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ABSTRACT: 
 
In this study, correlation clustering is introduced to hyperspectral imagery for unsupervised classification. The main advantage of 
correlation clustering lies in its ability to simultaneously perform feature reduction and clustering. This algorithm also allows 
selection of different sets of features for different clusters. This framework provides an effective way to address the issues associated 
with the high dimensionality of the data. ORCLUS, a correlation clustering algorithm, is implemented and enhanced by making use 
of segmented principal component analysis (SPCA) instead of principal component analysis (PCA). Further, original 
implementation of ORCLUS makes use of eigenvectors corresponding to smallest eigenvalues whereas in this study eigenvectors 
corresponding to maximum eigenvalues are used, as traditionally done when PCA is used as feature reduction tool. Experiments are 
conducted on three real hyperspectral images. Preliminary analysis of algorithms on real hyperspectral imagery shows ORCLUS is 
able to produce acceptable results. 
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1. INTRODUCTION 

In recent years, hyperspectral imaging has become an important 
tool for information extraction, especially in the remote sensing 
community (Villa et al., 2013). Hyperspectral imagery contains 
hundreds of narrow spectral bands which are continuous and 
regularly spaced in the visible and infrared region of 
electromagnetic spectrum. Thus, due to their high spectral 
resolution, hyperspectral imagery, as compared to multispectral 
imagery, provides an opportunity for more precise information 
extraction. Widely used technique for information extraction, 
from hyperspectral imagery is classification. Two main 
schemes for classification are supervised and unsupervised 
classification (or clustering). Supervised classification methods 
make use of training data whereas clustering method does not 
require the same. Although generally supervised classification 
methods are more successful in providing higher classification 
accuracy as compared to unsupervised methods (Paoli et al., 
2009), in reality, collection of high quality training sample is 
very expensive and time consuming procedure. As a result, 
availability of quality training sample is limited. This limitation 
may lead to poor generalization capability of the supervised 
classifier (Niazmardi et al., 2013). Thus it is necessary to 
explore alternative solutions, such as clustering. Hyperspectral 
imagery, although, provides detailed spectral information but it 
leads to certain challenges. It has very high dimensionality 
which gives rise to several problems, collectively addressed as 
“curse of dimensionality”. Specifically, in clustering four major 
problems emerge (Kriegel et al., 2009). These are – (i) in high 
dimensionality, concept of distance or neighbourhood becomes 
less meaningful (Beyer et al., 1999), (ii) for a pixel, among 
various observed dimensions/bands, some of the dimensions 
will be irrelevant, which in turn will affect the distance 
computation, (iii) subset of some dimensions/bands may be 
relevant to one cluster and subset of some other dimensions 
may be relevant to other cluster, and so on. Such that, for each 

cluster, subset of dimension (or subspace) may differ, in which 
cluster are discernible. Thus, it may be difficult for global 
feature reduction methods (e.g. principal component analysis) 
to identify one common subspace in which all the cluster will 
be discernible, and (iv) for high dimensional data many 
dimensions may be correlated.  
 
To overcome these issues, recent research in clustering of high 
dimensional data focuses on identification of subspace clusters, 
meaning that data points may form clusters in subset of 
dimensions and these subset of dimensions may be different for 
different clusters. Further, if the algorithm searches for clusters 
in axis-parallel subspaces only, then they are known as 
subspace clustering or projected clustering (Kriegel et al., 
2009). By axis-parallel subspaces we mean subset of original 
dimensions/bands. On the other hand, if the algorithm looks for 
clusters in arbitrary oriented subspaces, then they are known as 
correlation clustering algorithms. For detailed survey on these 
approaches interested readers may refer to Kriegel et al. (2009). 
 
During the last decade, a number of studies have been 
conducted over clustering of hyperspectral imagery. Paoli et al. 
(2009) performed clustering of Hyperspectral images by 
making use of multiobjective particle swarm optimization 
(MOPSO), which simultaneously handles clustering problem 
and band selection. Their band selection method is global in 
nature, which means they identified all clusters in commonly 
reduced set of bands or subspace. MOPSO framework used 
three optimization criteria, which are the log-likelihood 
function, the Bhattacharyya statistical distance and minimum 
description length. A subtractive clustering based unsupervised 
classification of hyperspectral imagery is proposed in Bilgin et 
al. (2011). In the same paper, a novel method is also proposed 
for cluster validation using one class support vector machine 
(OC-SVM). The proposed validity measure is based on the 
power of spectral discrimination (PWSD). A spectral spatial 
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clustering for hyperspectral imagery is proposed in Li et al. 
(2013). A neighbourhood homogeneity index (NHI) is proposed 
and this index is used to measure spatial homogeneity in a local 
area. Further, an adaptive distance norm is proposed which 
integrates NHI and spectral information for clustering. 
Niazmardi et al. (2013) carried out a support vector domain 
description (SVDD) assisted fuzzy c-mean (FCM) clustering of 
hyperspectral imagery. In the proposed algorithm SVDD is 
used to estimate the cluster centers. Further, performance of the 
proposed algorithm depends upon the SVDD and FCM 
parameters. From the above discussion, it is observed that 
literature on investigation of correlation clustering upon 
hyperspectral imagery is virtually non-existent. 
 
The objective of this study is to investigate the performance of 
one correlation clustering approach for high dimensional data 
on hyperspectral imagery. For this purpose, experiments are 
conducted on three real hyperspectral images. 
 
The remaining part of this study is organized as follows. 
Correlation clustering and one selected algorithm are described 
in section 2. Section 3 outlines the experimental setup. Results 
obtained on real hyperspectral images are described in section 
4. Finally, conclusions are drawn in section 5. 
 

2. CORRELATION CLUSTERING 

The correlation clustering is also known as oriented clustering 
or generalized subspace/projected clustering (Kriegel et al., 
2009). A correlation cluster obtained from correlation 
clustering can be defined as, a set of pixels having values 
positively or negatively (or both) correlated on a set of 
dimensions (Sim et al., 2012). In high dimensional data, 
dimensions are correlated to one another. Also, different 
clusters may have different set of correlated dimensions. 
Correlated set of dimensions may lead to pixels getting aligned 
in arbitrary shapes, in the lower dimensional space (termed as 
skews). For a cluster, nature of skews and correlation can be 
identified by making use of orthogonal set of vectors obtained 
from the subset of dimensions, of that cluster. The subspaces in 
which pixels are most similar are perpendicular to subspaces in 
which pixels are having maximum variance. One of the 
important methods for finding correlation in the data is PCA 
(Richards, 2013). PCA is generally applied on the whole 
dataset, but in case of correlation clustering PCA is applied 
locally for each cluster, as subspace in which pixels are least 
spread will be different for each cluster. When PCA is used as a 
dimensionality reduction tool, eigenvectors corresponding to 
maximum eigenvalues are selected, such that the maximum 
information is retained. On the contrary, in correlation 
clustering eigenvectors corresponding to minimum eigenvalues 
are selected for each cluster, such that the information about the 
similarity of pixels in each cluster is retained (Aggarwal and 
Yu, 2000). For this study, one correlation clustering algorithm 
is selected, namely, ORCLUS (arbitrarily ORiented projected 
CLUSter generation) and is explained next. 
 
2.1 ORCLUS 

ORCLUS (Aggarwal and Yu, 2000) is generalized version of 
axis-parallel approach PROCLUS (Aggarwal et al., 1999). 
ORCLUS is a k-means (KM) like approach which allows 
cluster to exist in arbitrarily oriented subspaces. It takes two 
input parameters from user, desired number of clusters ( k ) and 
number of dimensions ( l ). Initially 0k

 
cluster seeds are 

randomly selected from the data, where 0k
 
is a constant and 

0k k . Then each pixel in the data is assigned to any one of 

these 0k
 seeds by making use of Euclidean distance function 

but in projected subspace. At the start, the projected subspace is 
the original subspace, but later on projected subspace is 
calculated by weak eigenvectors (eigenvectors corresponding to 
smaller eigenvalues) obtained from the members of each cluster 
and the number of eigenvectors to select for forming projected 
subspace depends upon the value of l . The number of clusters 
is reduced iteratively by merging two closest clusters until user 
specified number k  is reached and simultaneously 
dimensionality is also decreased to user defined dimensionality 
l . The closest pair of cluster is identified by making use of 
projected energy. The cluster pair having minimum projected 
energy is merged. The projected energy is calculated by taking 
average Euclidean distance (in the projected subspace) between 
all the points and the centroid of a cluster formed by the union 
of two clusters. The higher value of 0k  increases effectiveness 

of the algorithm but same time also increases the computational 
cost. Appropriate values of parameters k  and l  are hard to 
guess and results are sensitive to these parameters. At this point 
it should be noted that, in this study, it is observed that when 
weak eigenvectors are used for obtaining projected subspace, 
algorithm is unable to provide satisfactory results. This 
behavior can be attributed to: higher principal component 
images appear almost as noise for hyperspectral imagery 
(Mather and Koch, 2011).  Hence, instead of using weak 
eigenvectors, eigenvectors (strong) corresponding to largest 
eigenvalues are utilized, as traditionally done when PCA is 
used as a feature reduction tool. Further, instead of using PCA, 
Segmented PCA (Jia and Richards, 1999) is applied. 
 
Segmented PCA (SPCA) is basically applying PCA on 
segments of data independently. Segments are obtained by 
partitioning data along dimensions/bands. In this study, data set 
is partitioned such that each segment is having equal number of 
bands and the number of segments is equal to user defined 
dimensionality l . In the implemented algorithm, SPCA is 
applied to each cluster iteratively, to obtain projected subspace 
for that cluster. For a cluster, each segment is transformed 
independently, by making use of an eigenvector corresponding 
to largest eigenvalue and then concatenated to form a 
transformed matrix having dimension n l , where n  is 
number of pixels in that cluster. Also, centroid for that cluster is 
obtained in projected subspace. Thus for each cluster we have a 
centroid and l  eigenvectors through which projected subspace 
can be obtained. Also, l  is kept fixed in the implemented 
algorithm which is different from the original implementation, 
where dimensionality is reduced from full dimensional space to 
user defined dimensionality l . Some other modifications are 
made to the ORCLUS algorithm, which are – clusters having 
less than five members are deleted, and when two clusters are 
merged, projected energy is recalculated for all the remaining 
clusters, instead of those clusters which are only affected, i.e., 
some of the computations are redundant. 
 

3. EXPERIMENTAL SETUP 

For this study, ORCLUS is implemented in MATLAB®. The 
JAVA™ implementation of the algorithms is available with the 
ELKI (Achtert et al., 2008) framework at 
http://elki.dbs.ifi.lmu.de/. The ORCLUS algorithm is compared 
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with KM, which is a full dimensional clustering algorithm. But 
to be consistent with the ORCLUS implementation, SPCA is 
applied on all the datasets before applying KM (called 
hereinafter as KM-SPCA). In KM-SPCA algorithm, for SPCA, 
number of segments for each dataset is set to user defined 
dimensionality ( l ) value as used in ORCLUS. Further, all 
these clustering techniques are tested on three real 
hyperspectral imagery dataset. For all the datasets, clustering is 
performed only for those regions for which ground reference 
data is available. Overall accuracy and Kappa coefficient 
(Congalton, 1991) are used to assess the clustering accuracy 
using available ground reference data. Besides, both algorithms 
use random selection, thus 10 runs are executed for each 
parameter setting and only the best results are reported here. 
 

4. EXPERIMENTS ON REAL HYPERSPECTRAL 
IMAGERY 

To assess the performance of the clustering algorithms three 
dataset are used in this study. The first hyperspectral image 
used in this study is acquired over Indiana’s Indian Pines region 
in 1992 by Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS). The image has dimension of 145×145 and consists 
of 220 bands, of which 20 bands falling in the water absorption 
region are removed. The ground reference image available with 
the image has 16 land cover classes. However in this study, 
ground reference image utilized by Paoli et al. (2009) and Li et 
al. (2013) is used. The modified ground reference image 
consists of five land cover classes, namely, wood, corn, grass, 
hay and soybean as shown in Figure 2 (a). The false color 
composite (FCC) of the Indian Pine image is shown in Figure 1 
(a). 
 
The second hyperspectral image used in this study is acquired 
over Valley of Salinas, Southern California in 1998 by 
AVIRIS. The image has dimension of 217×512 and consist of 
220 bands, of which 20 bands falling in the water absorption 
region are removed. Spatial resolution of the image is 3.7 m. A 
subscene from the original image is also available for the 
analysis. Subscene named as Salinas-A has dimension of 
83×86. The ground reference image for Salinas-A, available 
with the image, has six land cover classes. The ground 
reference image and land cover classes are shown in Figure 3 
(a). The FCC of the Salinas-A image is shown in Figure 1 (b). 
 
The third hyperspectral image used in this study is acquired 
over University of Pavia, northern Italy by ROSIS–03 optical 
sensor. The image has dimension of 610×340, consist of 103 
bands and having spatial resolution of 1.3 m. A subscene of 
dimension 200×200 from the image is used in this study. 
According to the ground reference data available with the 
image, six out of the nine classes fall in 200×200 subscene. The 
ground reference image and land cover classes are shown in 
figure 4 (a). The FCC of the University of Pavia image is 
shown in Figure 1 (c). 
 
4.1 Parameter Settings 

ORCLUS requires two major parameters to be set by the users, 
which are, number of clusters ( k ) and number of 
dimensions/bands ( l ). Also, algorithm requires value of 0k

 to 

be set, which is nothing but the initial number of clusters seeds. 
It is very difficult to identify number of clusters without having 
any a priori knowledge about the dataset. In this study, the 

value of k  for both the dataset is decided by taking available 
ground reference image in to account. Hence, value of k  for 
Indian Pines dataset is set to five and for Salinas-A and 
University of Pavia dataset it is set to six. Selecting optimum 
number of bands is a non trivial task. Generally, number of 
bands should be such that that the classes present in the image 
can be distinguished by the algorithm. Thus, if the image scene 
is complex and has large number of classes, then rationally 
more bands need to be selected (Du and Yang, 2008). Also, 
virtual dimensionality (Chang and Du, 2004) concept can be 
used to get some indication regarding number of bands to be 
selected. But in this study, value of l  is empirically determined 
and for all the dataset l  is set to 21. The value of 0k  is set to 

10 k  for all the datasets. For KM-SPCA algorithm number of 
clusters is similar to the value used by the ORCLUS k  
parameter.  
 

 
(a) 

 
(b) 

 
(c) 

Figure 1. FCC of  (a) Indian Pines (R: 57, G: 27, B: 17), 
(b) Salinas-A (R: 57, G: 27, B: 17), and (c) 
University of Pavia (R: 102, G: 56, B: 31) 

 
4.2 Results 

The classified thematic maps and the ground reference image 
for Indian Pines dataset are shown in Figure 2 and the 
classification accuracies are reported in Table 1. It can be noted 
form Table 1 that out of the two algorithms, ORCLUS provides 
the best result. The main issue for both the algorithms is with 
identification of corn and soybean class. Many pixels of corn 
class are classified in soybean class and vice versa. Further, for 
KM-SPCA, hay class is problematic. 
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 Wood  Corn  Grass 

 Hay  Soybean  
 

(a) 

 
(b) (c)  

Figure 2. (a) Ground reference image of Indian Pines 
dataset with color codes for different classes, 
and Classification maps obtained by (b) 
ORCLUS, (c) KM-SPCA. 

 
Table 1. Various accuracy indicators obtained by the two 

clustering methods for Indian Pines dataset. 
 ORCLUS KM-SPCA 

Wood 
UA 94.21 94.01 

PA 66.54 75.84 

Corn 
UA 38.02 41.16 

PA 49.33 43.70 

Grass 
UA 71.38 47.13 

PA 89.95 92.24 

Hay 
UA 77.54 0.00 

PA 100 0.00 

Soybean 
UA 71.63 71.05 

PA 58.82 57.18 

OA 65.83 55.66 

Kappa 0.54 0.41 
UA: User accuracy, PA: Producer accuracy, OA: Overall accuracy 
UA, PA & OA values are in percentage 

 

The classified thematic maps and the ground reference image 
for Salinas-A dataset are shown in Figure 3 and the 
classification accuracies are reported in Table 2. It can be 
observed from Table 2 that both algorithms results in similar 
Kappa value. Careful observation of various class accuracies 
further reveals that, for all the classes, both the algorithms are 
behaving similarly.  The similar behaviour can be attributed to 
the SPCA-image (dataset) interaction. Further investigations 
are required in this direction. Also from Table 2 it can be noted 

that the main issue for both the algorithms is with the 
Corn_senesced_green_weeds class. 
 

 

 Brocoli_green_weeds_1 

 Corn_senesced_green_weeds 

 Lettuce_romaine_4wk 

 Lettuce_romaine_5wk 

 Lettuce_romaine_6wk 

 Lettuce_romaine_7wk 

(a) 

  
(b) (c)  

Figure 3. (a) Ground reference image of Salinas-A dataset 
with color codes for different classes, and 
Classification maps obtained by (b) ORCLUS, (c) 
KM-SPCA. 

 
Table 2. Various accuracy indicators obtained by the two 

clustering methods for Salinas-A dataset. 
 ORCLUS KM-SPCA 

Brocoli_green_weeds_1 
UA 100 100 

PA 100 100 

Corn_senesced_green_
weeds 

UA 100 98.28 

PA 26.13 25.68 

Lettuce_romaine_4wk 
UA 51.41 51.59 

PA 96.69 96.69 

Lettuce_romaine_5wk 
UA 97.15 97.15 

PA 100 100 

Lettuce_romaine_6wk 
UA 83.12 80.38 

PA 100 99.22 

Lettuce_romaine_7wk 
UA 100 100 

PA 98.53 96.32 

OA 82.21 81.69 

Kappa 0.78 0.78 
UA: User accuracy, PA: Producer accuracy, OA: Overall accuracy 
UA, PA & OA values are in percentage 
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The classified thematic maps and the ground reference image 
for subscene of University of Pavia dataset are shown in Figure 
4 and the classification accuracies are reported in Table 3. It 
can be observed form Table 3 that out of the two algorithms, 
ORCLUS provides the best result. The main issue for ORCLUS 
is with the identification of shadow class. ORCLUS is 
assigning all the pixels of shadow class to asphalt class. This 
behaviour can be explained as follows: due to small spatial 
presence of shadow class within the dataset, SPCA 
transformation is unable to preserve the sufficient information 
required to make the distinction between asphalt and shadow 
class, and thus to fill the vacant cluster, ORCLUS is dividing 
the class metal sheet into two classes. The class metal sheet is 
having a gabled roof structure and due to which side facing the 
sun and side not facing the sun are classified into two different 
clusters. For KM-SPCA major issue lies with the severe mixing 
of shadow and asphalt class.  
 

 

 Meadows  Trees  Metal Sheet 

 Shadows  Bricks  Asphalt 
 

(a) 

 

(b) (c)  

Figure 4. (a) Ground reference image of University of 
Pavia dataset (200×200 subset) with color 
codes for different classes, and Classification 
maps obtained by (b) ORCLUS, (c) KM-SPCA. 

 
5. CONCLUSION 

In this study, unsupervised classification of hyperspectral 
imagery is carried out by using correlation clustering. As 
hyperspectral imagery is high dimensional data and suffers 
from “curse of dimensionality”, correlation clustering can be 
used to address these issues. The main advantage of correlation 
clustering algorithm lies in its ability to find subset of points 
(clusters) within a projected subspace and further, this projected 
subspace may differ for each cluster. For correlation clustering 
feature reduction method is tightly knitted with the clustering 
procedure. Instead of PCA, SPCA is interlaced with the 

ORCLUS algorithm. Experiments are conducted on three real 
hyperspectral images. For all the dataset, performance of 
ORCLUS is acceptable. Major drawback lies in finding the 
appropriate values of the parameters. Although correlation 
clustering has appealing features for treatment of high 
dimensionality, but still more efforts and investigations are 
required to make it suitable for hyperspectral imagery. 
 
 
Table 3. Various accuracy indicators obtained by the two 

clustering methods for subset of University of Pavia 
dataset. 

 ORCLUS KM-SPCA 

Asphalt 
UA 89.78 81.82 

PA 86.31 42.86 

Meadows 
UA 97.17 97.06 

PA 98.51 98.51 

Trees 
UA 96.31 96.71 

PA 89.70 88.41 

Metal Sheet 
UA 100 99.03 

PA 62.86 72.86 

Shadows 
UA 0.00 16.26 

PA 0.00 100 

Bricks 
UA 74.14 70.33 

PA 98.85 84.48 

OA 90.17 82.78 

Kappa 0.86 0.76 
UA: User accuracy, PA: Producer accuracy, OA: Overall accuracy 
UA, PA & OA values are in percentage 
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