processing method for determining maximum
likelihood via a statistical model (Reynolds, 2009). We here fo-
cus on the feasibility of applying this to PCD clustering, rather
than discussing a detailed statistical algorithm for the Gaussian
mixture model. The Gaussian mixture model is an option for han-
dling PCD clustering that can provide an unsupervised solution.
After resolving the clusters, the complexity of PCD is highly re-
duced. Leaf is considered as a fitting plane which is computed
from computational geometry algorithms. Leaf surface is recon-
structed according to the points by using triangulation algorithm,
which is a commonly employed technique of computational sci-
ence.

This study aims to investigate the feasibility for retrieving the
effective LAI from PCD, which using the combination of com-
putational geometry application and distribution-based clustering
algorithm. The data processing is as follows: first, we estimate
the PCD curvature and set the curvature threshold for filtering
the non-photosynthetic structure. Second, we discrete the filtered
PCD into voxel matrices that can hold even the largest leaf, then
cluster the PCD in each voxel according to the Gaussian mix-
ture model. Third, we reconstruct the surface of each cluster in
each voxel by using the computational geometry algorithm. The
accumulation of the entire canopy clusters area is taken as the ef-
fective leaf area of the tree, which is calculated according to the
different observation geometry. The effective LAl is finally cal-
culated which is the ratio of the effective leaf area of the canopy
and the volume from the convex hull of the entire canopy.

Five parts are presented in this paper. In the second part we in-
troduce the data collection, theoretical foundations and data pro-
cessing. Thirdly, we show some results, including the validation
experiment and retrieved effective LAI of an isolated broad leaf
tree. We discuss several issues related to the study in the fourth
part; finally a conclusion will be made.
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2. MATERIALS AND METHODOLOGY
2.1 Data Collection

A well-isolated broad leaf tree (Cinnamomum Camphora, Fig-
ure la ) was used in this study, which is located in Kyoto Uni-
versity Katsura Campus (N34°58'55.61”, E135°40'43.54"") in
Kyoto Prefecture, Japan. We set six directions around the tree
for collecting data. Raw data were assigned to an assumed co-
ordinate system, in which the original point was set to the first
station (ScanPos001). Cartesian coordinates (x, y, z) units were
in meters (m) (Figure 1b). Both vertical and horizontal scanning
intervals were set to 0.02°.

2.2 Methodology

2.2.1 Simplified Curvature Estimation: PCD give the aver-
age Cartesian or polar coordinates of the object surface patch.
The curvature of a point can therefore be estimated by consid-
ering the normals of its neighboring points. Assume there is a
point set PN which contains N points, whose element pi* is
the 3-D coordinates (x, y, z) of the Cartesian space. The amount
of the point is determined by both vertical and horizontal scan-
ning intervals. The set of neighboring points P, is determined
by the searching radius 7 centering on the query point p,, which
is Pp = {pi : |lpg — pill2 <r},(E = 1,2,...,n). A simplified
curvature ¢, of point p, is given by (Rusu, 2009):

A1

= ———— (M <X <A 1
>\1—|—/\2+)\3’(1_ 2 < A3), (D
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where \;(j = 1,2,3) is the eigenvalue given by Cov - x; =
Aj -X;, Cov is the covariance matrix of P, determined by Cov =
L5 (pi — D) (pi — b)", x; is the eigenvector of Cov. p is the
=1
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2.2.2 Gaussian Mixture Model: Voluminous points amount
and complexity are the principal property of PCD. PCD carry the
Cartesian coordinates from the patch of an object interacting with
the laser impulse by receiving objects surface echo. Points there-
fore correspond to heterogeneous distributions, like multivariate
clusters, of discrete objects within a sample space according to
their positions. Exploring constructional information is one of the
majority purposes for PCD users. We used the mclust package of
the R platform to cluster the point set observations for reducing
the complexity of the PCD. It provides functions for model-based
clustering (covariance parameterization and number of clusters
selected via Bayesian information criterion (BIC)), which gives
the maximized loglikelihood for the number of components in the
data. In general, the larger value of BIC, the stronger the evidence
for the number of clusters (Fraley et al., 2012). It attempted to it-
erate group sets of objects according to a rule stating that objects
within the same cluster were more optimized to each other than
those in other groups. The detailed algorithm explanation was
presented by the articles (Fraley and Raftery, 1998, Fraley and
Raftery, 2002).

2.2.3 Leaf Orientation Retrieving: This study assumed that
one leaf is a fitting plane retrieved from point cluster which was
obtained by mclust (see 2.2.2). We chose the principal com-
ponent analysis routine from CGAL to calculate the plane (Al-
liez et al., 2014). Suppose the plane equation we computed is:
Ax + By + Cz + D = 0. The orientation of the plane can be
calculated by:

arccos(‘L) :C>0
9, — ol
m — arccos(y=r>) 10 <07
ol 3)
= arccos(L)
or VAZ 1 B2

where ||nyll2 = VA2 + B%2 4 C?, 0, and ¢y, are the zenith
and azimuth angle of the plane normal, respectively. Leaf normal
calculation is a key step to retrieve the leaf area we discuss in fol-
lowing section.

2.2.4 Effective Leaf Area Calculation: In order to find the
geometrical boundary of the cluster, the 3-D convex hull function
of CGAL for generating the convex hull, which contained all the
points of the cluster, was selected (Hert and Schirra, 2014). As-
sume the convex hull contains m points as vertices, the leaf area
can be approximately calculated as the topological closure of the
points that vertices projected on the fitting plane which we com-
puted from section 2.2.3.

Suppose Py = {pr(zk,yr,2x) : k =1,2,...,m} are the ver-
tices projection on the fitting plane, the center p, (z+, yv, 2v) of
Py can be calculated by (2). If the points are ordered sequently,
according to the triangulation mesh function of CGAL, the leaf
area could be computed by accumulating the triangles:

S = ZSI, 4)
1=1

where s; is the triangle area constructed by p,, pr and prii1.
When k& = m, pr+1 = p1. Those points inside the closure are
skipped. The effective leaf area S* can be computed by consid-
ering the projection coefficient (Ross, 1981):

* —
S = cosrrr,S,

, (5)

CoSTLr, = cos b, cosfr + sin b, sin Oz, cos(p» — ¢L),
where r, (0, py) and ri (01, ¢r) are view direction and leaf
normal, respectively.

2.3 Data Processing

Effective leaf area retrieving algorithm was designed as follows
(Figure 2). We calculated the simplified curvature of each point,
see (1), and then defined the searching radius r (r = 4cm) ac-
cording to the average long axis of the leaves. Points whose
cq > Th (Th = 0.21) were taken as D1, which were mostly from
leaves, and points whose ¢, < T were taken as Do (Figure 3c).
In D>, there were points from leaves as well, which should be
restored to D;. Hence we detected the D5 points within a sphere
(the radius is 7> = 0.01m), which centered at each point of D;.
The point(s) in D2 located in each sphere were merged to D; as
leaf data (Figure 3d). The leaf data were voxelized with each lat-
tice size 8 X 8 X 8 cm, which could contain the maximum leaf size.
The data within each voxel were clustered according to section
2.2.2. Those clusters containing less than thirty (75 = 30) points
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Figure 2: Data processing algorithm.

were rejected due to the possibility of low reliability. The leaf
area were calculated for each cluster according to section 2.2.4,
and then the accumulated area for entire canopy was calculated.
Finally the effective LAI was computed according to proposed
6 x 6 observation directions.

3. RESULTS AND VALIDATION

Raw data points amount was over 9.7x10° (Figure 3a). After
curvature estimation (Figure 3b), 76.13% data were rejected ac-
cording to the threshold, many of them were from leaves. There-
fore, we employed the method in 2.3 to restore the excessively re-
moved points. The result of rejected data and leaf data are shown
in Figure 3c and 3d, individually. The leaf data accordingly in-
creased to 52.33% and the opposite data were 47.67%. The leaf
data were effectively restored.

The algorithm of data processing within a voxel is indicated in
Figure 4. The initial condition of the data in the voxel is shown in
Figure 4a, which is out-of-order arranged. After mclust function
(see 2.2.2) processing, points were distinguished into four clus-
ters: cl, c2, ¢3 and c4 (Figure 4b). We picked one (¢3) of them as
an example for retrieving the cluster area, red plane (Figure 4c)
was obtained by using PCA function of CGAL (see 2.2.3). First,
we generated the convex hull of this cluster by using 3-D convex
hull generation function from CGAL, then obtained the vertices
of this convex hull. Vertices were projected on the fitting plane of
the cluster and those points within the convex hull were removed.
Finally the area of this cluster was calculated by accumulating
the triangles which are constructed from each two vertices and

the center (red point in Figure 4d). The volume of this canopy
was calculated as V' = 33.918 m® from 3-D convex hull as well.
For the light travel length we assumed the canopy was contained
by a sphere, according the maximum and minimum coordinates
of the PCD, we calculated the effective LAI by:

Dn

ELAI = —

VvV

D Ax + Ay + Az7

3
I J )
=33 5 ®)
x=1w=1
Ax = Imax — Lmin,

Ay = Ymax — Ymin,

AZ — Zmax — Zmin,

where D is the average light traveling distance, 7 is the effective
leaf area of the entire canopy, X is the index of the voxel (from
1 to I), w is the index of the cluster within the xth voxel (from
1to J), S*XW is the effective area of each cluster within a voxel,
Az =4.64m, Ay = 4.61 m, Az = 4.79 m, respectively.

The effective LAI of the tree was calculated from 6x6 assumed
observation directions (Table 1). It was indicated that our calcu-
lation can precisely provide effective LAI estimation according
to the variation of the observation directions. Due to the lack of
the resource we cannot accurately measure the total leaf area of
the tree we selected. We assessed the application using an indoor
plant (Figure 5a) and marked down nine well-isolated leaves be-
fore this plant was scanned (Figure 5b). We manually measured
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Figure 3: (a) The raw point cloud data of the tree with scale bar 1 m. (b) The curvature estimation of the raw data, scale bar shows
in 0.9 m, color various according to the curvature, which ranged from 0 to 0.33. (c) The data (D2) contain branches after curvature
filtering. The scale bar shows in 0.5 m. (d) Leaf data after merging leaf points from Ds and data D1 ; the scale bar shows in 0.5 m (see

section 2.3).

the area of the leaves to compare with the calculation results. A
high correlation coefficient up to 98.28% was achieved (Figure
5¢).

4. DISCUSSION

Curvature is a common parameter during PCD processing in com-
putational geometry. Different from the Gaussian curvature and
mean curvature, the simplified curvature we utilized in this study

is the approximation of the change of curvature in a neighbor-
hood P, centered at pg, and it is invariant under rescaling. It can
be computed conveniently as well. Small values indicate that the
neighborhood points P,, are on the plane tangent to the surface
(Rusu, 2009). This simplified curvature was an effective parame-
ter for identifying whether the point was on trunk or leaf by using
a properly defined search radius r. In our study we defined the
searching radius as the average long axis of the leaves. However,
we did not discuss how the searching radius affects the curva-
ture. Different searching radius settings would definitely change
the point normal result, which was determined by the surface
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Figure 4: (a) Point data with in a voxel. (b) After mclust clustering, the data were indicated into four subsets (c/, ¢2, ¢3, c¢4) each
symbol indicates one cluster. (c) One cluster (c3) from (b), red plane is the fitting plane retrieved from PCA algorithm. (d) After CGAL
convex hull generation, we obtain the vertices of the volume of the cluster, then project these vertices on PCA fitting plane of this
cluster and remove those points within the closure. Finally the area of this cluster is calculated by accumulating the triangles which

construct from each two vertices and the center (red point).

complexity of the object. Smaller searching radius corresponded
higher curvature fluctuation, and bigger searching radius causes
that the distinction of leaf points and non-photosynthetic tissue
points was not obvious. A future study for investigating the op-
timized searching radius setting method should be attempted so
that to develop this application into an unsupervised function.

Our clustering strategy was to first discrete the PCD into voxel
matrices, for reducing the computational complexity of the PCD.
The voxel size was set according to the maximum single-leaf size

observed in the canopy. Other applications for determining the
voxel size should be considered in line with different leaf pat-
terns. We then clustered the points within each voxel using Gaus-
sian mixture model. Estivill-Castro has pointed out that one can-
not precisely define clusters, so the clustering results almost cer-
tainly contain errors (Estivill-Castro, 2002). They showed weak
correlations and the amount of these points were not big. There-
fore we remove those clusters which held less than thirty points.
It caused the loss of leaf area we retrieved from PCD, but the
reducing area of thirty points is very small according to the scan-
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Figure 5: (a) The picture of the indoor plant for validation. (b) PCD of the plant, different color shows components of the plant. (c)
Comparison between measurements and calculated each leaf area of the plant, which have a correlation coefficient of 98.28%.

Effective LAI (m?/m?)
A Azimuth(®)
Zenith(") 5 30 60 90 120 | 150
0 2929 | 2.929 | 2.929 | 2.929 | 2.929 | 2.929
15 2.929 | 2.985 | 3.013 | 3.008 | 2.980 | 2.966
30 2.938 | 3.046 | 3.093 | 3.069 | 2.994 | 2.980
45 2.976 | 3.055 | 3.102 | 3.065 | 2.966 | 2.971
60 3.088 | 3.018 | 3.041 | 3.022 | 2.966 | 2.994
75 3177 | 2.990 | 2.938 | 3.027 | 3.027 | 3.083

Table 1: The effective LAT (m?/m?) result which is calculated from 6 x 6 assumed observation directions.

ning resolution in our case. However, when the scanning interval
and range are big the reducing of the leaf points should be cau-
tiously considered. Our validation result showed a correlation
coefficient of 98.28%, indicating that the indoor experiment pre-
sented high accuracy. Yet with the condition of wild plant and
forest, the application should be demonstrated in several condi-
tions. According to the pattern of the canopy in this study, which
was approximately taken as a sphere, therefore the light travel
distance was accordingly a constant in this case, for different con-

ditions the light travel distance should be calculated individually.

This study adapted dense PCD with millimeter resolution, per-
mitting reliable scanned points Cartesian coordinates. There should
be at least three directional observations under similar conditions
so that the whole canopy can be covered, with minimal distur-
bance from wind and beam absorption by the canopy. The PCD
should be calibrated with geo-references for calculating the ac-
tual relative angle between leaf normal and observation angles

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-1-7-23-2014 29



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1I-7, 2014
ISPRS Technical Commission VII Symposium, 29 September — 2 October 2014, Istanbul, Turkey

for computing the effective leaf area.

5. CONCLUSION

This study retrieved effective LAI, a key canopy structure pa-
rameter, using terrestrial scanned PCD. It is an important fac-
tor in vegetation structural investigations and canopy radiative
transfer simulations. In contrast to previous studies, we inno-
vatively utilized simplified curvature as the threshold for filter-
ing the non-photosynthetic components. PCD were clustered by
mclust, which is a Gaussian mixture model based package of the
R platform. An important aspect of this method was the manipu-
lation of computational geometry algorithm for curvature estima-
tion and effective leaf area retrieving. Good agreements between
measurement and our calculation were obtained by conducting
an indoor experiment of a plant. The correlation coefficient was
in the range of 98.28%. Due to the sufficient accuracy of TLS,
the results of this study could be taken as a validation of optical
sensor based LAI estimation. In future research, we will attempt
to apply our curvature-cluster application on investigating forest
effective LAI. We believe that laser scanning based phytomet-
ric techniques have more advantages than many optical sensor
based applications. With the development of laser scanning tech-
niques, the efficiency and accuracy of TLS will be improved; and
forest parameterization and investigation techniques will be sub-
stantially improved as well.
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