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ABSTRACT: 
 
This study employed a hybrid system for the combination of pixel-based (PB) and object-oriented (OO) Support Vector Machines 
(SVMs) based on Bayesian Probability Theory (BPT) for improved land cover classification. A set of uncorrelated feature attributes 
have been generated from a one-meter IKONOS satellite image. Four different SVMs kernels were compared and tested to classify 
buildings, trees, roads and ground from satellite image and the generated attributes. The kernels used include: linear, polynomial, 
radial basis function (RBF), and sigmoid. PB and OO SVMs have been applied to classify the image. BPT was then applied for 
combining the class memberships from the PB and OO classifiers. Accuracy assessment was carried out using reference data sets 
derived from the one-meter IKONOS image. The outcomes demonstrate that the OO method has achieved an overall kappa 
coefficient of 0.8286, compared with 0.6327 that was derived from the conventional PB method. The improvement in overall kappa 
obtained from the combined system was 0.0608 over the OO SVMs. 
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1. INTRODUCTION 

Research on land use/land cover classification from remotely 
sensed data has been fuelled in recent years by the increasing 
use of geographic information systems (GIS), and the need for 
data acquisition and updates for GIS. Different classification 
methods have been used for classification of satellite data by 
researchers. In addition to current PB classification methods, 
OO techniques also offer the suitable analyses to classify 
satellite data.  
 
Advanced per-pixel classification algorithms include, but are 
not limited to, boosting and/or bagging-based classification and 
regression trees (Lawrence et al., 2004; Baker et al., 2006) and 
Random Forest (RF) algorithm (Lawrence et al., 2006). The PB 
classification is a current method because satellite data sets are 
acquired digitally on the basis of pixel units. PB classifiers are 
based exclusively on the pixel digital numbers (Shataee et al., 
2004). Traditional PB classification is limited because of the 
following reasons: image pixels are not true geographical 
objects; PB classification largely neglects the spatial 
information within an object which is an important source of 
information to image classification; and the increased 
variability implicit within high spatial resolution imagery 
confuses traditional PB classifiers resulting in lower 
classification accuracies (Hay and Castilla, 2006).  
 
On the other hand, OO classification provides new possibilities 
for multi-resolution segmentation of images (Shataee et al., 
2004). In OO image analysis the basic processing units are not 
only individual pixels but also image objects or segments. The 
classifiers in OO image analysis are soft classifiers, which use 
‘membership’ to express an object’s assignment to a defined 
class. The membership value lies between 0.0 and 1.0, where 
0.0 expresses absolute improbability and 1.0 expresses a 

complete assignment to a class. One advantage of these soft 
classifiers lies in their possibility to express uncertainties about 
the class descriptions. Despite the fact that results derived from 
these approaches are of considerable interest to researchers, 
segmentation is not an easy work. The object-based software 
eCognition is available, but requires adjusting the segmentation 
parameters according to the situation, but this is hardly an 
automated solution. In this context, a traditional approach based 
on pixels with models derived from advanced artificial 
intelligence techniques can achieve good classification results 
(Garcia-Gutierreza et al., 2009). Blaschke (2010) gave an 
overview of the development of object based methods.   
   
Some studies have utilized advanced classification algorithms 
within OO analysis. A decision tree classification was used in 
an object-based analysis of IKONIS imagery for forest 
inventories (Chubey et al., 2006). Hay and Castilla (2006) 
applied Object-based Image Analysis for partitioning remotely 
sensed imagery into meaningful image-objects, and assessing 
their characteristics through spatial, spectral and temporal 
scales. Kamagata et al. (2006) applied an OO classifier to HR 
multi-spectral (MS) imagery (QuickBird and Ikonos) with 
improved results over traditional techniques. The nearest 
neighbor (NN) classification that utilizes fuzzy logic and a 
membership function-based classification was also applied 
(Navulur, 2007). Li Haitao et al. (2007) presented a new OO 
land cover classification method based on SVMs by fusing 
spectral and textural information of HR aerial imagery and a 
lidar derived Digital Surface Model (DSM) in urban areas. 
Bruce (2008) summarized classification accuracies derived 
from: six banded Landsat TM data; MS and panchromatic 
QuickBird satellite imagery; and 0.15m MS aerial imagery to 
show how, for at least images exhibiting low spectral 
dimensionality, OO techniques are superior to the traditional 
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PB methods, but still inferior to human interpretation. Myint et 
al. (2011) employed five different classification procedures 
based on the OO paradigm that separates spatially and 
spectrally similar pixels at different scales. The classifiers used 
to assign land cover types to segmented objects in the study 
include membership functions and the nearest neighbor 
classifier. The object-based classifier achieved a high overall 
accuracy (90.40%), whereas the most commonly used decision 
rule, namely maximum likelihood classifier, produced a lower 
overall accuracy (67.60%).  
 
The combined approach using per-pixel and OO classification 
methods has proved useful in the analysis of HR satellite data, 
since it has resulted in higher per class accuracy (Blaschke et 
al., 2010). Hirose et al. (2004) described a hybrid analysis 
method combining OO and PB image classifiers for vegetation 
mapping using IKONOS. Lei et al. (2008) presented a hybrid 
classifier combining an expert system with an OO approach, 
which provides additional information for classification and 
improved accuracy. However, setting up the rules for the expert 
system is complicated and time consumed, and requires some 
experience in defining the land cover features and their spatial 
distribution. Bhaskaran et al. (2010) described an approach 
using both per-pixel and object-based classification methods for 
mapping urban features from HR satellite data over New York 
City. Whilst the per-pixel approach produced reasonable overall 
accuracy, the per-class accuracies registered low user's 
accuracy. The use of an OO classification method resulted in 
improved classification accuracies. Li et al. (2013) proposed a 
hybrid method combining PB and OO methods and its 
application in Hungary using the Chinese HJ-1 satellite images. 
Classification results showed that the hybrid method 
outperformed OO method, with an overall accuracy of 90.53%, 
compared with the overall accuracy of 77.53% for maximum 
likelihood classifier at the object level.  
 
Amongst other classification methods, SVMs classification is a 
theoretically superior machine learning methodology for the 
classification of highly dimensional datasets and has been found 
competitive with the best machine learning algorithms. In the 
past, SVMs were only tested and evaluated as PB image 
classifiers with very good results (Gualtieri and Cromp 1999, 
Brown et al 2000, Huang et al 2002, Foody and Mathur 2004, 
Melgani and Bruzzone 2004). SVMs were compared to other 
classification methods, such as Neural Networks, Nearest 
Neighbor, Maximum Likelihood and Decision Tree classifiers 
for remote sensing imagery and have surpassed all of them in 
robustness and accuracy (Huang et al 2002, Foody and Mathur 
2004). SVMs have also been evaluated as OO image classifiers 
as a modern computationally intelligent method (Li Haitao et 
al., 2007). The major motivation of this work is to establish a 
framework for combining PB and OO SVMs based on the BPT. 
After describing the study area and data sources in the 
following section, this paper is organized as follows. Section 3 
describes the classification methods used; Section 4 presents 
and evaluates the results which are summarized in Section 5. 
 

2. STUDY AREAS AND DATA SOURCES 

2.1 Multispectral satellite image  

In order to demonstrate the capability of the hybrid system, the 
area of study of approximately one Km2 covers Roxi Square in 
Cairo city. One-meter spatial resolution and pansharpened 
IKONOS images over the area of study were collected in April 
17, 2010 and supplied in a TIFF digital format. It is a largely 

dense urban area which includes residential buildings, large 
buildings, a network of main and local roads, open and green 
areas as well as trees as shown in figure 1.   
 

 
Figure 1. A one-meter IKONOS Image over the test area. 

 
2.2 Reference data 

In order to evaluate the accuracy of the classifications 
undertaken in this research, reference data were captured by 
digitizing buildings, trees, roads and ground in the image as 
shown in figure 2. Class “ground” mainly corresponds to 
parking lots and bare fields.  All recognizable features 
independent of their size were digitized. Adjacent buildings that 
were joined but obviously separated were digitized as 
individual buildings; otherwise, they were merged into one 
polygon. Larger areas covered by trees were digitized as one 
polygon.  
 

 
Figure 2. Reference data used for the research. Red: buildings, 

green: trees, black: roads and grey: ground. 
 

2.3 Feature attributes  

Feature attributes are necessary to compensate for some 
common problems associated with high resolution image data 
such as: shadows caused by tall buildings or trees; and the 
spectral variability within the same land-cover class (Lu and 
Weng, 2007). In conjunction with spectral information, texture 
and shape information of image objects provide useful 
information for detailed land cover classification (Hirose et al., 
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2004). This research was carried out using a set of attributes 
calculated for predefined segments or single pixels and 
presented as input data for the classifiers to help define classes 
when performing the classification. A detailed description of 
the formulas for calculating attributes can be found in Russ 
(2002). Some attributes are more useful when differentiating 
objects and classification results may not be as accurate when 
all attributes are used, since the irrelevant attributes could 
introduce noise into the results. The most useful attributes for 
the classification have been statistically determined. The 
underlying logic is based on Yang (2007). Table 1 shows the 
attributes and the classifier for which they have been selected. 
Although spatial information is remarkably useful for OO 
classifiers, how to effectively use it in PB classification remains 
a research topic. This is because PB classification is conducted 
based on individual pixels, instead of the objects. On the other 
hand, spectral attributes, color space and band ratio attributes 
were not applied in the case of PB SVMs in order to reduce the 
data redundancy that can greatly influence the performance of 
PB SVMs. 
  
Table 1. The full set of the possible attributes. √ and x indicate 

whether or not respectively the attribute has been 
selected for the classification process. 

 Group Attribute PB  OO 
Compactness  x  √ 

Convexity  x  √ 
Elongation  x  √ 

Main direction  x  √ 
Major axis 

length x  √ 

Minor axis 
length x  √ 

Number of 
holes x  √ 

Spatial  
Attributes 

Hole solid 
ratio x  √ 

Minimum x  √ bands 
1,2 Spectral  

Attributes Standard 
deviation x  √ bands 

1,2,3 

Range √ 
band1 

 √ 
band1 

Mean √ 
band1 

 √ 
band1 

Variance   √ 

Texture  
Attributes 

Entropy √ 
band3 

 x 

Hue x  √ 
Saturation x  √ 

Color Space 
and  

Band Ratio 
Attributes Intensity x  √ 

 
 
 
 
 
 
 
 
 
 

3. METHODOLOGY 

The fusion process of the PB and OO classifications was 
implemented in several stages as shown in Figure 3: 
 

 
Figure 3. The Hybrid Classification Workflow. 

 
3.1 Pixel-based Classification 

The PB classification process was implemented in several 
stages as follow:  
 
Training Datasets 
The overall objective of the creation of training datasets is to 
assemble a set of statistics that describe the spectral response 
patterns for each land cover type to be classified in the image 
(Lillesand and Kiefer, 2004). The minimum number of pixels 
required for a signature is the number of bands plus one (N+1), 
which is the necessary condition for the covariance matrix to be 
positive definite (Schowengerdt, 2001). The training data used 
are sets of manually classified samples.  Polygons of 
approximately equal areas, for each land cover class, buildings, 
trees, roads and ground, were digitized from the image to 
generate the training data. The positions of the polygons were 
selected carefully near class centers to be representative and to 
capture changes in the spectral variability of each class. As 
well, it was necessary to avoid the effect of between-class local 
texture variability on the pixels near class boundaries that 
causes many of these pixels to be placed in an incorrect 
category (Ferro and Warner, 2002). Figure 4 shows the 
locations of the training data sets used for the experiments.  
 
 Evaluation of signatures: 
The created signatures are compared in a box plot illustrating 
minimum and maximum reflectance values corresponding to 
the signatures of the features used for training, as shown in 
Figure 5. The box plot option shows completely separable 
minimum/maximum boxes. 
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Figure 4. Training data for Buildings, Ground, Roads and Trees 

classes. 
 

 
Figure 5. Minimum and maximum reflectance values for 

signatures of training features of buildings, ground, 
roads and trees. 

 
Image classification 
SVM is a classification system derived from statistical learning 
theory (Vapnik, 1979). It separates the classes with a decision 
surface that maximizes the margin between the classes. The 
surface is often called the optimal hyperplane, and the data 
points closest to the hyperplane are called support vectors. As a 
consequence they generalize well and often outperform other 
algorithms in terms of classification accuracies. Furthermore, 
the misclassification errors are minimized by maximizing the 
margin between the data points and the decision boundary. 
Since the One-Against-One (1A1) technique usually results in a 
larger number of binary SVMs and then in subsequently 
intensive computations, the One-Against-All (1AA) technique 
was used to solve for the binary classification problem that 
exists with the SVMs. The SVMs classifier provides four types 
of kernels: linear, polynomial, radial basis function (RBF), and 
sigmoid.  
 
In remote sensing applications the RBF kernel has proved to be 
effective with reasonable processing times (Van der Linden et 
al., 2009). The RBF kernel nonlinearly maps samples into a 
higher dimensional space. Unlike the linear kernel, which is a 
special case of the Gaussian kernel, a Gaussian RBF function 
can handle more complex and nonlinear class distributions. In 
addition, the sigmoid kernel behaves like RBF for certain 
parameters (Lin and Lin, 2003). On the other hand, the 
polynomial kernel requires more parameters and has more 
numerical difficulties than the RBF kernel (Hsu et al., 2009). 

However, all of those kernels have been tested and compared in 
this research in order to form a robust decision about the 
behavior of SVMs in the case of HR satellite imagery. Table 2 
shows the mathematical representation of each kernel: 

Table 2. The SVMs kernels. 
 

Linear K (xi, xj) = xi . xj  
Polynomial K (xi, xj) = ((xi . xj) + r)d, γ > 0  
RBF K (xi, xj) = exp(-γ||xi - xj||2), γ > 0  
Sigmoid  K (xi, xj) = tanh(γ (xi . xj) + r)  

 
Where:  
γ :the gamma term in the kernel function for all kernel types 
except linear. 
d :the polynomial degree term in the kernel function for the 
polynomial kernel. 
r :the bias term in the kernel function for the polynomial and 
sigmoid kernels. 
γ, d and r : are user-controlled parameters, as their correct 
definition significantly increases the accuracy of the SVM 
solution. 
 
A 10-fold cross-validation was applied to choose the almost 
best parameter. The cross-validation can prevent overfitting 
problems and results in better accuracy (Hsu et al., 2009). On 
the other hand, a second order polynomial kernel was applied 
for the current nonlinear problem. Table 3 shows kernels 
parameters used for the experiments. 
  
Table 3. The kernels parameters used for the classification 

process. 
 

Kernel γ d r 
Linear x x x 

Polynomial 0.03 2 1 
RBF 0.03 x 1 

Sigmoid 0.03 x 1 
 
The sequential minimal optimization (SMO) algorithm, with a 
faster speed and much smaller memory requirements has been 
used for the experiments for training the SVMs (Platt, 1999). 
SMO breaks the large quadratic programming optimization 
problem into a series of smallest possible QP ones in order to 
avoid time-consuming.  
 
3.2 Object-based Classification 

The OO SVM classification process was implemented in 
several stages as follows:  
 
Image Segmentation 
Segmentation is the process of partitioning an image into 
segments by grouping neighboring pixels with similar feature 
values (brightness, texture, color, etc.). These segments ideally 
correspond to real-world objects. Each segment is assigned the 
mean spectral values of all the pixels that belong to that region. 
An edge-based segmentation algorithm was employed that is 
very fast and only requires one input parameter (Scale Level). 
By suppressing weak edges to different levels, the algorithm 
can yield multi-scale segmentation results from finer to coarser 
segmentation. The optimum segmentation scale that delineates 
the boundaries of features as well as possible was iteratively 
chosen to be 57 and the results are shown in figure 6 (a). 
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Merging Segments  
Merging is a step used to aggregate small segments within 
larger ones where over-segmentation may be a problem. The 
Merge Level that delineates the boundaries of features as well 
as possible was iteratively chosen to be 27. The Full Lambda-
Schedule algorithm created by Robinson et al. (2002) was 
employed. The algorithm iteratively merges adjacent segments 
based on a combination of spectral and spatial information. 
Merging proceeds if the algorithm finds a pair of adjacent 
regions, i and j, such that the merging cost ti,j is less than a 
defined threshold lambda value: 
 

)),((

||||.
||||
||.|| 2

,
ji

ji
ii

ii

ji oolength

uu
oo
oo

t
∂

−
+

=          (1) 

Where 
Oi : is region i of the image 
|Oi| : is the area of region i 
ui : is the average value in region i 
uj : is the average value in region j 
||ui - uj||: is the Euclidean distance between the spectral values of 
regions i and j. 
length (∂(Oi, Oj)): the length of the common boundary of Oi and 
Oj. 
 
Segmentation results were then refined using another merging 
method called thresholding. Thresholding is a raster operation 
that works with the first band of the image to group adjacent 
segments based on their brightness value.  The lower and upper 
limits of the threshold were defined to be 100 and 905 
respectively. Pixel values below the low threshold and above 
the high threshold are assigned a value of 0, and values between 
the thresholds are assigned a value of 255. As a result, a new 
masked image was generated. The black area in the masked 
image represents one big region, while the white areas represent 
other distinct regions. The masked image was then segmented 
and each distinct region was assigned a unique identifier as 
shown in figure 6 (b). The identifiers are then used in 
computing attributes.  

 

     
Figure 6. (a) The optimum segmented image at the scale of 57. 

(b) Merging adjacent segments based on their 
brightness values. 

 
Supervised Classification  
Supervised classification is the process of using training data  to 
assign objects of unknown identity to one or more known 
features. A variety of different sizes and colors of objects that 
represent features of interest has been selected. The more 
features and training samples selected, the better the results 
from supervised classification. However, selecting an 
overwhelming number of training samples will cause poor 
performance during classification and when previewing 

classification results. SVMs have been applied to classify the 
image with the same set of kernel parameters mentioned in 
table 3. SVM classification output is the decision values of each 
pixel for each class, which are used for probability estimates. 
The probability values represent true probability in the range of 
0 to 1, and the sum of these values for each pixel equals 1. The 
probability images for PB and OO SVMs have been used as 
input data for the BPT based hybrid system. 
 
3.3 Bayesian Probability Theory based fusion 

BPT is concerned with establishing the probability that an 
entity belongs to any of a number of different sets (classes or 
states). These are called hypotheses in the typical language of 
Bayes. BPT evaluates the probability that each hypothesis is 
true given the information contained in the prior probability and 
evidence images. When complete information is available or 
assumed, the primary tool for the evaluation of the relationship 
between the indirect evidence and the decision set is BPT. BPT 
is an extension of Classical Probability theory which allows 
combining new evidence about any hypothesis along with prior 
knowledge to arrive at an estimate of the likelihood that the 
hypothesis is true. The basis for this is Bayes' Theorem (Lee et 
al., 1987): 

∑
=

i ii hphep
hphepehp

)().|(
)().|()|(         (2) 

 
p(h|e): the probability of the hypothesis being true given the 

evidence (posterior probability). 
p(e|h): the probability of finding that evidence given the 

hypothesis being true. 
p(h) : the probability of the hypothesis being true regardless of 

the evidence (prior probability).  
 
3.4 Accuracy Assessment 

Accuracy assessments of the proposed system were undertaken 
using confusion matrices and Kappa statistics. The Kappa Index 
of Agreement (KIA) is a statistical measure adapted for 
accuracy assessment in RS fields by Congalton and Read 
(1983). KIA is a means to test two images, if their differences 
are due to 'chance' or 'real disagreement'. It is often used to 
check for accuracy of classified satellite images versus some 
'real' ground-truth data. 
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r:  number of row in crossclassification table. 
xii :number of combinations along the diagonal. 
xi+ : total observations in row i. 
x+i : total observations in column i. 
N : total number of cells. 
 
For the per-category-KAPPA, the following algorithm was 
introduced by Rosenfield and Fitzpatrick-Lins (1986): 

iii

iiii
i PPP

PPPk
+++

++

−
−

=           (4) 

pii :proportion of units agreeing in row i / column i. 
pi+ :proportion of units for expected chance agreement in row i. 
p+i :proportion of units for expected chance agreement in 

column i. 

a b
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4. RESULTS AND ANALYSIS 

Figure 7 shows a typical example of the hybrid system output 
which is the decision values of each pixel for each class. The 
probability values have been used later to create a new 
classification image without having to recalculate the entire 
classification. The membership values from all the land covers 
were compared and the class with the highest membership value 
was assigned to the pixel label. Figure 8 is a typical example of 
the classification results. Red: buildings, green: trees, black: 
roads and grey: ground. 
 

   
 

   

 
Figure 7. A typical example showing the membership values of 

the hybrid system. (a) Buildings, (b) Trees, (c) Roads, 
(d) Ground classes.  

 

   
 

   
Figure 8. A typical example showing the classification results. 

(a) The MS satellite image, (b) The PB/RBF classified 
image, (c) The OO/RBF classified image, (d) The 
BPT/RBF classified image.   

4.1 Overall Kappa 

Before incorporating the PP and OO SVMs into the hybrid 
system, the four SVMs kernels were tested and compared in 
terms of overall Kappa to select the kernel with the best 
performance as a representative of SVMs. In the case of PB 
SVMs, the overall Kappa of individual Kernels, based on the 
reference data, are given in Table 4. The RBF kernel performed 
the best with 0.6327 overall Kappa, followed by the Sigmoid 
and polynomial kernels with 0.6160 and 0.6031 overall Kappa 
respectively. The linear kernel performed the worst with overall 
Kappa of 0.5985. A closer examination of the PB results reveals 
that the kappa coefficient is relatively low, indicating the PB 
method is unsatisfactory for classifying remotely sensed images 
if non-spectral data, such as lidar data, is not incorporated into a 
classification procedure. Also, in the case of OO SVMs, the 
RBF kernel performed the best with 0.8286 overall Kappa, 
followed by the Sigmoid and polynomial kernels with 0.7470 
and 0.7149 overall Kappa respectively. The linear kernel 
performed the worst with overall Kappa of 0.7020. The 
improvement in overall Kappa achieved by the combination of 
PB and OO classifications compared with the individual 
classifiers, is also shown in Table 4. This improvement in the 
overall kappa is 0.0608 compared that obtained by the OO 
SVMs.  

Table 4. Performance evaluation of single classifiers and hybrid 
system. 

 

Classifier Kernel Overall 
Kappa 

Linear 0.5985 
Polynomial 0.6031 

Sigmoid 0.6160 
PB 

SVMs 
RBF 0.6327 

Linear 0.7020 
Polynomial 0.7149 

Sigmoid 0.7470 
OO 

SVMs 
RBF 0.8286 

Hybrid 
System RBF 0.8894 

 
These results support those of Li et al. (2013) who conclude 
that the hybrid method outperformed OO method, with an 
overall accuracy of 90.53%, compared with the overall 
accuracy of 77.53% for maximum likelihood classifier at 
the object level. 
 
4.2 Class-Specific Accuracies 

An assessment of the KIA confirms that the hybrid system 
performed the best in most cases as shown in table 5. Most of 
the class-accuracies are improved by the Bayes fusion. Whereas 
the application of PB and OO SVMs resulted in average KIA of 
0.6150 and 0.7755 respectively, the application of Bayes fusion 
resulted in average KIA of 0.9153. 
 
Another advantage of the Bayes fusion is that the achieved 
errors are less variable. Whereas the application of SVMs 
resulted in standard deviation of 0.1281 and 0.0867, for KIA, in 
case of PB and OO respectively, the application of Bayes fusion 
resulted in a SD of 0.0769. Thus it meets the requirement of 
Anderson et al., (1976) that the accuracy of interpretation for 
the different categories should be about equal.  
 

a b

c d

a b

c d
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Table 5. Class-Specific Accuracies. B: buildings, T: trees, R: 
roads and G: ground. 

KIA Classifier Kernel B T R G 
Linear 0.7308 0.7687 0.3768 0.6362 

Polynomial 0.5449 0.7897 0.4260 0.6608 
Sigmoid 0.5357 0.8226 0.3459 0.7608 

PB 
SVMs 

RBF 0.6412 0.5310 0.4776 0.7910 
Linear 1.0000 0.9556 0.3504 0.8257 

Polynomial 0.6968 0.8571 0.6162 0.5902 
Sigmoid 1.0000 0.6730 0.6231 0.7330 

OO 
SVMs 

RBF 0.6925 0.7943 1.0000 1.0000 
Hybrid 
System RBF 0.8045 0.8567 1.0000 1.0000 

 
Finally, it is worth noting that the classification accuracy for the 
land cover classes of buildings and trees using RBF kernel is 
lower compared to those using linear and sigmoid kernels. 
Under such an observation, if a particular class is very 
important, kernels should be tested first to select the best 
kernels for that class before applying the Bayesian probability 
based-fusion. 
 

5. CONCLUSION 

In this paper, a powerful hybrid system to combine PB and OO 
SVMs classifiers based on BPT has been applied. A set of 
uncorrelated feature attributes have been generated from a one-
meter IKONOS satellite image. Four different SVMs kernels 
were compared and tested to classify buildings, trees, roads and 
ground from satellite image and the generated attributes. The 
results show that the OO method has achieved an overall kappa 
coefficient of 0.8286, compared with 0.6327 that was derived 
from the conventional PB method. The improvement in overall 
kappa obtained from the combined system based was 0.0608 
over the OO SVMs. As well, the fused system also performed 
best in terms of per-class accuracies. Most of the class-
accuracies were improved by the Bayes fusion. Whereas the 
application of PB and OO SVMs resulted in average KIA of 
0.6150 and 0.7755 respectively, the application of Bayes fusion 
resulted in average KIA of 0.9153. Another advantage of the 
Bayes fusion is that the achieved errors are less variable. The 
results in this paper demonstrate the overall advantages of the 
proposed fusion system for combining pixel-based and object-
oriented classifiers.  
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