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ABSTRACT:

In the recent past, remotely sensed data with high spectral resolution has been made available and has been explored for various agri-
cultural and geological applications. While these spectral signatures of the objects of interest provide important clues, the relatively
poor spatial resolution of these hyperspectral images limits their utility and performance. In this context, hyperspectral image enhance-
ment using multispectral data has been actively pursued to improve spatial resolution of such imageries and thus enhancing its use
for classification and composition analysis in various applications. But, this also poses a challenge in terms of managing the trade-off
between improved spatial detail and the distortion of spectral signatures in these fused outcomes. This paper proposes a strategy of
using vector decomposition, as a model to transfer the spatial detail from relatively higher resolution data, in association with sensor
simulation to generate a fused hyperspectral image while preserving the inter band spectral variability. The results of this approach
demonstrates that the spectral separation between classes has been better captured and thus helped improve classification accuracies
over mixed pixels of the original low resolution hyperspectral data. In addition, the quantitative analysis using a rank-correlation metric
shows the appropriateness of the proposed method over the other known approaches with regard to preserving the spectral signatures.

1. INTRODUCTION

Hyperspectral imaging or imaging spectroscopy has gain consid-
erable attention in remote sensing community due to its utility in
various scientific domains. It has been successfully used in is-
sues related to atmosphere such as water vapour (Schlpfer et al.,
1998), cloud properties and aerosols (Gao et al., 2002); issues
related to eclogoy such as chlorophyll content (Zarco-Tejada et
al., 2001), leaf water content and pigments identification (Cheng
et al., 2006); issues related to geology such as mineral detec-
tion (Hunt, 1977); issues related to commerce such as agriculture
(Haboudane et al., 2004) and forest production.

The detailed pixel spectrum available through hyperspectral im-
ages provide much more information about a surface than is avail-
able in a traditional multispectral pixel spectrum. By exploiting
these fine spectral differences between various natural and man-
made materials of interest, hyperspectral data can support im-
proved detection and classification capabilities relative to panchro-
matic and multispectral remote sensors (Lee, 2004) (Schlerf et al.,
2005) (Adam et al., 2010) (Govender et al., 2007) (Xu and Gong,
2007).

Though hyperspectral images contain high spectral information,
they usually have low spatial resolution due to fundamental trade-
off between spatial resolution, spectral resolution, and radiomet-
ric sensitivity in the design of electro-optical sensor systems. Thus,
generally multispectral data sets have low spectral resolution but
high spatial resolution. On the other hand, hyperspectral datasets
have low spatial resolution but high spectral resolution. This
coarse resolution results in pixels consisting of signals from more
than one material. Such pixels are called mixed pixels. This phe-
nomenon reduces accuracy of classification and other tasks (Villa
et al., 2011b) (Villa et al., 2011a).

With the advent of numerous new sensors of varying specifica-
tions, multi-source data analysis has gained considerable atten-
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tion. In the context of hyperspectral data, Hyperspectral Image
Enhancement using multispectral data has gained considerable
attention in the very recent past. Multi-sensor image enhance-
ment of hyperspectral data has been viewed with many perspec-
tives and thus a variety of approaches have been proposed. Algo-
rithms for pansharpening of multispectral data such as CN sharp-
ening (Vrabel, 1996), PCA based sharpening (Chavez, 1991),
Wavelets based fusion (Amolins et al., 2007) have been extended
for hyperspectral image enhancement. Component substitution
based extensions such as PCA based sharpening suffer from the
fact that information in the lower components which might be
critical in classification and detection may be discarded and re-
placed with the inherent bias that exist due to band redundancy.
Frequency based methods such as Wavelets have the limitation
that they are computationally more expensive, requires appro-
priate values of the parameters and in general does not preserve
spectral characteristics of small but significant objects in the im-
age. Various methods (Gross and Schott, 1998) using linear mix-
ing models have been proposed to obtain sub pixel compositions
which are then distributed spatially under spatial autocorrelation
constraints. The issue with these algorithms is that they do not
have robust ways of determining spatial distribution of pixel com-
positions. Recently, methods incorporating Bayesian framework
(Eismann and Hardie, 2005) (Zhang et al., 2008) have been pro-
posed that model the enhancement process in a generative model
and achieve enhanced image as maximum likelihood estimate of
the model. The challenge with these methods is that they make
various assumptions on distribution of data and require certain
correlations to exist in data for good performance.

A core issue with most of these algorithms is that they do not con-
sider the physical characteristics of the detection system i.e each
sensor works in different regions of the electromagnetic spec-
trum. Ignoring this fact leads to injection of spectral information
from different part of the spectrum which may not belong to the
sensor and this leads to modification of spectral signatures in the
fused hyperspectral data. This makes the enhanced image inap-
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Band Number Spectral Range of List of band numbers
of ALI ALI bands (in µm) from HYPERION
Band 3 0.45 - 0.515 11-16
Band 4 0.52 - 0.60 18-25
Band 5 0.63 - 0.69 28-33
Band 6 0.77 - 0.80 42-45
Band 9 1.55 - 1.75 141-160

Band 10 2.08 - 2.35 193-219

Table 1: Set of hyperspectral bands corresponding to each multi-
spectral band

propriate for image processing tasks such as classification, object
detection etc.

Here, we propose a new approach, Hyperspectral Image Enhance-
ment Using Sensor Simulation and Vector Decomposition (HySSVD)
for improving spatial resolution of hyperspectral data using high
spatial resolution multi-spectral data. This paper aims at explor-
ing how well enhanced images from different algorithms mimic
the true or desired spectral variability in the fused hyperspectral
image. Through various experiments we show that there exits a
trade-off between improvement in spatial detail and distortion of
spectral signatures.

2. DATA

Hyperspectral data from HYPERION sensor on board EO-1 space-
craft has been used for this study. HYPERION provides a high
resolution hyperspectral imager capable of resolving 220 spec-
tral bands (from 0.4 to 2.5 micrometers) with a 30-meter spatial
resolution and provides detailed spectral mapping across all 220
channels with high radiometric accuracy.
For multispectral data, ALI (Advanced Land Imager) sensor on
board EO-1 spacecraft has been used. ALI provides Landsat type
panchromatic and multispectral bands. These bands have been
designed to mimic six Landsat bands with three additional bands
covering 0.433-0.453, 0.845-0.890, and 1.20-1.30 micrometers.
Multispectral bands are available at 30-meter spatial resolution.

Since hyperspectral bands have very narrow spectral range (10
nm), they are also referred by their center wavelength. Table 1
shows spectral range of multispectral bands that mimic six Land-
sat bands together with list of hyperspectral bands whose center
wavelength lie in the range of different multispectral bands.

Since, both hyperspectral data and multispectral data are at 30m
spatial resolution, hyperspectral data has been down sampled to
120m in this work. Hence the ratio of 4:1 between multispectral
data and hyperspectral data has been established. Moreover, in
this setting hyperspectral data at 30m can be used as validation
data against which output of different algorithms can be com-
pared. Here, the hyperspectral data at 30m will be referred to as
THS (True Hyperspectral) and hyperspectral data at 120m will be
referred as OHS (Original Hyperspectral) which will be enhanced
by the algorithms. Multispectral data at 30m will be referred to
as OMS. Figure 1 shows RGB composites of datasets used in this
study. The algorithms use OHS with OMS to generate the fused
hyperspectral image (FHS) at 30m. This fused result would be
compared with THS for performance analysis. Figure 1(d) is the
class label information for the given area. As we can see, the re-
gion contains four major classes namely Corn (green), Soyabean
(yellow), Wheat (red) and Sugarbeets (brown) with pixel distri-
bution shown in table 2. This image corresponds to an area in
Minnesota, USA. The image has been taken on 21st July, 2012.

Class Pixel Count
Corn 45708

Soyabean 98291
Wheat 46039

Sugarbeets 20904

Table 2: Pixel Count of major classes

(a) (b) (c) (d)

Figure 1: Study Area. (a) True Hyperspectral (THS) image at
30m, (b) Original Multispectral (OMS) image at 30m, (c) Origi-
nal Hyperspectral (OHS) image at 120m, (d) Ground Truth map
at 30m

The ground truth is available through NASA’s Cropscape website
(Han et al., 2012).

In order to properly show the visual quality of various images,
magnified view of the part of image enclosed in dotted lines in
figure 1(a) will be used. For statistical analysis, the complete
image will be used.

3. PROPOSED APPROACH

The algorithm presented here, HySSVD has three main stages.
Figure 2 shows the flowchart of the algorithm. As a preprocessing
step, original low resolution hyperspectral data (OHS) is upscaled
to the spatial resolution of original multispectral data (OMS). The
upscaled data will be referred as UHS. In the first stage, simu-
lated multispectral (SMS) bands are generated using UHS bands
and Spectral Response Functions (SRF) of OMS bands. In the
second stage, each SMS band is enhanced using its correspond-
ing OMS band to generate fused multispectral (FMS) bands. In
third stage, Fused Hyperspectral (FHS) bands are computed by
inverse transformation using vector decomposition. Following
subsections explain each stage in detail.

3.1 Generating Simulated Multispectral (SMS) bands

Hyperspectral data has been considered in remote sensing to cross-
calibrate a hyperspectral sensor with another hyperspectral or mul-
tispectral sensor (Teillet et al., 2001), and to simulate data of
future sensors (Barry et al., 2002). The algorithm exploits sen-
sor simulation capabilities of hyperspectral data using spectral
response function of the sensor to be simulated. Figure 3 shows
spectral response function of a multispectral band from ALI sen-
sor (blue curve). The spectral response function of a sensor de-
fines the probability that a photon of a given wavelength is de-
tected by this sensor. As we can see from the response function
of the band, it is non zero for only some wavelengths and its
response varies for different wavelengths. The value recorded by
the sensor is proportional to the total incident light that it was able
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Figure 2: Flowchart of the Algorithm
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Figure 3: Spectral response function of band 9 of ALI

to detect. In other words, all the wavelengths that a sensor is able
to detect contributes to its value. The weight of the contribution
of a particular wavelength is determined by the SRF value at that
wavelength. Ideally, to simulate a multispectral band, we need
light from all wavelengths within the SRF of that band. But this
level of spectral detail is not available in real sensors. Hyperspec-
tral sensors are the closest approximation for the data that can be
used for simulating a sensor with wide SRF. As mentioned be-
fore, SRFs of hyperspectral bands are generally referred by their
center wavelengths as they are very narrow. Figure 3 shows these
center wavelengths as vertical red lines. The hyperspectral bands
that contribute in simulation of a multispectral band are the ones
which have their center wavelength within the spectral range of
the multispectral band. Table 1 shows the set of hyperspectral
bands selected for each multispectral band.

Many methods exist for simulating multispectral data with de-
sired wide-band SRFs. Most methods synthesize a multispectral
band by a weighted sum of hyperspectral bands, and they are dif-
ferent in their ways in determining the weighting factors. Some
methods directly convolve the multispectral filter functions to the
hyperspectral data (Green and Shimada, 1997), which is equiva-
lent to using the values of the multispectral SRF as the weighting
factors. Some have used the integral of the product of the hyper-
spectral and multispectral SRFs as the weight (Barry et al., 2002).
Few have calculated the weights by finding the least square ap-
proximation of a multispectral SRF by a linear combination of the
hyperspectral SRFs ( Slawomir Blonksi, Gerald Blonksi, Jeffrey
Blonksi, Robert Ryan, Greg Terrie, Vicki Zanoni, 2001). Bowels
(Bowles et al., 1996) used a spectral binning technique to get syn-
thetic image cubes with exponentially decreasing spectral resolu-
tion, where the equivalent weighting factors are binary numbers.

The algorithm presented here has adopted the method described

in (Green and Shimada, 1997). Firstly, all OHS bands are up-
scaled to the spatial resolution of the given OMS data to get UHS.
If m is the number of bands falling in the range of the multispec-
tral band k (OMSk), then let ~Wk be the m dimensional weight
vector calculated using spectral response function of the multi-
spectral band k. For a pixel at location i,j , let ~UHSi,j,k be the
m dimensional vector containing the intensity values of those m
hyperspectral bands corresponding to (OMSk). The simulated
value SMSi,j,k for the pixel i,j can be obtained using the follow-
ing equation.

SMSi,j,k = ~WT
k

~UHSi,j,k (1)

which is the inner product of the two vectors. The vector ~WT
k is

computed as
W i

k = SRFk(Ci) (2)

where, SRFk is the spectral response function of the multispec-
tral band k and Ci is center wavelength of the hyperspectral band
i.

The reason for creating simulated multispectral bands is two-fold.
First, since high spatial detail is available at multispectral reso-
lution, transferring spatial detail at multispectral level would be
more effective than transferring spatial detail from a multispectral
band to a hyperspectral band directly. Second, this will ensure
that the algorithm is not enhancing a hyperspectral band whose
spectral information is not part of a multispectral band in ques-
tion. The drawback of this approach is that some hyperspectral
bands will not be enhanced. But other approaches will also cause
spectral distortion in these bands as multispectral data does not
contain information about these bands.

3.2 Generating Fused Multispectral Bands

After stage 1, SMS bands are obtained. These bands have spa-
tial resolution same as that of OMS bands but have poor detail as
compared to OMS bands because SMS bands are simulated using
upscaled hyperspectral bands. In this step, spatial detail from an
OMS band is transferred to its corresponding SMS band. This
step can be seen as sharpening of a grayscale image using an-
other grayscale image. One relevant concern here can be that why
there is a need to transfer detail and create a fused multispectral
band. Since, theoretically an SMS band is just low spatial reso-
lution version of its corresponding OMS band, then OMS band
itself can be treated as the fused high spatial resolution version
of SMS bands. But in many real situations multispectral data and
hyperspectral data can be from different dates. Because of differ-
ent atmospheric conditions and other factors, an OMS can not be
taken as a direct enhanced version of its SMS band. Hence, we
need methods that can transfer only spatial detail while not dis-
torting the spectral properties of the SMS band. Many methods
exist to do this operation. In this paper Smoothing Filter Based
Intensity Modulation (SFIM) algorithm has been adopted (Liu,
2000). SFIM can be represented as

FMSi,j,k =
SMSi,j,k ∗OMSi,j,k

OMSi,j,k

(3)

where, OMSi,j,k, SMSi,j,k and FMSi,j,k are original mul-
tispectral value, simulated multispectral value and fused multi-
spectral value respectively at a pixel i,j for the band k. OMSi,j,k

is the mean value calculated by using an averaging filter for a
neighborhood equivalent in size to the spatial resolution of the
low-resolution data. Similarly this operation can be applied to
enhance each SMS band leading to the calculation of the corre-
sponding FMS band.
Figure 4 shows results of this step on only the part enclosed in
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(a) OMS band5 (b) SMS
band5

(c) FMS band5

Figure 4: Performance of the Stage 2 spatial detail transfer

dotted lines in figure 1(a) due to space constraints. Figure 4(a)
shows band 5 from original multispectral data (OMS5), while
Figure 4(b) shows simulated multispectral band 5 (SMS5) cor-
responding to band 5 of ALI data. Figure 4(c) shows the fused
result for band 5 (FMS5). It is clearly evident that features have
become sharper in the fused result. Now this detail has to be
transferred to each hyperspectral band that contributed in simula-
tion of this band.

3.3 Generating Fused Hyperspectral (FHS) Bands Using Vec-
tor Decomposition Method

The previous stage generates FMS bands. The spatial detail from
FMS bands has to be transferred into hyperspectral bands. Here,
we explain the process of detail transfer at this stage. Expanding
equation 1, we have

w1uhs1+w2uhs2+ ...wm−1uhsm−1+wmuhsm = SMSi,j,k

(4)
where wi and uhsi are elements of vectors ~Wk and ~UHSi,j,k

respectively. This is an equation of a m dimensional hyperplane
on which we know a point, ~UHSi,j,k. This plane will be referred
as PSMS . Also, say normal of this plane is n̂ . Say ~FHSi,j,k

be the m dimensional vector representing fused hyperspectral
value for the m selected bands of multispectral band k. Fused
multispectral (FMS) data can alternatively be estimated using the
sensor simulation strategy from section (3.1).

w1f1 + w2f2 + ...wm−1fm−1 + wmfm = FMSi,j,k (5)

where wi and fi are elements of vectors ~Wk and ~FHSi,j,k re-
spectively. Again this is an equation of an m dimensional hy-
perplane on which we wish to estimate the point ~FHSi,j,k. This
plane will be referred as PFMS . Equations 4 and 5 represent two
parallel hyperplanes which are separated by a distance d equal
to the difference between the simulated and fused multispectral
values at that pixel ( ~FMSi,j,k - ~SMSi,j,k).

Since, we aim to achieve enhanced spectra with least spectral
distortion, we estimate point ~FHSi,j,k as a point on the plane
PFMS which is closest to the point ~UHSi,j,k on the planePSMS .
Hence, this point is the intersection of the plane PFMS and the
line perpendicular to plane PSMS and passing through point
~UHSi,j,k. Figure 5 illustrates the method of estimation using

two dimensions.

The two axes represent two bands of hyperspectral data corre-
sponding to a multispectral band. Say, x and y are the values in
these bands for a pixel, d is the difference between the simulated

Figure 5: Geometric interpretation of Vector decomposition
based detail transfer

multispectral value and the fused multispectral value at that pixel.
P1 is the plane that represents equation 4 and P2 is the plane
that represents the equation 5. Here (x,y) can be understood as
the components of vector ~UHSi,j,k and (x+dcosα, y+dsinα)
can be understood as the components of ~FHSi,j,k.

4. RESULTS AND DISCUSSION

In order to compare the performance of HySSVD with exist-
ing work, Principal Component Analysis based technique (PCA)
(Tsai et al., 2007) has been implemented for comparison.

PCA first takes the principal component transform of the input
low spatial resolution hyperspectral bands corresponding to a given
multispectral band. Then first principal component is replaced by
the high spatial resolution multispectral band. Then an inverse
transform on this matrix returns a high spatial and spectral reso-
lution hyperspectral bands.

These methods have been compared qualitatively and quantita-
tively. Qualitative analysis has been done by visual inspection of
different fused images. For quantitative analysis, classification
accuracy on two major classes has been observed. Another met-
ric, Kendall Tau rank correlation has been used to measure the
spectral signature preservation of different algorithms.

4.1 Qualitative Analysis

In order to see the impact of various algorithms on visual quality
of the images, here we show a part of the image.

From visual inspection, we can see that HySSVD has slightly
improved the spatial details in the image. HySSVD has slightly
sharpened the patch boundaries. But fused image from PCA has
much better spatial detail than fused image from HySSVD. So,
for visual analysis of RGB composites, PCA based fused image
is more suitable among the two algorithms.

4.2 Quantitative Analysis

As we have seen in the previous section, HySSVD improves vi-
sual quality but not as well as PCA. Now we will analyze the per-
formance of HySSVD quantitatively. Any method that aims to
do image enhancement should not only improve the visual qual-
ity but also preserve the spectral characteristics so that the fused
image can be used for image processing tasks such as classifica-
tion.
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(a) FHS image
from HySSVD

(b) FHS image
from PCA

(c) THS image (d) OHS im-
age

Figure 6: Magnified view of the selected part of the Study Area

Image Type Soyabean Wheat Overall
OHS 76.45 75.27 76.10
THS 92.61 92.56 92.60

FHS-HySSVD 88.85 89.40 89.02
FHS-PCA 92.06 91.82 91.99

Table 3: Classification Performance on mixed pixels for different
image types

Here, we aim to demonstrate that classification results after fu-
sion are better than without fusion and compare different algo-
rithm based on their classification accuracy. In order to make
the evaluation setup less complex, we will consider only the bi-
nary classification case. We use binary Decision Tree to classify
the given image into two classes namely Wheat and Soybean.
500 pixels for each class were randomly selected for learning the
model. Table 3 shows the overall accuracy and class based ac-
curacy for different types of images only on mixed pixels as we
want to evaluate algorithms for their ability to improve spatial de-
tail of mixed pixels. As explained before, mixed pixels contain
spectral combination from multiple land cover types. Since OHS
is at 120 meters, each OHS pixel contains 16 THS pixels. So, if
it is assumed that pixels at 30 meters are pure, then we can de-
fine mixed pixels for OHS. Specifically, any OHS pixel contains
THS pixels belonging to more than one land cover type then that
pixel is considered as mixed pixel. Since, we are evaluating the
results at THS resolution, we considered only those pixels which
are part of mixed pixels at OHS resolution.There are 10223 pixel
of Soyabean class which are part of any mixed pixel. Similarly,
we have 4559 Wheat pixel that are part of any mixed pixel. Accu-
racy values are average accuracy values from 1000 random runs.

Firstly, we can see that from Table 3 that THS has highest class
based and overall accuracy. This matches our expectation be-
cause THS is itself the high spatial and spectral resolution data
that different methods are trying to estimate. HySSVD shows
improvement in classification accuracy over OHS. This demon-
strates that HySSVD has been able to improve the quality of the
input image for image processing tasks such as classification.
When compared with the baseline algorithm, PCA appear to do
better than HySSVD.

We have observed that fusion methods have lead to improvement
in discriminative ability of the data. It is important to note that
classification performance depends on the classification task at
hand. If the land cover classes are very easy to separate then
small distortions in spectral signatures will not impact classifi-
cation performance. But for various applications that use hyper-
spectral data, preserving subtle features of the spectral signature
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Figure 7: Spectral Signatures of class Soyabean and Wheat

Method Soyabean Wheat Overall
FHS-PCA 0.90 0.68 0.83

FHS-HySSVD 0.90 0.78 0.86
OHS 0.90 0.76 0.86

Table 4: Class wise Rank Correlation values for different meth-
ods on mixed pixels

of a land cover class is essential. Hence, improvement in clas-
sification should not be the only measure for evaluating spectral
fidelity. Figure 7 shows the spectral signature of Wheat and Soy-
abean. Vertical lines divides the signature into six sections, each
corresponding to a multispectral band. As we can see from the
figure, both spectral signatures have subtle features(local mini-
mas and maximas) that might be of interest in some applications.
Hence, it is important to preserve these features in the fused prod-
uct. Hence it is important that different algorithms maintain the
relative ordering of values in spectral signatures and hence pre-
serving these subtle features of the spectral signatures. Rank
correlation measures the consistency between two given order-
ings. In our case, we want to measure whether spectral signatures
from HySSVD are more consistent with true spectral signatures
or spectral signatures from PCA are more consistent. Here we
have used Kendall Tau rank correlation measure. Kendall Tau
correlation is defined as -

KT =

∑n−1

i=1

∑n

j=i+1
sign((Bi −Bj)(Ii − Ij))∑n−1

i=1

∑n

j=i+1
1

(6)

where, B is the reference series of length n and I is the input
series of length n. In words, KT measure the difference between
the number of concordant pairs and discordant pairs normalized
by total number of pairs. A pair of indices in the series are con-
sidered concordant if both reference and input series increase or
decrease together from one index to other. Otherwise, the pair is
considered discordant.

Table 4 shows class wise and overall rank correlation values on
mixed pixels for different algorithms. From above table, we can
see that HySSVD has done a good job of preserving relative or-
dering of values in the spectrum. For class Soyabean, HySSVD
has not shown any improvement but it has notably improved con-
sistency for pixels of class Wheat. When compared with the base-
line algorithm, PCA perform poorly than HySSVD. In order to
understand these results in more detail, we plot the scatter plot
of Kendall Tau value for different pairs of data images as shown
in figure 8 and 9. In order to reduce number of plots, we have
compared HySSVD with only PCA.

Figure 9(a) compares HySSVD and PCA. As we can that the dis-
tribution is mostly around the red line. This shows that both algo-
rithm are performing similarly. But it is also important to see how
much improvement has been made over the original hyperspectral
data (LR). Both algorithms have comparable performance with
LR and hence there is not much gain for this class. Also, note that
even tough overall the points are distributed around the line but
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Figure 8: Scatter plot of Kendall Tau values for class Soyabean

Method Soyabean Wheat Overall
FHS-PCA 0.93 0.85 0.91

FHS-HySSVD 0.94 0.89 0.92
FHS-WAV 0.93 0.81 0.90

OHS 0.94 0.90 0.93

Table 5: Class wise Rank Correlation values for different meth-
ods on pure pixels

PCA has more variance than HySSVD. This shows that PCA de-
viates more from the original signature and has more propensity
for spectral distortion than HySSVD. For class wheat as shown
in figure 9, HySSVD is performing better than PCA. At the same
time, HySSVD also shows slight improvement over LR. On the
other hand, PCA is worse than the original data itself. This tells
us that PCA is more aggressive while doing enhancement and
deteriorates the relative spectral properties. For HySSVD we can
see that it performs very similar to LR which means that it is more
conservative and does not alter the LR spectrum very drastically
and hence tends to avoid spectral distortion.

A similar analysis is required on pure pixels to ensure that the
algorithms are not introducing unwanted characteristics into the
signatures that do not need enhancement. Table 5 shows the per-
formance on pure pixels.

Again, we can see that HySSVD has maintained the spectral char-
acteristics of pure pixels more effectively than PCA. Figure 10
shows anecdotal example of spectral distortion in pure and mixed
pixels. Figure 10(a) shows spectral signature of the first 25 bands
of a pure pixel. We can see that the amount of distortion by
HySSVD is minimal whereas PCA has introduced slight distor-
tion in signature. Figure 10(b) shows spectral signature of the first
25 bands of a mixed pixel. We can see that relatively large distor-
tion of signature has happened in PCA based image. Even tough
signature from HySSVD is also different from required THS sig-
nature but it has less distortion.

5. CONCLUSION

The paper presents a novel way of fusing hyperspectral data and
multispectral data to obtain an image with good characteristics
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Figure 9: Scatter plot of Kendall Tau values for class Wheat
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Figure 10: Example Spectral signatures showing spectral distor-
tion

of both. Each stage of the algorithm has many choices of sub
techniques. For each stage a very fundamental technique has
been chosen as a proof of concept, in order to make the idea less
complex and easy to understand. Like most other algorithms, the
performance of the algorithm might decrease at larger resolution
differences due to upscaling of the data in the initial stage. Since
the algorithm enhances only those hyperspectral bands which lie
in wide-band SRF ranges of the multispectral bands, this leaves
some of the bands unsharpened. This is the tradeoff that has been
made to maintain spectral integrity of the fused output. At the
application level, this drawback will not be consequential as the
algorithm will give subsets of enhanced data in each region of
the electromagnetic spectrum according to the SRFs of the mul-
tispectral bands. This will allow correct classification and mate-
rial identification capabilities. Comparison with a baseline algo-
rithm shows that HySSVD has some potential of improving spa-
tial quality while preserving spectral properties. Through exper-
iments we showed that HySSVD has capability to improve per-
formance in classification task. By careful analysis of the char-
acteristics of the spectral signatures we demonstrated that base-
line algorithm does distort spectral properties. The performance
of HySSVD is limited due to very conservative choice of vector
decomposition which does not alter original low resolution sig-
nal drastically but this also prevents HySSVD from introducing
spectral distortion.
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