
* welikanna.duminda.66z@st. kyoto-u.ac.jp 

INCORPORATING UNCERTANITY INTO MARKOV RANDOM FIELD 

CLASSIFICATION WITH THE COMBINE USE OF OPTICAL AND SAR IMAGES AND 

ADUPTIVE FUZZY MEAN VECTOR 
 

 

D. R .Welikanna a, *, M. Tamura a , J. Susaki a 

   

 
a
 Dept. of Civil and Earth Resources Engineering, Kyoto University, 615-8540 Kyoto, Japan – ( 

welikanna.duminda.66z@st, tamuram@envinfo.uee, susaki@envinfo.uee). kyoto-u.ac.jp 
 

 

 

KEY WORDS:  Optical and SAR data, Image classification, Markov Random Fields, Fuzzy Memberships 

 

ABSTRACT: 
 

A Markov Random Field (MRF) model accounting for the classification uncertainty using multisource satellite images and an 

adaptive fuzzy class mean vector is proposed in this study. The work also highlights the initialization of the class values for an MRF 

based classification for synthetic aperture radar (SAR) images using optical data. The model uses the contextual information from 
the optical image pixels and the SAR pixel intensity with corresponding fuzzy grade of memberships respectively, in the 

classification mechanism. Sub pixel class fractions estimated using Singular Value Decomposition (SVD) from the optical image 

initializes the class arrangement for the MRF process. Pair-site interactions of the pixels are used to model the prior energy from the 

initial class arrangement. Fuzzy class mean vector from the SAR intensity pixels is calculated using Fuzzy C-means (FCM) 
partitioning. Conditional probability for each class was determined by a Gamma distribution for the SAR image. Simulated 

annealing (SA) to minimize the global energy was executed using a logarithmic and power-law combined annealing schedule. 

Proposed technique was tested using an Advanced Land Observation Satellite (ALOS) phased array type L-band SAR (PALSAR) 

and Advanced Visible and Near-Infrared Radiometer-2 (AVNIR-2) data set over a disaster effected urban region in Japan. Proposed 

method and the conventional MRF results were evaluated with neural network (NN) and support vector machine (SVM) based 

classifications. The results suggest the possible integration of an adaptive fuzzy class mean vector and multisource data is promising 

for imprecise class discrimination using a MRF based classification. 

 

1. INTRODUCTION 

Urban areas occupy a very small region of the earth surface. 

However the rapid change of the urban land-cover categories 

within a small distance resulting similar entities at different 
locations, majority of land-cover types being internally 

heterogeneous and intermediate conditions of the class 

boundaries make the urban landscape a complex and vague 

entity (Forster, 1983; Wang, 1990; Wood and Foody, 1993; 
Bastin et al., 2002; Fisher et al., 2006; Tang et al., 2007; Foody 

and  Matur, 2006). Satellite missions with their global view 

over the earth surface provide useful and rapid information for 

urban mapping, map updating and urban change detection. Most 
well-known classification approaches were developed using 

multispectral images for urban land cover features. The 

diversity of urban land cover components with similar spectral 

signatures and the effect of point spread function (PSF, i.e., the 

response of an imaging system to a point source) make it 

difficult to classify them even in multispectral images (Zhang et 

al., 2014). As a result the use of multi-source satellite images is 

currently considered as one promising approach to improve the 
vague urban land cover classification accuracy (Weng , 2012). 

  

The characteristics of the optical and SAR sensors are different 

to each other. Multispectral satellites such as AVNIR-2 provide 
information on the energy scattered and radiated by the Earth’s 

surface in different wave lengths, providing the ability to 

discriminate between different land cover classes such as 
vegetation, water and impervious surface. Optical sensors are 

not all-weather imaging systems providing atmospheric 

limitations such as clouds. On the other hand SAR sensors such 

as PALSAR provide measurements in amplitude and phase 
related to the interaction of the land cover classes with 

microwaves. Backscattering information over urban areas 

recorded by the SAR sensors typically reaches high values due 

to single, double-bounce and trihedral reflections from the 

manmade structures with low values for vegetated areas and 

water sources.  The use of SAR data in land cover classification 
of urban areas is relatively limited due to the peculiar imaging 

geometry, complexity of the microwave interaction with urban 

feature and the presence of coherent fading (speckle). These 

issues in combination make it difficult to determine proper class 
distributions and parameter estimation for SAR data using the 

Bayesian classification mechanisms. Speckle makes it difficult 

to use a single source SAR image to initialize the class 

arrangement in MRF for the prior probability estimation. As a 
result a combination of SAR and optical sensor data will be 

useful to provide a complete set of information for the 

classification.  

 
Bayesian statistics have been used widely as a theoretically 

robust foundation for image classification (Tso and Mather, 

1999). In order to maximize the posterior probability with 

maximum a posterior estimation (MAP) it is important to 
determine both class-conditional and prior probabilities as 

accurate as possible. Modelling them with MRF using optical 

and SAR images respectively is a convenient way of developing 

a contextual classification procedure for an individual SAR data.  
Several research works in the direction considered this 

framework for feature classification (Tso and Mather, 1999; 

Solberg  et al., 1996; Zhang et al., 2014; Deng and Clausi, 2004; 
Yang and Clausi, 2012). Most of these works used the 

amplitude information of the SAR data to detect more 

homogeneous land cover elements (ex- Sea Ice, Lithological 

types). In this study we also consider the fact that the 
classification results lack additional information related to the 

degree of certainty or the complexity associated with the 

heterogeneous urban land cover classes. Fuzzy set theory 
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provides the mathematical tool to model imprecise, incomplete 

and unreliable information classes (Zadeh et al., 1965). The 

author has also reported the advantage of using fuzzy class 

parameters in MRF models to generate super resolution land 
cover maps with optical images in his previous work 

(Welikanna et al., 2012). The work we present in this letter can 

be considered as an extension of ongoing work (Ardila et al., 

2011; Kasetkasem et al., 2002; Kasetkasem et al., 2005;  

Welikanna et al., 2008). 

 

Several key implementations are brought to focus in this study 

(a) fuzzification in source universe: which determines the 
memberships values of each class for the SAR intensity pixels, 

prior to the determination of its conditional probability density 

function (p.d.f) using a Gamma distribution (b) initial class 

arrangement for MRF using optical images with the highest sub 
pixel class abundance in a pixel and (c) logarithmic and power-

law combined annealing schedule to decrease the temperature 

for the MAP algorithm.  

 

2. FUZZY MRF MODEL AND POSTERIOR ENERGY 

ESTIMATION 

MRF based contextual classification models rely on the 

Hammersley-Clifford theorem system (Tso and Mather, 2009), 
which describes the equivalence between the Gibbs random 

fields (GRF) and MRF. This also means that a unique GRF 

exists for every MRF, as long as the GRF defines in terms of 

cliques on a neighborhood system (Tso and Mather, 2009). A 

clique is a set of neighbors defined with respect to the pixel to 

be classified. The resulting model is based on the energy 

functions, leading to a classification task of energy 

minimization. The prior and the likelihood energy terms are 
modelled using the optical and SAR images respectively.  

 

Let    and    denotes the observed optical ( ) and SAR ( ) 

image pixel gray level values at a pixel location   respectively. 

The intended label for each image pixel at location   is 

represented by   . Depending on the number of classes in the 

classification problem,   varies. Within a considered pixel 

neighborhood N in the contextual model a neigboring pixel 

label with the pixel in concern is represented by          . 

According to the Bayesian theory the posterior distribution can 

be determined by combining both the prior and conditional 

probabilities:  
 

  ( |   )   (   | ) ( )                              (1) 

 

Conferring to the equivalence of the MRF and GRF, 
probabilities in Eq. (1) can be defined by means of energy 

functions (Geman and Geman, 1984). Hence the posterior 

energies can be given as below: 

 

 ( |   )   (   | )   ( )                    (2) 

 

In the case of multisource data, the measurements from different 

sensors are assumed to be conditionally independent (Solberg  
et al., 1996). This simplifies the mathematical analysis. The 

validity of this assumption in the case of optical and SAR image 

integration is considerably higher due to different operational 

wavelengths and the acquisition times of the images. As a result 
the statistically independent conditional probability distribution 

can be determined as below: 

 

 (     |  )   (  |  )   (  |  )           (3) 

Therefore the MRF-MAP model for the combined SAR and 

optical sensors with corresponding reliability or discrimination 

criteria can be given as: 

 

 (     |  )   (  |  )
    (  |  ) 

             (4) 

      

According to Eq. (4) it is possible to integrate many different 
image indices such as SAR texture as well as GIS information 

in the proposed framework with an appropriate reliability 

criterion. In the experiments presented in the paper we 
essentially model the prior probability using the optical data 

while the conditional probability is modelled using the SAR 

intensity information. Combining Eq. (2) and Eq. (4) we can 

define the class conditional energy for multisource data as 
below: 

 

 (     |  )      (  |  )      (  |  )        (5) 

 

The conditonal distribution for a pixel    given a true label    

of the multilook SAR intensity images  follows a Gamma 

distribution (Deng and Clausi, 2005; Yang and Clausi, 2012). 

Thus the conditonal probaility for SAR intensity can be defined 
as follows: 

 

 (  |  )  
  

  
 (   ) 

  
      ( 

 

  
  )               (6) 

 

where   denotes the number of looks and    is the mean value 

for class   . According to the Gamma distribution (Eq.(6)), the 

relative likelihood of a SAR intensity pixel to be classified to a 

class is mainly controlled by the class mean values. Notably this 
distribution function doesnot account for any spatial 

relationship among different urban land cover classes. Therefore 

the  conditonal energy can be derived according to the MRF and 

Gibbs equivalnce as shown in   Eq. (7).  
 

 (  |  )  
 

  
   (   )    (  )      (  )       (7)   

 

As a major implementation in this paper, we propopse an 

aduptive fuzzy mean vector for the classes in Eq. (7) with the 
use of fuzzy set theory. Fuzzy set theory provides the base to 

construct a more meaningful relationship between a pixel and a 

class using the grades of memberships. Intermidiate grades of 

memberships improve the pixel belongingness to a particular 
class providing much better estimation for the class mean 

values. This pixel weighting schemce is advantageous 

particularly for the distribution functions such as Gamma 

distribution, where the estimation is strongly controlled by class 

mean values.  Let   denote the universal set. A fuzzy set for 

class   , ώ over   is defined as the set of ordered pairs: 

 

  {(    ( ))    }                           (8)                                                                                                   

 

where   ( )(      )  is termed the grade of membership or 

simply the membership function, of the element   to the fuzzy 

set  .  Importantly all the elements   in   belong to   with 

different grades of memberships. In the case satellite images, 

the pattern   is described as a vector in an M-dimensional 

space,                               , where    

denotes the kth sensor data observation space (i.e. the source 

universe), and   the number of sensors. In the case of 

multisensory observation space the universal set   is the 

Cartesian product           . If              is a set 

of predefined classes then each class   is defined as fuzzy set 

over    Thus     ( ) conveys information on the degree to 

which the pattern     may be treated as belonging to class  . 
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In the case of SAR average polarization (HH+VV/2, see section 

3) used as the input data, observation space is only 1-

dimensional. To determine these membership values we use the 

fuzzy c-means partition matrix. The image   (when number of 

bands,    ) is portioned into a     matrix ( ) with each 

element of the matrix (  (  )) showing the pixel membership 

value for class ω. Here  is the number of classes and   
 (        )   will be the number of pixels. The J function 

measures the difference between each pixel values and the 
cluster centres μ to estimate the F matrix (Tso and Mather, 

2009). The clustering is performed according to the Eq.(9): 

 

  (   )  ∑ ∑ (  (  )  (     ) ) 
   

 
                (9)                

 

Where V= (         ) is the vector of the cluster centres, and 

  being the membership weighting exponent      .  

Parameter   is also known as the fuzzy exponent, controlling 

the level of cluster fuzziness. For a particular class of interest, 

different   values will result in different membership grades. 

Many optimal values for   (ranging from 1.1 to 1.2) have been 

suggested but it’s less explained why one value of   is better 

than the other (Fisher 2010). The parameter   was set to a 
usually accepted value of 2.0 (Fisher et al. 2006) in aid to add 

more fuzziness to the membership assignment. A local 

minimum for    can be achieved under the condition shown in 

Eq.(10). Here     and      : 
 

  (  )  
 

∑ [
|     |

|     |
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(   )

                            (10)  

 

Let the training pixels for a particular class take values 

         
with             (   ) being the number of 

training pixels for C number of classes. The discrete fuzzy mean  

  ̅̅ ̅̅  can then be defined by using grade of membership estimated 

for a single image pixel in the sample: 

 

  ̅̅ ̅̅  
∑   (  )  

 
   

∑   (  )
 
   

                                 (11) 

                                                                                                 
where   is the number of pixels for a particular class sample 

and    (  ) is the pixel membership grade, which satifies the 
conditon. From this point onwards we abbreviate this new 

implementation as fuzzy MRF (FMRF) and the conventional 

approach as MRF. The prior class information is modelled by 

using the optical image. For a particular pixel    of the observed 
optical image, propotion of the land cover class of interest is 

determined using Singular Value Decomposition (SVD). Let 

  (  )     (  )   (  )     (  )   represent the propotion of 

land cover in the pixel    for class                in the 

observed multispectral image. And let a corresponding pixel of 

the intial class image ( ) be             . Then a class is 

assigned to a pixel based on the maximum class propotion 

recorded in any of the coarser resolution multspectral image 
pixel as follows: 

 

      (   (  ))                               (12)              

                                                                                    
Under the assumption of pair-site interaction, in which the pixel 

of interest and one of its eight neighbors (2nd order 

neighborhood) is considered, the prior energy is defined as: 

 

 (  )  ∑    (     )                       (13)    

                                                                                          

where  (  ) is the local contribution to the prior energy from a 

pixel    in the optical image.   denotes the weigting parameter 

for each pixel and  (     ) takes a value 0 if       and 1 

otherwise. Combining Eq.(7) and Eq.(13) we can define the 

posteriro energy for the multisource data sets as follows: 

 

 ( |   )  (   )  (
 

  ̅̅ ̅̅
   (   )    (  )  

    (  ̅̅ ̅̅ ))     ( )                                                                 (14) 

 

The realiability factor   controls the contributions from the 

optical and SAR imagery in the form of prior and likelihood 
energy in the posteriro energy determination. You can regulate 

this factor mainly considering, the level of details that the end 

user needs in the calssification process and also in terms of the 

highest classification accauracy.  
 

2.1 Simulated Annealing with a combined annealing 

schedule 

The MAP estimation of the posterior energy in Eq.(14) is 
determined by using the stochastic Simulated Annealing 

technique (SA). This implements a Metropolis-Hasting 

sampling technique to reduce the energy and retrieve MAP 

solution. SA algorithm allows the randomness ( -temperature), 
to decrease in an iterative way so that the best solution for Eq. 

(14) can be made. The temperature will be decreased according 

to the criterion called annealing schedule. The process is 

repeated until the system becomes frozen (   ), which means 
pixels stop updating. The annealing schedule is very important 

considering the MAP algorithm. Different annealing schedules 

were tested in many studies. Logarithmic and power-law 

annealing schedules are two of the most preferred annealing 
schedules. Logarithmic schedules are considered to be the most 

promising in the case of better solutions for the global energy 

minimization (Geman and Geman, 1984). But it will lead to a 

slower annealing process. Hence in this study we combine two 
cooling schedules within the SA. Eq.(15) and Eq.(16) shows the 

logarithmic and the power-law annealing schedules used 

respectively.  

 

 ( )  
  

    (   )
                                      (15) 

 
 

 ( )     (   )                                  (16)                                                                                       

 

where     is the initial temperature,   the cooling schedule 

parameter and   the iteration number. For better results in 

complex situations, a large value of both these parameters 

which slows down the annealing process is recommended 

(Tolpekin and Stein 2009). We start with a logarithmic 
annealing schedule and made it to change for the power-law 

schedule after the temperature ( ( )) drops to a certain value. 

This temperature value was determined by several experimental 

runs. Detailed explanation of the SA technique can be found in 
literature for further understanding (Li, 2009, Tso and Mather, 

2009, Geman and Geman, 1984). 

 

3. STUDY AREA AND DATA 

The region selected for the study covers the heavily damaged 

Ishinomaki and Onagawa areas in Japan. Ishinomaki city and 

the areas north to the city are located in a flat basin. Two main 

rivers flow through the area, one which runs to the south 
through Ishinomaki city (Old-Kitakami river) and the other 

which runs eastward through Ogatsu area (Kitakami river). 

Many of the primary land covers of the area belong to cultivated 
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farmlands while the impervious, soil, water and vegetation 

dominates the rest. As a significant change observed after the 

tsunami, the farmlands with exposed soil and grass were 

transformed into inundated farmlands. 
A post disaster Advance Land Observation Satellite (ALOS) 

phased array type L-band synthetic aperture radar (PALSAR) 

image and Advanced Visible and Near-Infrared Radiometer-2 

(AVNIR-2) image was used in this study. These SAR datasets 

are the result from an urgent data acquisition after the 

earthquake on 11th March 2011.  Full polarimetric observations 

conducted on 8th April 2011 was taken as the post-disaster 

input. Observation mode was an off-nadir angle of 21.5° in the 
ascending orbit. A single look PALSAR image carries a 

resolution of 4.45m in azimuth and 23.14m in ground range 

direction. The revisit cycle for ALOS is 46 days. The temporal 

base line is 138 days and the perpendicular base line is about 
2Km. Such large temporal and spatial baseline can induce 

significant decorrelation effects and produce poor 

interferometric coherence. The PALSAR images were geocoded 

using UTM projection (zone 54N) and WGS84 Datum. 
Multilooking (5-look) processing in azimuth direction was 

performed to adjust the azimuth and range pixel size to be 

comparable, with a resulting spatial resolution of 25m. No 

speckle filters were applied initially on the data. In the case of 
AVNIR-2 data set, the image on 10th April 2011 was taken as 

the post disaster image. This image was resampled using nearest 

neighbors from 10m to 25m spatial resolution to have the same 

pixel resolution of the SAR image. The time interval between 
the optical and SAR images in the case of post disaster was 2 

days. AVNIR-2 data sets were used to model the contextual 

information for the post disaster event. The study area map and 

the 5 look average co-polarized intensity PALSAR and AVNIR-
2 images (225×225 pixel subset) are shown in Fig.1. 

 

 

 

 
 

 

 

 
 

 

 

 
Figure 1 Study area map and the images (a) false colour composite RGB 

(4,3,2) of the AVNIR-2 image (b)  average HH, VV intensity ALOS 

PALSAR image 

 

 

4.     EXPERIMENTAL SETUP 

Several key parameters have to be estimated prior to the 
performance of the multisource image classification proposed in 

this study. They are the fuzzy membership grade parameter 

  (  ) for each intesity pixel, fuzzy class mean    ̅̅ ̅̅   and the 

source realiability factor  . To detemine the membership grades 
we employed the fuzzy C-means clustering criteria. Fuzzy 

membership function for residential area SAR intensity pixels 

with the mean value in the range of 340000.00 and the FCM 

clustering results are shown in Fig.2. We first determine the 

FCM based membership values for each radar intensity pixel. 

Additionally with the use of pixel membership weights the 

number of pixels in a training sample necessary to model the 
class distribution can be reduced substantially. The scattering 

mechanism recorded by fully polarimetric SAR data after the 

earthquake and tsunami changes depending on the damages to 

the manmade structures and the disturbances to the land scape. 

The effect of the scattering mechanism in the SAR intensity is 

an important factor to consider in the case of urban area 

damages and inundated farmlands. As a result of the disaster, 

post disaster SAR image has a significant decrease in the double 
bounce scattering due to the urban structural damages. This is in 

contrast to the increase in volume scattering power caused by 

the scattering from large amount of debris. This significant 

change in the scattering power can be seen with the rapid 
fluctuation of the membership grades in the SAR image 

Fig.2(b) mainly due to ruble, after the disaster. Four main land 

cover clases were identified for the classification, namely water, 

industrial, residential and the farmlands. An additional class due 
to the post disaster situation as exposed soil and grass were 

identified specifically due to the tsunami effect to the area.  

Therefore, finally  a five class classification problem is solved. 

The NN and SVM based refrence images were generated by 
using HH and VV polarizations inputs. We compare the MRF 

and FMRF results with an NN and SVM based classification 

results.  

 

 

 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

 

Figure 2. Fuzzy membership function for an impervious training sample 

(a) ALOS PALSAR intensity image pixels, over a residential area  (b) 

Fuzzy C-means clustering with pixel membership values for SAR 

intensity image  

 

The conventional and the fuzzy class mean values calculated are 

different to each other as shown in Table 1. As mentioned 
earlier this requires accurate membership grade estimation for 

each training pixel for each class. Fig.2 the membership 

function determines the pixel contribution for the class mean 

value estimation. 
 

SVD based pixel unmixing was carried out on AVNIR-2 images 

(Boardman, 1989; Canty, 2010; Krus et al., 1993). Then the 

pixels were labelled to a class depending on the highest class 
fraction estimated by SVD. Using the posterior energy 

a 

b 
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minimization in MRF and FMRF models we perform the 

classification using the generated initial class image. It is 

important to mention that the   is a key parameter which 

controls the contribution of the prior and the likelihood energy 

in the posterior energy determination. For example when     

the likelihood term is completely ignored in Eq. (14) for a 

minimal posterior energy, forcing all the pixels to be classified 

to a single class.  

 
Table 1. Conventional and fuzzy mean values calculated for 

each land cover training class 

 

 

5. EXPERIMENTAL RESULTS 

After the initial setup we ran the experiment for a range of   

values. To determine the best   value, class seperability, 

classification accuracy and genetic algorithms can be used (Tso 

and Mather, 2009). In this study we used the classification 

accuracy to determine the best  . The optimum results were 

generated with the   in the range from 0.2 to 0.5. In this range 

the reliability of the SAR data in the classification mechanism is 
much higher than the optical image. In fact, with the main 

motivation of classifying the SAR image this range provides 

higher reliability to the SAR image. Posterior energy (Eq.(14)) 

was minimized using SA with Metropolis-Hasting sampler 
(Geman and Geman 1984, Tso and Mather 2009).   

We have implemented a new cooling schedule within the SA in 

this study. Initially the parameter    and   was set to values 3.0 

and 0.9 respectively. We tested the energy minimization with 

ordinary lognormal annealing scheme. It was identified that 

once the T reaches a value between 1.0 and 0.7 the drop in the 

energy becomes significantly slow. Hence we implemented the 

power-law annealing schedule after       and 0.7. From this 
experiments, due to the considerable reduction of number of 

iterations and the slight difference in local energy we stick to 

     . The optimum MRF and FMRF results and the NN and 

SVM based classification results are shown in Fig. 3. The two 

schedules and there test runs are shown in Fig. 4. 

 

6. RESULTS VALIDATION 

The validation of the SRM at both pixel level as well as the sub 

pixel level is a complex process. This becomes even tricky 

when proper ground truth information is not available. In this 

study we implement two approaches to validate MRF result. In 
the pixel based validation, we used the Overall accuracy (OA) 

and the Cohen`s kappa statistics (Congalton 1991), with the 

contingency tables. We also report the producer accuracy for 

each class. 
 

Visual interpretation of the classified images interestingly 

suggests the improved ability of FMRF to classify the local 

water sources and the inundated farmland better than the MRF. 

SVM and NN based classification outputs shows salt and 

pepper effect with noise-like pixel labels for land cover classes 

whereas both MRF being contextual approaches shows less 

noisy effect. Clarity in the edge information (ex. Internal water 
ways, live fences) resulting from MRF approaches is higher 

than the SVM and NN. Table 3 and Table 4 show the overall 

comparison results of the FMRF with NN and SVM 

respectively.  

 

Table 3. Overall accuracy and the kappa statistics resulted from 

the comparison of the MRF results with the NN based reference 
images 

 

Table 4. Overall accuracy and the kappa statistics resulted from 
the comparison of the MRF results with the SVM based 

reference images 

 

 
The evaluation with the NN based reference image clearly 

suggested the different energy estimations and the 

improvements in the FMRF over MRF. At        the optimal 

classification results were reached for the post disaster image 
tested using MRF and FMRF methods. The FMRF OA was 

improved from 73% to 81% with resulting kappa values of 0.63 

and 0.73 respectively.  The SVM based comparison also follows 

the same pattern but with marginal improvements for the 
FMRF. The results show better accuracy for the MRF at 

     , with OA and kappa being 87% and 0.83 over FMRF 

OA and kappa of 83% and 0.77 respectively.  

 

To get a better understanding of the classification performance 

at individual class level, we examine the producer accuracy for 

each class. Producer accuracies for each class show the 

significant improvement in classification accuracy with the use 
of the grade of memberships. Table 5 and 6 report the producer 

accuracies for each class. Producer accuracy shows the 

reduction in omission errors with the use of fuzzy memberships 

in the classification for each class. With the NN based 
comparison, all the five classes improved the classification 

accuracy in the FMRF with average producer accuracy reaching 

79% from 86%. In the case of SVM based comparison, only the 

soil class shows a significantly less accuracy of 49% in FMRF 
with the 77% of MRF. This large misclassification coming from 

the soil class considerably affect the OA and the kappa values 

of the overall classification accuracy.   

 
 

Post Disaster 
land cover 

classes 

Conventional 
class Mean 

Fuzzy class Mean 

Farmlands 
(inundated) 

130283.64 138558.50 

Water 10834.03 64296.26 

Industrial 1165112.77 1079266.00 

Residential 348684.43 348346.40 

Exposed soil 
and Grass 

251685.85 311111.20 

Overall Accuracy (OA) and Kappa statistics comparison with NN based 

reference 

  

 

OA% Kappa OA% Kappa 

MRF FMRF 

0.2 70.13 0.596 76.28 0.676 

0.3 71.40 0.609 79.76 0.713 

0.4 73.63 0.631 81.32 0.728 

0.5 74.89 0.639 80.32 0.710 

Overall Accuracy (OA) and Kappa statistics comparison with SVM based 

reference 

 

  OA% Kappa OA% Kappa 

 
MRF 

 
FMRF 

0.2 87.72 0.834 83.28 0.776 

0.3 87.27 0.827 82.22 0.756 

0.4 84.52 0.787 79.79 0.718 
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Figure 3. Optimal classification results using MRF and FMRF approaches for a reliability factor (     ), (a) NN classification (b) 

SVM classification (c) FMRF (d) MRF

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

Figure 4. Behaviour of the energy with respect to the temperature drop for the post disaster SAR images,  SA  with (a) lognormal 

annealing schedule (b) lognormal and power-law combined annealing schedule changing at       (c) lognormal and power-law 

combined annealing schedule changing at       
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It is difficult to say from the NN and SVM based classification 

methods which is the most suitable reference to assess the 

accuracy of the proposed FMRF model. Hence we report both 
methods in the analysis. The use of new SA scheme provided 

significantly rapid optimization by cutting down the number of 

iteration from 155 to 43 (Fig. 4).  

 

 

Table 5. Producer’s accuracy (%) for the post disaster land 

cover classes, compared with NN reference images 

 

 

Table 6. Producer’s accuracy (%) for the post disaster land 

cover classes, compared with SVM reference images 
 

 

 

7. CONCLUSION  

The MRF model proposed in this study use multisource data 

and adaptive fuzzy class mean vector for the SAR intensity 

pixels to model the conditional energy using a Gamma 

distribution. We propose this development as one of the 
possible solution to account for the classification uncertainties 

in an MRF framework. The initial class labelling was performed 

using an optical image with the highest sub-pixel class 

fractional estimation. Method was tested over an urban area in 
the north east coast of Japan, heavily affected by an earthquake 

and tsunami. The FMRF model shows its improvements over 

the MRF model for the multisource data with better contextual 

smoothening and class discrimination ability. Several important 
conclusions can be made from the findings of this work. Both 

the MRF and FMRF approaches show very high level of 

classification accuracy for the multisource data.  It is important 

to have fuzzy memberships for all the pixels in the image for 
better class discrimination. For a particular class which is not 

possible to be discriminated in the MRF (as an example water 

class in this study), a better option is to use its fuzzy mean. This 

also means that we can replace specific class mean values with 

fuzzy means without replacing the whole mean vector to model 

its conditional energy much more sensitively.  The combined 

annealing schedule shows the promise for practical applications 

with faster annealing. The variation of the reliability factor λ is 
not clear with the experiments conducted; it will be interesting 

to see its variation with further experiments.  

 

We conclude that the use of membership weighted pixels to 
model the energy functions can bring better classification 

accuracy especially in the case of SAR intensity images, where 

the pixel distribution follows a Gamma function. The 

multisource classification model developed under a fuzzy 
Bayesian environment is simple and useful to integrate different 

image indices for classification as well as image information 

fusion.  
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