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ABSTRACT:

Data quality for GIS processing and analysis is becoming an increased concern due to the accelerated application of GIS technology
for  problem solving and  decision  making roles.  Uncertainty in  the geographic  representation  of the  real  world  arises  as  these
representations are incomplete. Identification of the sources of these uncertainties and the ways in which they operate in GIS based
representations become crucial in any spatial data representation and geospatial analysis applied to any field of application. This
paper reviews the articles on the various components of spatial data quality and various uncertainties inherent in them and special
focus is paid to two fields of application such as Urban Simulation and Hydrological Modelling. Urban growth is a complicated
process involving the spatio-temporal changes of all socio-economic and physical components at different scales. Cellular Automata
(CA) model is one of the simulation models, which randomly selects potential cells for urbanisation and the transition rules evaluate
the properties of the cell and its neighbour. Uncertainty arising from CA modelling is assessed mainly using sensitivity analysis
including Monte Carlo simulation method. Likewise, the importance of hydrological uncertainty analysis has been emphasized in
recent years and there is an urgent need to incorporate uncertainty estimation into water resources assessment procedures. The Soil
and Water Assessment Tool (SWAT) is a continuous time watershed model to evaluate various impacts of land use management and
climate on hydrology and water quality. Hydrological model uncertainties using SWAT model are dealt primarily by Generalized
Likelihood Uncertainty Estimation (GLUE) method.

1. INTRODUCTION

Data  Quality  is  a  very  important  factor  in  the  process  of
effectively and accurately conveying the information about the
spatial data. The quality of a data set can vary from person to
person,  organization  to  organization  or  from  application  to
application. The quality measures and standards of a data might
differ based on the application so it is the ultimate responsibility
of the user to check and decide the quality of a data. Spatial
dataset,  which  is  suitable  or  appropriate  for  one  project  or
application, need not be necessarily suitable for another. In spite
of the growing concern for spatial database accuracy, most of
the GIS software products do not provide tools for modelling
the errors in individual data layers and for tracking the errors
when  numerous  different  data  layers  are  combined  and
manipulated for GIS based spatial analysis (Forier & Canters,
1996). Errors in a spatial data may creep in at any stage of data
acquisition and transformations. It is therefore crucial to control
the errors at each and every transition from the observation to
the final stage of data preparation and to check and ensure that
the quality is maintained at all stages of data preparation and
analysis. Maintaining data accuracy and eliminating the errors
are the essential  prerequisites for providing information about
the spatial data quality. Error is inherent and inevitable in any
GIS data.  GIS dealing with different layers of data,  collected
from multiple sources, scales, dates and map projections, will
have its complex error and the errors might get propagated even
further.  The  key aspect  of  GIS  functionality  helps  the  users
integrating  and  analysing  data  from  different  sources  with

difference in  scale,  accuracy,  resolution  but  does not  provide
information about the effects of combining these different levels
of  data  uncertainty  on  the  input  maps  and  the  output  maps
resulting from spatial querying and analysis (Forier & Canters,
1996).  Though there are numerous researches on the topic  of
error in spatial databases, there is still a lack of proper tool for
handling  the  errors  in  a  spatial  database.  The  uncertainties
present at one or more stages of representing the real world get
propagated  throughout  the geographical  analysis  affecting the
final output thus making the decision uncertain. Thus, a correct
conceptualization and modelling of the uncertainty is required
and also  modelling the  uncertainties  in  individual  layers  and
tracking them when data layers are combined and manipulated
in GIS based spatial analysis become crucial.

2. SPATIAL DATA QUALITY

The U.S. Spatial Data Transfer Standard lists 5 components of a
data quality which provide necessary information to assess its
suitability. They are data lineage, positional accuracy, attribute
accuracy, logical consistency and completeness. Data lineage
describes the source of the derived data, methods involved in
the derivation and all the transformations that are employed in
producing the final data set. It is important to know the lineage
of the data as most of the errors are the results of errors in the
field. Positional accuracy describes the comparison of the given
spatial data with an independent and more accurate source of
data. It must be determined by comparing the spatial data to an
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independent  source  of higher  accuracy.  Attribute  or  thematic
accuracy is the accuracy of the attributes of its data.  Logical
consistency determines  the  faithfulness  of  the  data  set.
Consistency refers to the uniformity or the agreement among all
the  parts  of  a  given  dataset.  Consistency  problems  arise  in
spatial data when maps are overlaid or data from two or more
maps  are  combined  into  one.  When  two  different  maps  of
different map scale are combined there might be an increased
chance of losing a certain degree of consistency.  Completeness
refers to the aspects of a data set that characterizes it as a whole
and not as a specific or individual element. Completeness can
be divided into two types: feature or entity completeness, value
completeness and attribute completeness. Feature completeness
is  further  divided  into  data  and  model  completeness. Data
completeness is a measure of check on data quality. It is defined
as the measurable error observed between the database and the
specification. If the database contains all the objects with their
specifications, then the database is considered complete. Model
completeness is  the  agreement  between  the  database  and  the
abstract universe required for a particular database application.
Attribute completeness is the measure of degree to which all the
relevant  attributes  of  a  feature  have  been  included.  Value
completeness is the degree to which all the values of attributes
are present.

The  generic  measures  of  a  spatial  data  quality  are  accuracy,
precision,  error  and  uncertainty having  varying  degrees  of
meaning.  Accuracy will be the first and foremost consideration
when a data is analysed and evaluated. It is the extent to which
an estimated value approaches the true value. Data accuracy can
be  divided  into  lineage,  positional,  thematic  and  temporal
accuracies.  Precision is  the deviation  or  dispersion  of a data
from  the  actual  data.  It  is  estimated  in  terms  of  standard
deviation  of  the  observations  over  the  mean.  Positional
accuracy determines the way in which the geographic database
can be ultimately used (Ries, 1993). Positional accuracy can be
described into two components: absolute and relative positional
accuracy.  Absolute  positional  accuracy describes  how closely
all positions on a map or data layer match, corresponding to the
positions of features represented on the ground in a desired map
projection  system.  Relative  positional  accuracy  of  a  map
considers how closely all the positions on a map or data layer
represent their corresponding geometrical relationships on the
ground (Chong et al. 1997). Error is the difference between the
true and estimated values.  Uncertainty can be due to  lack of
data,  measurement  errors  or  sampling  errors.  GIS  users  and
decision  makers  using  maps  containing  uncertainties  face
serious  risks.  Thus,  quality  control  of  the  products  is  very
crucial for decision-making (Wang et al., 2005).

3. ERRORS  IN SPATIAL DATA

Quality is more difficult to define for data. Unlike manufactured
products,  data do not  have physical  characteristics that  allow
quality to be easily assessed. The origin of errors in a spatial
dataset might be either measurement errors or data acquisition
errors  or  data  processing  errors  (Rasdorf,  2000).  Some
methodologies  can  be  implemented  to  reduce  the  impact  of
certain  types  of  errors  but  they  can  never  be  completely
eliminated. The greater the degree of error in a data, the lesser is
the  reliability  of  results  of  analyses  based  on  them.  This  is
referred as GIGO [Garbage In Garbage Out]. Error in a spatial
dataset is inherent and is of two types: inherent or source error
and  operational  or  introduced  error which  contribute  to  the
reduction of quality of data products. Inherent error is the error

present in the source documents and data. Operational error is
the  amount  of  error  produced  through  the  data  capture  and
manipulation  functions  of  GIS.  Inherent  error is  almost
impossible  to  avoid  whereas  operational  error  resulting  from
geo-spatial analysis could be avoided by the appropriate choice
of instruments for measurements, algorithms for processing and
models for analysis (Buckley, 1997). In order to minimize the
error, information about the origin and the properties of errors
should be analysed if not by the end of the analysis process, the
original error, which is easy to identify and eliminate at the first
step,  would  become  more  complex  and  become  almost
impossible to remove. Bad data should, thus, be identified early
(Rasdorf, 2000). As no model is perfect and since the choice of
the  model  is  based  on  the  user,  the  error  rate  rises  if  the
appropriate model is not selected.

While error will always exist in any scientific process, the aim
within  GIS processing should  be to  identify existing error  in
data sources and minimize the amount  of error  added during
processing.  Because  of  cost  constraints  it  is  often  more
appropriate to manage error than attempt to eliminate it. There
is a trade-off between reducing the level of error in a data base
and  the  cost  to  create  and  maintain  the  database  (Buckley,
1997). There is a need for developing error statements for data
contained within geographic information systems (Vitek et al,
1984).  The  integration  of  data  from different  sources  and  in
different  original  formats  (e.g.  points,  lines,  and  areas),  at
different  original  scales,  and  possessing  inherent  errors  can
yield  a product  of questionable  accuracy (Vitek et  al,  1984).
The  accuracy  of  a  GIS  derived  product  is  dependent  on
characteristics  inherent  errors  in  the source  products,  and  on
user requirements, such as scale of the desired output products
and the method and resolution of data encoding (Marble and
Peuquet,  1983).  As  the  number  of  layers  in  an  analysis
increases,  the number of possible  opportunities  for error also
increases (Newcomer, Szajgin, 1984).

3.1 Error Propagation in GIS Analysis

Error propagation in spatial analysis is defined as the process
whereby error  is  propagated  from the  original  dataset  to  the
resulting  dataset  generated  by  a  spatial  operation.  The  two
approaches for modelling error propagation in spatial analyses
are  the  analytical  approach  such  as  error  propagation  law in
statistics  and  simulation  approach  such  as  Monte  Carlo
simulation  for  either  raster  based  or  vector  based  spatial
analysis environment (Abbaspour at al. 2003). When a spatial
dataset is generated, errors and uncertainties starting from data
collection, processing, analysis of data and model development,
get accumulated and propagated to the final output maps. Thus
the data products possess many sources of uncertainties varying
spatially and temporally. To control and maintain the quality of
a spatial data, it  is crucial to spatially identify the sources of
uncertainties,  model their  accumulations and propagation and
finally  to  quantify  them.  Lunetta  et  al  (1991)  systematically
discussed  the  sources  and  classification  of  the  errors  and
uncertainties  and  suggested  priorities  for  error  quantification.
Several  methods  were  used  for  assessing  the  sources  of
uncertainty, including Monte Carlo methods (Heuvelink, 1998;
Openshaw,1992),  Fourier  Amplitude  Sensitivity  Test  [FAST]
(Cukier  et  al.,  1973),  Taylor  Series  (Gertner  et  al.,  1995),
Polynomial  Regression  (Gertner  et  al.  1996)  and  Sobol’s
method (Sobol, 1993).

If  uncertainty  analysis  is  ignored,  there  might  be  incorrect
predictions  and  analyses  that  are  fatally  flaw.  A  sensitivity
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analysis  can  be applied  for  studying  propagation  of  attribute
uncertainty  in  a  spatial  analysis.  If  errors  of  input  data  are
unknown,  a  sensitivity  analysis  can  be  applied  to  study  the
relationships  between  input  and  output  errors  in  a  function
transformation. One limitation of a sensitivity analysis is that it
cannot give the mathematical expression of attribute uncertainty
propagation  analytically.  Lodwick  et  al.  (1988)  reviewed
methods  and  applications  of  sensitivity  analysis  for  attribute
uncertainties analysis. Basically for each source layer in a GIS
operation the uncertainty which is present in the data will  be
propagated through the operation becomes the input of another.

4. UNCERTAINTIES IN SPATIAL DATA

‘Uncertainty’ can refer to imprecision, vagueness, ambiguity or
anything that is undetermined. Imprecision refers to the level of
variation associated with a set of measurements or the lack of
quality  precision.  Vagueness refers  to  a  lack  of  clarity  in
meaning  and  is  normally  associated  with  the  difficulty  of
making a sharp or precise distinction in relation to an object in
the real world. Ambiguity is associated with either one or many
relationships,  or with a form of lack of clarity,  which implies
one or more meanings. Unlike error, uncertainty may be caused
by  mistakes  and  it  may  also  be  caused  by  incomplete
information. The uncertainties in spatial data and analysis result
from four  major  factors:  (i)  inherent  uncertainty  in  the  real
world, (ii) the limitation of human knowledge in cognition of
the  real  world,  (iii)  the  limitation  of  the  measurement
technologies for obtaining spatial data, and (iv) the potential of
generating  and  propagating  uncertainty  in  the  spatial  data
processing  and  analysis  (Shi,  2010).  During  the  past  two
decades,  uncertainty modelling  and  the  quality  of  the  spatial
data had been studied by many researchers and organizations;
for example, Quality elements of spatial data were addressed by
Shi et al. (2002). Different aspects of uncertainty are addressed
by  correspondingly  different  mathematical  theories.  For
instance,  probability  and  statistical  theory  are  employed  to
describe  imprecision.  It  has  been  demonstrated  that  fuzzy
measurements  can  be  used  to  describe  vagueness,  whereas
ambiguity  can  be  quantified  by  discordance  measures,
confusion measures, and non-specificity measures (Shi, 2010).
A measurement  of information  was introduced  by Hartley in
1928 (known as Hartley’s measure) to describe ambiguity in a
crisp  set.  Shannon’s  entropy  measures  uncertainty  in
information  theory,  based  on  the  probability  theory.  Fuzzy
topology  theory  was  used  to  model  uncertain  topologic
relationships between spatial objects (Liu & Shi, 2006).

4.1 Modelling Uncertainties

The  process  of  handling  uncertainty  in  spatial  data  involves
three steps. The first step involves the identifying the kind of
error information available in each of the GIS data layer. The
type  of  error  information  will  determine  which  assumptions
have to  be made when error  is modelled (Lanter & Veregin,
1992). The second step is the definition of a conceptual model
of error. The choice of the error model depends mainly on the
kind of error information that is available and also on the error
propagation  technique  that  will  be  applied.  Finally  an
appropriate  error  propagation  function  has  to  be  selected  to
verify how error is propagated through the GIS operations. One
of the most important hurdles in handling uncertainty in spatial
database  is  the  lack  of  knowledge  about  the  error  which  is
present in the source data. The type of error information which
is  available  will  define  what  kind  of  error  modelling  can  be

applied, whether error can be differentiated thematically and/or
spatially, and as such will largely determine the quality of the
whole  error  modelling  process.  Due  to  a  potentially  large
number of parameters and the heterogeneity of data sources, the
uncertainty of the results are difficult to quantify (Feizizadeh et
al.,  2014).  With increasing interest  in analysis of uncertainty,
many  methods  have  been  developed  to  estimate  the  model
uncertainties. Choice between the methods is according to the
level  of  model's  complexity  and  preferences  of  a  modeller.
Shrestha  &  Solomantine,  (2008)  proposed  various  methods
including analytical methods, approximation methods, sampling
based  methods,  bayesian  methods  and  methods  based  on
analysis  of  the  model  errors.  Analytical  methods  compute
probability  distribution  function  of  model  outputs.  They  are
applicable  for  simple  models  where  the  propagation  of
uncertainty through  the  model  is  straightforward  and  can  be
analytically expressed. Their applicability is generally limited to
models  with  linear  summation  of  independent  inputs.
Approximation  methods  provide  only  the  moments  of  the
distribution  of  the  uncertainty  output  variable.  Some  of
approximation based methods depend on the use of the Taylor
series expansions to propagate the uncertainty through model.

Furthermore, the main advantage of approximation methods is
that it is enough to propagate the moments of each probability
distribution of the model inputs instead of the entire probability
distributions. On the other side, the main disadvantages of these
methods  are,  firstly,  that  they cannot  be applied  to  problems
with  discrete  or  discontinuous  behaviours  because the model
function  should  be  differentiable.  Secondly,  it  is
computationally  intensive  as  they  typically  require  the
evaluation of second order (may be higher) derivatives of the
model.  Thirdly,  although  these  techniques  are  capable  of
propagating central moment of input distributions, information
regarding  the  tails  of  the  input  distributions  cannot  be
propagated.  Sampling  based  methods  are  the  most  common
techniques  to  study  the  propagation  of  uncertainty.  These
methods involve running a set of model simulations at a set of
sampled  points  from  probability  distributions  of  inputs  and
establishing a relationship between inputs and outputs using the
model results. There are two types of sampling, the first one is
simple random sampling that depends on the entire population
and  second  is  stratified  random samples,  which  separate  the
population elements into non overlapping groups called strata.
These methods are able to work with complex and non-linear
model and are capable of solving a great variety of problems.
They do not require access to the model equations. Monte Carlo
methods and Latin Hypercube Sampling methods are the most
common  sampling  based  uncertainty  analysis  methods.
Bayesian methods utilize Bayes' theorem to estimate or update
the  probability distribution  function  of  the parameters  of  the
model  and  consequently  estimate  the  uncertainty  of  model
results. Generalized Likelihood Uncertainty Estimation [GLUE]
is one of the sampling methods that is also based on Bayesian
methods.  The  idea  in  the  methods  based  on  the  analysis  of
model errors is to analyse the model residuals that occurred in
reproducing the observed historical data (Devillers et al., 2010).

5. URBAN LAND USE SIMULATION MODELS

A  model  is  a  simplified  representation  of  reality  in  either
material  form or  symbolic  form for  purposes  of  description,
explanation  and  forecasting  of  planning.  GIS  modelling
involves symbolic representation of locational properties as well
as  thematic  and  temporal  attributed  describing  characteristics
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and conditions  of space and time (Berry J.  K.,  1995).  Urban
models help scientists to analyse the form, speed and impact of
urban growth in the past to assess current trends and to simulate
scenarios  of future development.  A model maybe suitable  for
one area in  terms of parameters and it  has to be localized in
another research area since the underlying factors of growth are
different. An urban model has to be calibrated so as to ‘learn’
the  endogenous  characteristics  of  the  particular  environment
that  they  explain  and  simulate  (Silva  &  Clarke,  2002).
However,  in  order  to  model  urbanisation  processes  across
different areas, it is vital to test the efficiency of the model’s
algorithms at capturing and simulating the land transformations
that  are  specific  to  a  place  (Batty  &  Xie,  1994;  Clarke  &
Hoppen,  1996;  Li  &  Yeh,  2000).  Cellular  Automata  (CA)
models are ideal for modelling land use in areas where data is
unavailable  and  experiencing  rapid  urban  growth  (Hill  &
Lindner, 2011).

5.1 Cellular Automata (CA) Model

Invented by John Von Neumann, cellular automata are discrete
dynamical  systems  that  model  complex  behaviour  based  on
simple, local rules animating cells on a lattice. In CA, space is
represented  by a  uniform M-dimensional  grid  of  cells  (M =
1,2,..)  with  each  cell  containing  some  data.  Among  all
developed Urban Growth Models, CA models perform well in
simulating urban development than conventional mathematical
models.  CA are  able  to  predict  urban  growth  based  on  the
assumption that past urban development affects future patterns
through local interactions among land uses (Sante, et al.,2010).
CA  simplifies  the  simulation  of  complex  systems.  CA  are
appropriate for urban modelling as the process of urban spread
is  entirely local  in  nature.  Thus  CA models  are  outstanding
depicters  of  urban  dynamics  (Divigalpitiya,  et  al.,  2007).
Models based on CA are impressive due to their technological
evolution in connection to urban application. Developing a CA
model involves rule definition and calibration to produce results
consistent  with  historical  data  and  future  prediction  with  set
rules (Batty & Xie, 1994; Clarke & Gaydos, 1998; Yang & Lo,
2003).

Many CA based urban growth models are documented in the
literatures (Triantakonstantis & Mountrakis,  2012).  CA model
reduces spaces into square grids (White & Engelen, 1993). CA
implements  the  defined  transition  rules  in  recursive  form to
match the spatial pattern. CA models are usually designed based
on  individual  preference  and  application  requirements  with
transition rules being defined in an adhoc manner (Li & Yeh,
2003).  Most  of  the  developed  CA  models  need  intensive
computation  to  select  the  best  parameter  values  for  accurate
modelling.

5.2 Cellular Automata Modelling

Earlier CA models viewed space as a lattice of identical cells in
the 1960’s and the 1970’s in modelling urban land uses. Cities
were  considered  as  spatial  distributed  systems.  Batty  &  Xie
(1994) developed life CA models. The model was born on the
idea of Conway's game of life. Clarke et al., (1997) developed
self  modifying  CA.  The  model  was  called  SLEUTH [Slope,
Land cover, Exclusion, Urban, Transportation and Hill Shade]
and  explored  complexities  of  urban  cells  and  incorporated
biophysical  factors  namely:  urban,  road,  transportation,  slope
and exclusive layer. CA offers many advantages for modelling
urban  phenomena including representing urban  dynamics and
space time dynamics (Torrens & O’Sullivan, 2001). CA consists

of  five  basic  elements  namely,  cell  space,  cell  state,  cell
neighbourhood,  transition  rules  and  time.  Several  approaches
had been identified in defining the basic elements of a CA to
simulate  the  process  of  urban  development  (Torrens  &
O’Sullivan,  2001;  Li  &  Yeh,  2000;  Takeyama  & Couelelis,
1997; White et al., 1997).

The space in which an automaton exists is called a cell space or
lattice.  Cell states  most commonly represent land use but may
be used to  represent  any spatially distributed  variable  for the
purpose of modelling its spatial dynamics (White & Engelen, 
 2000). Each cell in CA can take only one state from a set of
state at any one time and it can be a number that represents a
property (Liu, 2008).  Transition rules  define how the state of
one cell changes in response to its current state and the state of
its neighbour (Liu, 2008). These rules determine how CA states
adapt over time and can be designed using any combination of
conditional  statements  or  mathematic  operators  (Benenson  &
Torrens, 2004). The cellular neighbourhood of a cell consists of
the surrounding (adjacent) cells. The neighbourhood is outlined
by the grid (cell space) in which the CA are located. Liu (2008)
defined  time  as the temporal dimension in which a CA exists.
Thus  the states  of all  cells  are  updated  simultaneously at  all
iterations over time.

5.3 Uncertainties of a CA Model

Error Propagation assessment is important for understanding the
results  of  simulation  of  urban  land  use  models.  Initial
conditions, parameter values and stochastic factors influence the
simulation results. Unexpected features may emerge during CA
simulation due to interactions of various local actions. Error and
uncertainty can propagate  through modelling process.  All  the
errors  inherent  in  individual  GIS layers  can contribute  to  the
final errors of the output during the overlay of different layers.
To analyse error propagation, Monte Carlo simulation is used in
many applications due to easy implementation and applicability.
Error propagation in CA models is different from that of GIS
overlay operations. In GIS operations, mathematical expressions
can be given to calculate the errors presented in simple overlay
using  the  logical  AND  and  OR  operators.  But  CA  adopts
complicated configurations using neighbourhood and iterations.

Urban CA models require the input of a large set of spatial data
for  realistic  simulation.  The  outcome  of  CA models  will  be
affected by a series of errors and uncertainties from data sources
and model structures. Simulation is a dynamic process in which
many complex features can arise according to transition rules.
The conversion of the state of a central cell is influenced by the
states of its neighbourhood.  It  is  impossible  to  develop  strict
mathematical  equations  to  represent  the  error  propagation  in
dynamic process. The error problems of CA models are further
exacerbated by taking into account model uncertainties. In CA
simulation,  not  only  input  errors  propagate  through  the
simulation process, but model errors as well. Like any computer
models, CA models could disagree with reality even when the
inputs  were  completely  error-free.  CA  models  are  only
approximation to reality.  Most of the existing CA models are
just loosely defined and a unique model does not exist. Various
types  of  CA  models  have  been  proposed  according  to
individuals’  perception  and  preference,  and  requirements  of
specific applications. The simulation results are hard to repeat
when different CA models are used. A series of inherent model
errors can be identified for CA models (A.Gar-On Yeh & X. Li,
2006).
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6. HYDROLOGICAL MODELS

Hydrologic and water quality models are increasingly used to
evaluate  the impacts  of climate,  land use,  and  land and crop
management practices on the quantity and quality of land and
water resources. Calibration and validation of these models are
necessary  before  using  them  in  research  or  real-world
applications. No universally accepted procedures or guidelines
for  calibration  and validation  currently exist  in  the literature.
However,  there  are  numerous  viewpoints  among  model
developers  and model practitioners  as to  how calibration  and
validation  should  be  implemented  and  reported  to  assist  the
peer-review process and to withstand legal scrutiny (Refsgaard
& Storm,  1995;  Refsgaard & Storm,  1996;  Refsgaard,  1997;
Santhi et al., 2001; Jakeman et al., 2006; Moriasi et al., 2007;
Engel et al., 2007; Bennett et al., 2010).

6.1 Soil and Water Assessment Tool (SWAT) Model

A  hydrologic  simulation  model  is  composed  of  three  basic
elements, which are: (1) Equations that govern the hydrologic
processes, (2) Maps that define the study area and (3) Database
tables  that  numerically  describe  the  study  area  and  model
parameters.  The  SWAT  model  (Arnold  et  al.,  1998a)  is  a
hydrologic/water  quality tool  developed  by the United  States
Department  of  Agriculture-Agriculture  research  Service
[USDAARS]. The SWAT model, as a physically based model
could simulate most of the key processes at basin scale (Arabi et
al., 2007). SWAT allows the use of GIS inputs like DEM, land
use  and  soil  maps.  Sherman  (1932)  developed  the  unit
hydrograph concept of modelling on the basis of superposition.
These models are based on complex physical theory and require
large  amount  of  data  and  computational  time.  Usually,  the
hydrological  processes  of SWAT model  are  divided  into  two
phases:  the land  phase and  the channel  phase.  The Modified
Universal Soil  Loss Equation [MUSLE] was used to estimate
sediment  yield  at  the  hydrologic  research  unit  (HRU)  level.
More  information  about  SWAT  model  was  discussed  by
Douglas-Mankin et al. (2010).

6.2 SWAT Modelling

Watershed  hydrology  and  river  water  quality  models  are
important tools for watershed management for both operational
and research programs (Quilb’e & Rousseau, 2007; Van et al.,
2008;  Sudheer  &  Lakshmi,  2011).  However,  due  to  spatial
variability in  the processes,  many of the physical  models  are
highly complex and generally characterized by a multitude of
parameters (Xuan et al.,  2009).  The SWAT model parameters
can be divided into the conceptual group and the physical group
(Gong  et  al.,  2011).  A typical  hydrological  model  generally
consists  of  a  large  number  of  equations  describing  the
hydrological  processes  and  a  small  number  of  parameters
describing  the  watershed  properties.  Without  a  realistic
assessment  of  parameter  uncertainty,  it  is  difficult  to  have
confidence  in  tasks,  such  as  evaluating  prediction  limits  on
future  hydrological  responses  and  assessing  the  value  of
regional relationships between model parameters and watershed
characteristics (Kuczera & Parent, 1998).

6.3 SWAT Model Uncertainties

Much  attention  has  been  paid  to  uncertainty  issues  in
hydrological modelling due to their great effects on prediction
and further on decision making (Van et al., 2008; Sudheer &
Lakshmi,  2011).  Usually,  the  uncertainty  in  hydrological

modelling is from model structures, input data and parameters
(Lindenschmidt et al., 2007).  Currently,  parameter uncertainty
is a hot topic in the uncertainty research field (Shen et al., 2008;
Sudheer  at  al.  2011).  Several  calibration  and  uncertainty
analysis  techniques  have  been  applied  in  previous  research
work, such as the first order error analysis [FOEA] (Melching &
Yoon, 1996), the Monte Carlo method (Kao & Hong, 1996) and
the  Generalized  Likelihood  Uncertainty  Estimation  Method
[GLUE] (Beven & Binley, 1992). The GLUE method can also
handle  the  parameter  interactions  and  non-linearity implicitly
through  the  likelihood  measure  (Vazquz  et  al.,  2009).  In
addition,  GLUE is a simple concept  and is relatively easy to
implement.  The GLUE method (Beven  & Freer,  2001)  is  an
uncertainty analysis technique inspired by importance sampling
and regional sensitivity analysis (Hornberger & Spear, 1981). In
GLUE,  parameter  uncertainty  accounts  for  all  sources  of
uncertainty;  i.e.,  input,  structural,  parameter  and  response
uncertainties. Hence, this method is widely used in many areas
as an effective and general strategy for model calibration and
uncertainty estimation associated with complex models.

With the advances in computing technology, Monte Carlo based
methods are popular , with strengths in dealing with the non-
linearity  and  interdependency  of  parameters  in  complex
hydrological models. Two Monte Carlo based approaches are
commonly seen in literatures: importance sampling and Markov
Chain Monte Carlo (MCMC) simulation (e.g. Beven & Binley
1992; Smith and Roberts, 1993; Kuczera & Parent, 1998; Bates
& Campbell,  2001;  Gallagher  & Doherty,  2007).  Importance
sampling  is  a  technique  for  randomly  sampling  from  a
probability  distribution  and  was  implemented  in  Generalised
Likelihood Uncertainty Estimation (GLUE) by Beven & Binley
(1992). The efficiency of this algorithm depends strongly on the
choice of the importance distribution. If one or more importance
weights  dominate,  the  algorithm  can  produce  unreliable
inferences (Gelman et al.,  1995).  MCMC is  one  of the most
important numerical technique for creating a sample from the
posterior  distribution,  which  has  been  widely  used  in
hydrological modelling to quantify parameter uncertainties (e.g.
Kuczera & Parent, 1998; Campbell  et al., 1999; Makowski et
al., 2002; Vrugt et al., 2003). Its underlying rationale is to set
up a Markov chain to simulate the true posterior distribution by
generating samples from a random walk. An obvious advantage
of this method is that it does not require linearity assumptions in
model  or  even  that  model  outputs  do  not  need  to  be
differentiable  with  respect  to  parameter  values  (Gallagher  &
Doherty, 2007). Because of its robust performance, MCMC is
often used to assess parameter uncertainties in combination with
GLUE or Bayesian inference by estimating a probability density
for model parameters conditioned on observations. Blasone et
al. (2008) recently found that using a MCMC sampling scheme
coupled with GLUE significantly improves the efficiency and
effectiveness  of  the  methodology  of  GLUE.  Another  widely
used method for parameter estimation and uncertainty analysis
is the Bayesian method which provide more information than
single-point  estimates (Bates & Campbell,  2001;  Engeland et
al., 2005; Gallagher & Doherty, 2007; Yang et al., 2007). The
posterior  distribution  could  be  obtained  by  applying  Bayes’
theorem  based  on  a  prior  distribution  and  observed  data
(Gelman et al., 1995). The Monte Carlo based approaches are
often used to generate a large-enough sample from the posterior
distribution so that desired features of the posterior distribution
may be summarized.
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7. CONCLUSIONS

Uncertainty analysis, a prerequisite for model building, aims at
quantifying the overall uncertainties associated with the model
response as a result  of uncertainties in  the model input.  This
paper  reviewed  the  quality  components  and  uncertainties  of
spatial data with detailed emphasis on urban growth simulation
and hydrological models and their model uncertainties.
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