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ABSTRACT: 

 

Abandoned mine sites pose the potential threat of the heavy metal pollution spread through streams and via runoff leading to 

contamination of soil and water in their surrounding areas. Regular monitoring of these areas is critical to minimise impacts on water 

resources, flora and fauna. Conventional ground based monitoring is expensive and sometimes impractical; spectroscopic methods 

have been emerged as a reliable alternative for this purpose. In this study, the capabilities of the spectroscopy method were examined 

for modelling soil contamination from around the abandoned silver-zinc mine located at Yerranderie, NSW Australia. The diagnostic 

characteristics of the original reflectance data were compared with models derived from first and second derivatives of the 

reflectance data. The results indicate that the models derived from the first derivative of the reflectance data estimate heavy metals 

significantly more accurately than model derived from the original reflectance. It was also found in this study that there is no need to 

use second derivative for modelling heavy metal soil contamination. Finally, the results indicate that estimates were of greater 

accuracy for arsenic and lead compared to other heavy metals, while the estimation for silver was found to be the most erroneous.     

 

                                                                 

*  Corresponding author 

1. INTRODUCTION 

It is recognised that heavy metals, especially lead, cadmium, 

mercury, and arsenic can cause severe damage to human health, 

e.g. cancer, lung damage, and neurotoxic effects (Järup, 2003). 

Significant exposure to humans and ecosystems may occur 

when heavy metals contaminate air, water, and soil. Many 

different sources may lead to heavy metal contamination of the 

soil among which derelict mines can be one of the most 

substantial if not properly remediated. Therefore, it is important 

to regularly monitor the areas surrounding the derelict mine 

sites, especially those through which the runoff and streams 

flow to feed the lakes and reservoirs which in turn could be a 

source of drinking water.  

 

The traditional method which is used for detecting the 

distribution of the heavy metals in soil, involves raster sampling 

and laboratory analysis which is both time consuming and 

expensive for a large area (Kemper and Sommer, 2002; Ren et 

al., 2009). Development of spectroscopic instruments provides 

an alternative to these conventional monitoring methods of the 

soil heavy metal contamination. However, direct identification 

of the heavy metals as inorganic contaminants of the soil 

through spectroscopy is challenging since they usually occur in 

low concentration (10000 mg/kg dry soil) and they lack unique 

absorption features in the visible and near infrared wavelength 

region (Schwartz et al., 2011). Although pure metals do not 

have absorption features in the visible/near infrared (VNIR), 

and short-wavelength infrared (SWIR), their combinations with 

organic matter as well as their association with hydroxides and 

carbonates  could assist indirect identification of heavy metals 

(Malley and Williams, 1997). Success in establishing a robust 

model between soil contamination and ground based spectral 

characterisation could form a basis for the development of a site 

specific spectral library that could then be used to map a larger 

area through satellite based sensors. After measuring the spectra 

of the soil samples and prior to the modelling phase, spectral 

pre-processing techniques are utilised to remove the possible 

noise from the collected spectra (Nicolaï et al., 2007). Among 

different pre-processing methods, derivative transformations are 

commonly used to remove the baseline effects and superposed 

peaks. While some studies have reported the benefits of the 

estimation derived from applying derivative transformations on 

the original reflectance (Malley and Williams, 1997; Kemper 

and Sommer, 2002; Butkutë, 2005), this may vary from one 

case to another. For example, Wu et al. (2005) found inferior 

accuracy of the estimation of soil mercury contamination 

through second derivative transformation compared to the use 

of the original reflectance. Therefore, further research is 

required to examine the capability of the transformed 

reflectance against the original reflectance for quantifying the 

soil heavy metals. 

 

The Blue Mountains National Park (BMNP) part of the Greater 

Blue Mountains World Heritage Area (GBMWHA) in the State 

of New South Wales, Australia, has relatively pristine 

ecosystems. However, the area has had a history of mining 

activities that commenced more than a century ago and in some 

cases continued into the 1990s (REF). Some of these mining 

activities in the BMNP have left a legacy of heavy metal 

contamination around abandoned mines due to inadequate 

remedial measures (REF). Spread of these fugitive metals may 

impact surrounding watercourses and soil. Considering the 

ecological sensitivity of the area, relatively few studies have 

been conducted to date. Harrison et al. (2003) studied the 

distribution of pollutants from the derelict Yerranderie silver-

lead-zinc mine site (abandoned since the late 1920s) mine in 

sediments from the nearby Tonalli River. The study found that 
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the metal concentrations in the areas closer to the derelict mine 

site were up to 400 times higher than the accepted level and 

decreased sharply with distance from the mine. Wright (2006) 

investigated the pollution from the Canyon coalmine (closed in 

1997) into the Grose River system. He found 80 times higher 

levels of zinc above background in some parts of the river 

where runoff occurs from areas surrounding the zinc rich 

coalmine. These findings have generated serious concerns about 

the remediation of old mines in the area. In particular, the 

impacts of heavy metal contamination in soil and vegetation 

have not been explored adequately for this area. The 

GBMWHA has rough terrain making areas inaccessible for 

ground-based measurements. Accordingly, development of 

remote sensing monitoring techniques for this area should assist 

management of the area’s abandoned mine sites.     

 

This study has focussed on the former Yerranderie silver-lead-

zinc mine and has examined the performance of ground-based 

spectroscopic data to identify a suitable dataset for quantifying 

the heavy metal contents of the soil in the vicinity of the derelict 

mine site. For this purpose the main contaminants in the soil 

samples were measured by chemical analysis. They were then 

compared with spectral measurements made in the laboratory. 

The original reflectance and its first and second derivatives 

were modelled to estimate heavy metals.  

 

2. STUDY AREA AND FIELD SAMPLING  

As discussed above, the study area, as shown in Figure 1, is the 

silver-lead-zinc mining area of Yerranderie located in the 

BMNP, New South Wales, Australia. Soon after the discovery 

of galena (PbS) in the area, mining activities started and 

consequently a number of small underground mines and four 

processing sites along with the town of Yerranderie were 

established (Harrison et al., 2003). Mining activities ceased by 

1929 because of the construction of Warragamba Dam, a major 

water supply catchment for the city of Sydney, and the Great 

Depression (Archer and Caldwell, 2004). Consequently, the 

Yerranderie mines and processing sites were abandoned.  The 

region is a part of the Tonalli River catchment which flows into 

Lake Burragorang. Approximately 80% of the drinking water of 

Sydney now is provided from this lake (McCotter, 1996), 

making the area critical for regular monitoring.  

 

 
Figure 1. The location of study area (Harrison et al., 2003)  

 

Streams adjacent to two derelict mine shafts, the Silver Peaks 

shaft (approximately located at 34° 07/ 08// S latitude and 150° 

12/ 28// E longitude) and the Colon Peaks shaft (approximately 

located at 34° 06/ 58// S latitude and 150° 12/ 27// E longitude) 

were selected for data collection for this study.  

There are two main streams that flow downward towards the 

Tonalli River from these mine shafts. 53 soil samples were 

collected on 13th and 14th November 2013, along these two 

streams starting from the mine shafts area down to the Tonalli 

River. The soil from top 10 cm layer was collected for each 

sample and the collected soil was then mixed and sieved using a 

2 mm sieve. The soil samples of less than 2mm were dried in an 

oven at 40° C for 24 hours prior to chemical analysis and 

spectral measurements.      

 

3. CHEMICAL ANALYSIST 

The concentrations of seven elements, namely silver (Ag), 

arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), lead 

(Pb), and zinc (Zn) in the samples were measured. For this 

purpose, each well-mixed dried soil sample was ground in to a 

fine powder using a laboratory ball mill. Afterwards, 1 gram 

from each well-ground sample was used for the chemical 

analysis while reminder of the sample was kept for spectral 

measurements. Each soil sample was dissolved in concentrated 

nitric acid before being placed in a quartz microwave vessel for 

heating in a microwave unit for approximately 2 hours. After 

cooling, the vessel contents were allowed to settle. After being 

diluted to volume, the digested samples were ready for analysis. 

In this study, inductively coupled plasma mass spectrometry 

(ICP-MS) was used to determine the metal concentration of the 

samples. Table 1 shows a summary of the results of heavy metal 

measurement derived from the chemical analysis for the 53 soil 

samples.   

       

As Table 1 reveals, high concentrations of arsenic and lead were 

found. These results confirmed Harrison et al. (2003) findings 

where they highlighted high concentrations of arsenic and lead 

in the Yerranderie area. 

 

Table 1. A summary of the heavy metal contents of 53 soil 

samples from Yerranderie 

Heavy metal Minimum Maximum Mean Std. 

Pb (%W/W) 0.04 5.0 1.8 1.3 

Ag (mg/kg) 2.3 48.4 14.1 12.7 

As (mg/kg) 311.0 20150.0 4635.0 3876.0 

Cd (mg/kg) 4.0 64.4 18.4 13.30 

Cu (mg/kg) 59.4 2396.5 647.9 457.0 

Hg (mg/kg) 0.03 1.7 0.4 0.3 

Zn (mg/kg) 272.0 5049.0 1509.0 908.0 

 

The average metal concentrations derived from the chemical 

analysis of the samples were compared with the Australian and 

New Zealand Environment and Conservation Council 

(ANZECC 2000) guideline as shown in Table 2. The metal 

content of the soil was found to be greater than the ANZECC 

standards. Excessive heavy metal pollution was found for lead 

and arsenic. Also, comparing the metal content of each sample 

with ANZECC guideline showed that all collected samples 

exceeded the guidelines for silver, arsenic, cadmium, lead and 

zinc. Also, 98% and 87% of the collected samples contained 

more than the ANZECC guideline standards for copper and 

mercury, respectively.     
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4. SPECTRAL MEASUREMENT 

The soil sample spectra were measured using the Analytical 

Spectral Devices (ASD) FieldSpec 3 spectroradiometer in the 

laboratory environment. The spectroradiometer was able to 

collect radiance between 350 nm to 2500 nm with 1.4 nm (350 - 

1000 nm) and 2 nm (1000- 2500 nm) sampling interval. An 

average of 30 spectra collected using a Contact Probe was 

stored as the final spectrum for each soil sample. In order to 

produce relative reflectance spectra for each sample, radiance 

spectra were normalized against a 99% Spectralon white 

reference. 

 

Table 2. ANZECC limit excesses of heavy metals sampled at 

Yerranderie 

Heavy metal 
ANZECC standard 

(mg/kg) 

ANZECC limit 

excess 

Pb 50.0 ×358 

Ag  1.0 ×14 

As  20.0 ×232 

Cd  1.5 ×12 

Cu  65.0 ×10 

Hg  0.15 ×3 

Zn  200.0 ×8 

 

 

5. HEAVY METAL MODELLING 

In addition to original reflectance, first and second derivatives 

were utilised in this study to identify the optimum measurement 

to model the heavy metal concentrations. Derivatives are 

usually applied to enhance the spectra appearance (Bogrekci 

and Lee, 2005). The first derivative of the reflectance measuring 

the slope of the spectra between the reflectance of two 

wavelengths (Richardson and Berlyn, 2002) was derived using 

the following equation (Xavier et al., 2006): 

 

R
′
 (λi) =     (1) 

 

Where R′( λi) is the first derivative of the reflectance for the 

wavelength of λi. In order to calculate the derivative of the 

spectra, it is possible to select different gap values determining 

the size of window which is used to calculate the derivatives. 

For this study, a gap value of 3 was selected. This means that 

the reflectance derivative of λi is derived using the calculation 

of the spectral slope of the reflectance of the next wavelength 

(λi+1) and reflectance of the wavelength before (λi-1). In order to 

calculate the second derivative of the spectra, the following 

equation was applied (Xavier et al., 2006): 

 

R′′(λi) =     (2) 

 

Where R′′(λi) is the second derivative of the reflectance for the 

wavelength of λi. Stepwise multiple-linear regression as a 

common modelling method (Shamsoddini et al., 2012; 

Shamsoddini et al., 2013a) was used to model heavy metal 

content of the collected soil samples to the reflectance and its 

derivatives. Multicollinearity and over-fitting are two important 

issues which should be prevented when multiple-linear 

regression is utilised. To avoid these problems, tolerance (Tol), 

condition index (CI) and p-value were calculated. The models 

for which Tol was lower than 0.1, CI higher than 30 and p-value 

higher than 0.05 were excluded. Gorsuch (1974) and Hair et al. 

(1995) suggest the minimum ratio of 1:5 for the number of 

predictors and the number of samples to avoid over-fitting. 

Consequently, the maximum number of the predictors for the 

models was set to 5 to ensure prevention of over-fitting.  

 

The model evaluation was implemented using leave-one-out 

cross-validation (Efron and Tibshirani, 1993) which is 

commonly used for evaluating the generalisation performance 

of the models (Shamsoddini, 2012; Shamsoddini et al., 2013b). 

The coefficient of determination (R2) and standard error of 

estimation (SEE) were calculated as the fitness indicators of the 

models. In addition, the error of estimation derived from SEE 

calculated for each heavy metal divided by the mean value of 

the measured heavy metal (shown in Table 1) was reported as a 

percentage relative error. To compare the accuracy of the 

models derived from reflectance values and its derivatives, a 

paired-samples t-test at a significance level of 5% (p-

value<0.05) was applied to the absolute residuals between the 

estimated heavy metal values and field-measured heavy metal 

values.   

 

6. RESULTS AND DISSCUSSION 

Figure 2 shows the spectral properties of four samples. While 

sample 36 (S36) contains the highest amount of zinc, the 

highest amount of silver was measured for sample 23 (S23). 

Also, sample 2 (S2) contains highest amounts of copper and 

cadmium. Finally, highest amounts of mercury, lead, and 

arsenic pertain to sample 21 (S21). As it is obvious, the general 

trend of the spectral property of these samples is similar. For 

example, while these samples show absorption area around 

1450 nm, their reflectance increases around 2050 nm.    

However, they show some differences such as difference in 

spectral slope around 1800 nm to 1900 nm; while S36 shows 

the steepest spectral slope, the spectral slope is not steep for S2 

and S21 for theses wavelengths.     

 

 
Figure 2. spectral properties of the soil samples measured by 

spectroradiometer 

 

After selecting the best performing models corresponding to 

higher R2 and lower SEE, the selected models were validated 

and the result is shown in Table 3. The best results derived for 

estimating each heavy metal is indicated by bold text in the 

Table. While the models derived from original reflectance 

resulted in poor correlation with estimated heavy metal 
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concentrations, applying first and second derivative reflectance 

data significantly improved the performance of the models, as 

the t-test results, shown in Table 4, indicate. 

 

Table 3. The estimation results of heavy metals after validation 

Heavy 

metal 
Data R2 SEE 

Relative 

error (%) 

Pb (%) 

Reflectance 0.16 1.24 69.0 

1st derivative 0.83 0.58 32.3 

2nd derivative 0.76 0.68 38.1 

Ag 

(mg/L) 

 

Reflectance 

 

0.05 

 

12.6 

 

88.9 

1st derivative 0.47 9.80 69.4 

2nd derivative 0.57 8.73 61.8 

As 

(mg/L) 

 

Reflectance 

 

0.73 

 

2074 

 

44.7 

1st derivative 0.90 1267 27.3 

2nd derivative 0.74 2066 44.6 

Cd 

(mg/L) 

 

Reflectance 

 

0.16 

 

12.4 

 

67.3 

1st derivative 0.59 9.05 49.2 

2nd derivative 0.66 8.17 44.4 

Cu 

(mg/L) 

 

Reflectance 

 

0.10 

 

438.8 

 

67.7 

1st derivative 0.73 248.5 38.4 

2nd derivative 0.73 249.9 38.6 

Hg 

(mg/L) 

 

Reflectance 

 

0.13 

 

0.32 

 

78.9 

1st derivative 0.69 0.19 47.8 

2nd derivative 0.73 0.18 44.2 

Zn 

(mg/L) 

 

Reflectance 

 

0.24 

 

809.7 

 

53.7 

1st derivative 0.74 488.6 32.4 

2nd derivative 0.64 574.3 38.1 

 

The original reflectance of the soil samples carries some noise 

(Stevens et al., 2005) due to the difference in the grain size and 

surface roughness (You et al., 2014). Although, a grinding 

process was used to make the soil particle as small as possible, 

there were some samples for which the soil particles remained 

larger than the other samples. This variance in size could have 

contributed towards poor performance of the models derived 

from original reflectance data. Perhaps, for these reasons, use of 

a noise reduction filter, e.g. mean filter, appears to be useful to 

smooth the signal and reduce the level of noise on this data 

(Butkutë, 2005). As Table 3 shows, while the models derived 

from the second derivative of the reflectance performed better to 

estimate silver, cadmium, and mercury, Table 4 indicates that 

there is no significant difference between these models and 

those derived from the first derivatives of the reflectance for 

estimating these heavy metals. According to Table 3, the models 

derived from the first derivative have estimated lead, arsenic, 

copper, and zinc better than the models derived from the other 

datasets; however, arsenic is the only heavy metal which is 

estimated significantly more accurate through the first 

derivative reflectance data compared to that derived from the 

second derivate reflectance data (see Table 4). 

 

The performance of the models estimating the heavy metal 

content of the soil highly depends on the method which is used 

for pre-processing of the reflectance spectra (Kemper and 

Sommer, 2002; Ren et al., 2009). Overall results of this study 

demonstrate the necessity to apply derivatives, especially first 

derivative method, on the original spectra prior to modelling of 

the heavy metals. The effects of spectral interference and 

baseline, which were probably caused by the differences in the 

grain size rather than in heavy metal content, can be reduced by 

applying derivative transformations, including first and second 

derivative, on the original reflectance (Kemper and Sommer, 

2002; Wu et al., 2005). Also, use of derivatives can result in the 

enhancement of the minor absorption features and consequently 

more spectral features explaining the variability of the heavy 

metal content (Ren et al., 2009). Although, the second 

derivative more efficiently removes baseline effects and 

enhances the absorption features, it can be more sensitive to 

noise compared to the first derivative (Kemper and Sommer, 

2002). The sensitivity of the second derivative towards noise 

was evidenced in this study and the models derived from the 

first derivative of the reflectance have performed better than 

those derived from the second derivative of the reflectance. 

 

Table 4. Paired-samples t-test results for comparison of the 

models derived from different data 
Heavy 

metal 
Data  Reflectance 

1st 

derivative 

2nd 

derivative 

Pb 

Reflectance ---------- 0.000 0.000 

1st derivative 0.000 ---------- 0.124 

2nd derivative 0.000 0.124 ---------- 

Ag 

 

Reflectance 

 

---------- 

 

0.013 

 

0.001 

1st derivative 0.013 ---------- 0.130 

2nd derivative 0.001 0.130 ---------- 

As 

 

Reflectance 

 

---------- 

 

0.006 

 

0.804 

1st derivative 0.006 ---------- 0.000 

2nd derivative 0.804 0.000 ---------- 

Cd 

 

Reflectance 

 

---------- 

 

0.011 

 

0.011 

1st derivative 0.011 ---------- 0.702 

2nd derivative 0.011 0.702 ---------- 

Cu 

 

Reflectance 

 

---------- 

 

0.000 

 

0.000 

1st derivative 0.000 ---------- 0.560 

2nd derivative 0.000 0.560 ---------- 

Hg 

 

Reflectance 

 

---------- 

 

0.001 

 

0.002 

1st derivative 0.001 ---------- 0.652 

2nd derivative 0.002 0.652 ---------- 

Zn 

 

Reflectance 

 

---------- 

 

0.001 

 

0.019 

1st derivative 0.001 ---------- 0.361 

2nd derivative 0.019 0.361 ---------- 

 

As Table 3 shows, among different heavy metals, more than 

80% of the variability of arsenic and lead is explained by the 

first derivative of the reflectance. Also, more than 70% 

variability of the variability of copper and zinc is explained by 

these data. Moreover, arsenic, lead, and zinc are estimated more 

accurately than other heavy metals while estimation of Ag 

concentration attracted the highest (more than 60%) error. 

 

7. CONCLUSION 

The estimation of soil heavy metal contamination using 

spectroscopic method was investigated in this study of samples 

from along stream adjacent to shafts of the derelict former 

Yerranderie silver-lead-zinc mines in the Blue Mountains 

National Park, NSW, Australia. The results of the chemical 

analysis showed that the derelict Yerranderrie mine area 

impacts the soil of downstream areas. The soil is mainly 

contaminated by lead and arsenic. The results of this study show 

that these two heavy metals were estimated more accurately 

than the other heavy metals using spectroscopic data. Also, it 
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was shown that copper and zinc can be estimated with R2 of 

more than 0.70 while the silver content of the soil was estimated 

less accurately than the other heavy metals. Finally it was 

shown that while the first derivative of the reflectance data is 

the most suitable option for modelling the heavy metals, the 

models derived from the original reflectance data performed 

poorly. Although, the models derived from applying stepwise 

multiple-linear regression on the first derivative of reflectance 

data were promising for estimating most of the heavy metals in 

this study, further investigation is required to evaluate the 

effects of other factors such as feature selection method and 

modelling method on the accuracy of the estimates. From a 

environmental management and water quality perspective, the 

results indicate that mitigation measures for heavy metal 

contamination should be implemented together with regular 

monitoring of areas surrounding the Yerranderie derelict mine 

site, especially those areas from which water runoff and streams 

flow to feed reservoirs that are a sources of drinking water. 
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