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ABSTRACT: 

The land use changes in forested landscape are highly complex and dynamic, affected by the natural, socio-economic, cultural, political 
and other factors. The remote sensing (RS) and geographical information system (GIS) techniques coupled with multi-criteria evaluation 
functions such as Markov-cellular automata (CA–Markov) model helps in analysing intensity, extent and future forecasting of human 
activities affecting the terrestrial biosphere. Karwar taluk of Central Western Ghats in Karnataka state, India has seen rapid transitions in 
its forest cover due to various anthropogenic activities, primarily driven by major industrial activities. A study based on Landsat and IRS 
derived data along with CA–Markov method has helped in characterizing the patterns and trends of land use changes over a period of 
2004–2013, expected transitions was predicted for a set of scenarios through 2013-2022. The analysis reveals the loss of pristine forest 

cover from 75.51% to 67.36% (1973 to 2013) and increase in agriculture land as well as built-up area of 8.65% (2013), causing impact on 
local flora and fauna. The other factors driving these changes are the aggregated level of demand for land, local and regional effects of 
land use activities such as deforestation, improper practices in expansion of agriculture and infrastructure development, deteriorating 
natural resources availability. The spatio temporal models helped in visualizing on-going changes apart from prediction of likely changes. 
The CA-Markov based analysis provides us insights into the localized changes impacting these regions and can be useful in developing 
appropriate mitigation management approaches based on the modelled future impacts. This necessitates immediate measures for 
minimizing the future impacts.  

 

1. INTRODUCTION 

The land use/land cover (LULC) alterations due to human 
activities have been affecting the environment at global scale. The 
LULC changes in mid-20th century have resulted in rapid 
transitions of forest with crop land expansion (Safriel, 2007) and 
decline in eco-environment quality of landscape. LULC changes 

have affected adversely the regional biodiversity through loss of 
habitat, fragmentation, isolation, and degradation of remaining 
habitat (Hepinstall et al., 2008). The comprehensive information 
on land-use changes will facilitate effective land management 
while enhancing the capability of assessing and predicting future 
land-use change trends (Veldkamp and Lambin 2001; Verburg 
and Overmars, 2009). Therefore, an understanding of how the 
current trajectory of landscape dynamics is essential for local and 

regional planners to mitigate environmental impacts (Clark et al. 
2001; Wimberly and Ohmann, 2004). Models forecasting changes 
in the landscape are required to address regional issues at global 
as well as local scales. The modeling of landscape dynamics 
should focus to mimic large scale global processes as the 
dynamics of human-nature systems are influenced by larger scale 
markets and governance that affects the local people and 
ecosystems far away (Liu et al., 2007). 

Modelling and Geovisualisation of landscape dynamics helps in 
understanding the causes and consequences. Modelling tools are 

suitable to make an accurate assessment of impacts on ecosystem 
with the predict land use changes, to get a better knowledge of the 
drivers behind it (Haase and Schwarz, 2009) and also its potential 
impacts. Biophysical features such as percent steep slope or 
wetlands, topography (Schneider and Pontius, 2001), distance to 
roads and central business districts/markets (Turner et al., 1996), 

proximity to residential areas (Schneider and Pontius, 2001) are 
important predictors of land cover changes in modelling. Recent 
studies have also found that land use configuration (van Eck and 
Koomen, 2008) and neighboring land use (Hagoort et al., 2008) 
have an effect on land use dynamics. The modelling of landscape 
changes focuses on analysing the biophysical, socio-economic 
context at multiple scales, visualising and quantifying the 
potential effects of land use changes to support policy makers in 

their decision making process. The wide range of land use change 
models already exist, ranging from specific case studies to generic 
tools (Bell, 2001; Batty et al., 2003; Sheppard and Meitner, 2005;  
Nole et al., 2013; Larocque et al., 2014), differing in terms of their 
structure, representation in space, time, human decisions, and also 
in methodological implementation (Haase and Schwarz, 2009). 
The remote sensing techniques for identifying land uses, 
measuring the biophysical properties of ecosystems and detecting 
environmental change will be effective by integrating with 

existing ecological data. The temporal remote sensing data 
available from 1970’s provide opportunities for sustainable 
landscape management (Ramachandra et al., 2014).  
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Cellular Automata (CA) with Markov approach has been widely 
applied for land use assessment and future prediction. CA with 
Markov makes analyses more  powerful  in  the  utilization  of  
land  use  dynamics  (Xin et al.,2012; Arsanjani et al., 2013; 
Riccioli et al., 2013), as it can assess probability parameters 

related to Transitional Probability Matrix, Transitional Area 
Matrix, and Markov factors. The specification of transition rules 
is the most essential part of a CA model to obtain realistic 
simulations of land use and land cover change, which helps in 
complicated decision-making process (Verburg et al. 2004; 
Moreno et al., 2009). A central concern of CA is the validity of 
the neighbourhood rules, which specify the behavior of land-uses 
(Sui and Zeng, 2001; Hansen, 2012), while it is noted that the 

combined effects of spatial externalities, in the sense of mutual 
attraction and repulsion of land-use types, average out over the 
region if chosen appropriately. If these rules are defined and 
calibrated on an ad-hoc basis by trial and error methods, the 
model results will be ambiguous (Hagoort et al., 2008). CA–
Markov model accomplishes the contiguity rule, which simulates 
the growth of a land use class near to the existing similar land use 
(Kamusoko et al., 2009) except at the border.  

This paper aims at the study and assessment of Land use changes 
in the Karwar taluk, a region within the Western Ghats ecological 
region.  The objectives of this analysis is to (i) identify the 
temporal changes between the period 2004-2013, (ii) find out the 
key neighbourhood effects that influence the processes of land use 
change, primarily Urbanization in this region and how their net 

intensity can influence the high forested landscape, (iii) 
visualization of landscape in 2022 by incorporation of previous 
land use extents and course of these locational interaction. 

2. MATERIALS AND METHOD 

 

2.1 Study area 
 
Karwar taluk is the coastal taluk of Uttara Kannada district in 
Karnataka (Figure 1). The taluk has Arabian Sea in the west side 
and the Western Ghats on the eastern side. Karwar town is the 
administrative headquarters of Uttara Kannada district, lies about 
15 kilometers south of the Karnataka-Goa border. The taluk has a 
population of 153165 and population density is accounted to be 

206 persons/sq.km. In Karwar taluk, as one goes from west to east 
the forest types gradually change from laterite thorn, deciduous to 
moist deciduous and laterite semi-evergreen to evergreen. The 
deciduous forests in lower slopes tend to be towards high forests, 
yielding valuable timber, the upper slopes and lower valleys and 
banks of perennial streams contain patches of evergreen forests. 
Karwar taluk forest’s major portion is part of the conservation 
reserve Anshi-Dandeli Tiger Reserve (ADTR), showing the 
ecological sensitiveness of the region.  

 

 

Figure 1. Study area-Karwar taluk. 

The Karwar region displays high economic development and a 

high density of population. A little to the south, Kali river joins 
the Arabian Sea, forming an estuary and supporting fishing 
activity. The Karwar town is situated in the Kali river basin, the 

port of Karwar is always active as a result of mining activity in 
the district and nearby districts.  The taluk has two major hydro-
electric projects on Kodasalli dam and theKadra dam on Kali 
river. The Kaiga Nuclear power project is situated in thick 
primeval evergreen forest. The Sea Bird project of Navy has 
added one more dimension to this place. All these cascading 
developmental projects have driven the unplanned growth in the 
district causing serious threat to flora, fauna and also rise in land 

surface temperature (Bharath et al., 2013), flash floods. The taluk 
is rich in minerals such as iron, lime-stone, manganese, bauxite, 
molluscan shells etc., the total mining area reported to be 148.94 
sq.km causing various disturbances to the ecosystem, soil erosion 
by runoff causing damage to forests, agriculture and rivers. 

 

2.2 Method 
 

Method followed in the analysis is out lined in the Figure 2. The 
analysis involves (i) data collection and preprocessing, (ii) land 
use analysis, (iii) modelling and prediction.   
 

 
 

Figure 2. Method used in the analysis. 

 
2.2.1 Data and preprocessing: The remote sensing (RS) data 
used in the study includes Landsat ETM+ (2004, 2007 and 2013), 
IRS LISS-IV MX (2010), and Google Earth 
(http://earth.google.com). The Landsat data is cost effective, with 
high spatial resolution and freely downloadable from public 
domains like GLCF (http://glcfapp.glcf.umd.edu:8080/esdi/ 
index.jsp) and USGS (http://glovis.usgs.gov/) and IRS data is 

procured from National Remote Sensing Center, Hyderabad, 
India. Ancillary data provides helpful information to assist the 
interpretation of different land use types from remotely sensed 
data. Ancillary data used are the Survey of India topographic 
maps at varying scales (1:50000, 1:250000). Topographic maps 
provided ground control points to rectify remotely sensed images 
and scanned historical paper maps. The population data (2001, 
2011 census) collected from the Directorate of Census operation 

is used to analyse the population distribution of study area. Other 
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ancillary data includes land cover maps, administration boundary 
details, transportation data (road network) and field data using 
GPS (Global Positioning System – Garmin GPS). The raw 
satellite data are geo-corrected, followed by radiometric 
correction and resampled to 30 m resolution to maintain common 

resolution for multi temporal data comparisons and geo-
visualisation. 
 
2.2.2 Temporal Land use analysis: The temporal land use 
analysis was carried out by using supervised classification scheme 
of Gaussian maximum likelihood classifier under 7 different land 
use classes as shown in Table 1. The field data (65%) covering 
various land use categories was used for training and rest used for 

validation. To classify earlier  time-period  data,  training  
polygon  along with  attribute  details  were  compiled  from  the  
historical  published topographic  maps, French Institute  
vegetation  maps,  revenue  maps, land records available from 
local regulatory authorities,  etc. Land use analysis was carried 
out by using free and open source GIS software GRASS- 
Geographic Resource Analysis Support System, providing robust 
support for vector and raster data processing 

(http://wgbis.ces.iisc.ernet.in/grass/). Improvements in the 
development of free and open source software have emerged as an 
alternative economical approach for a wide range of applications 
with multiple data formats (Bharath et al. 2012). An accuracy 
assessment is performed to validate the classification, which is a 
statistical assessment that decides the quality of the information 
derived from remotely sensed data considering reference pixels. 
These test samples are then used to create the error matrix (also 

referred as confusion matrix) kappa (κ) statistics and overall 
(producer's and user's) accuracies to assess the classification 
accuracies (Lillesand et al., 2004). 

S.NO. 
Land use 

categories 
Description 

1. Forest 

Evergreen to semi evergreen, Moist 
deciduous forest, Dry deciduous 

forest, Scrub/grass lands 

2. Plantations 

Acacia/Eucalyptus/ hardwood 

plantations, Teak/ Bamboo/ 
softwood plantations 

3. Horticulture 
Coconut/ Areca nut / Cashew nut  

plantations 

4. Crop land 
Agriculture fields, permanent sown 

areas 

5. Built-up 
Residential Area, Industrial Area, 

Paved surfaces 

6. Open fields Rocks, Quarry pits, Barren land 

7. Water 
Rivers, Tanks, Lakes, Reservoirs, 

Drainages 

Table 1. Land use categories of Karwar taluk 

2.2.3 Modelling and prediction: The temporal land use analysis 
has provided spatio-temporal patterns, which satisfies the 

properties of Markovian process. Markovian process is a random 
process, defines suitability of state as a weighted linear sum of a 
series of affecting factors, normalized to values in the range of 0–
1. The neighbourhood influence area is thus calculated as summed 
effect of each transitional potential and its interaction with its 
neighbors and the transition rules were determined by various 

demands of the land use classes, population growth etc. The two 
temporal land use analysis maps were used to account for the 
stable and transformed land use classes which satisfy non-
transition properties such as urban class to water or vice versa. 
The transition probability map and area matrix are obtained based 

on probability distribution over next state of the current cell that is 
assumed to only depend on current state (Equations 1 & 2). CA 
was used to obtain a spatial context and distribution map which 
defines the state of the cell based on the previous state of the cells 
within a neighbourhood, using a set of transition rules. CA has a 
potential for modelling complex spatio-temporal processes that 
made up of elements represented by an array of cells, each 
residing in a state at any one time, discrete number of class 

(states), the neighbourhood effect and the transition functions, 
which define what the state of any given cell is going to be in the 
future time period. The net neighbourhood influences were 
determined by 5×5 contiguity filter which explains past land use 
changes and used to simulate future changes. CA filter creates 
spatial weights according to the distance of the neighboring 
territory from the cell to determine changes in the cellular status. 
The explanatory power of the neighbourhood rules that were 

derived are assessed by calibration and validation of the CA land 
use model. The CA coupled with Markov chain land use 
predictions of 2010 and 2013 were made by using the transitional 
probability area matrix generated from 2004-2007; 2007-2010 
respectively. The   validity of the predictions was made with the 
reference land use maps of 2007 and 2010. Based on these 
validations the model outputs were then visualized for 2022 by 
considering similar time interval.  

The original transition probability matrix (denoted by P) of land 
use type has been obtained from two former land use maps.  

                            (1) 

Where P(N)=state probability of any time, 
           P(N−1)=preliminary state probability. 

Transition area matrix can be obtained by,  

  [
         

   
         

]       (2) 

Where A=the transition area matrix, 
           Aij= the sum of areas from the ith land use class to the jth 
class during the years from start point to target simulation periods, 
          N = land use type. 

3. RESULTS 

 

3.1.  Land use analysis 

The temporal land use analysis was carried out for the year 2004, 
2007, 2010, and 2013 using the Gaussian maximum likelihood 
classifier. Land use analysis is depicted in Figure 3, 4 and 
category wise changes are listed in Table 2. The analysis 
illustrates primeval forest cover has reduced from 75.51 % (2004) 

to 67.36% (2013). The built-up area has increased from 3.31% 
(2004) to 8.65% (2013). These abrupt changes are mainly due to 
anthropogenic activities than natural processes. The forests have 
undergone tremendous transformation due to increase in 
developmental activities (Nuclear power project, Project Seabird, 
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major industries, etc.) and inappropriate management has led to 
imbalances in the ecosystem, evident from series of landslides in 
the district. The agriculture and deforestation took place at the 
expense of the irreversible losses of forest cover which has led to 
the losses of vital ecosystem goods and services ranging from 

biodiversity to regulation of hydrological cycle. It is also evident 
that the increase in plantation of exotic species such as Acacia 
auriculiformis, Casuarina equisetifolia, Eucalyptus spp., and 
Tectona grandis has led to removal of primeval forest cover. The 
field data and Google earth data sets are used for analysing 
accuracy of classification and the accuracy assessment was 
included in Table 3, shows Producer Accuracy (PA), User 
Accuracy (UA), Kappa, Overall Accuracy values. This approach 

has provided us more consistent results. The areas of each 
category are also verified with available administrative reports, 
statistical department data and forest division annual reports. 

 

Category 
Actual Land use (Hectares) 

2004 2007 2010 2013 

Forest 56,140.3 53,003.1 52,360 50,085.68 

Plantations 2,449.62 2,966.07 3,553.6 3,662.36 

Horticulture 1,188.83 1,468.31 1,861.2 2,274.98 

Crop 5,545.35 5,341.30 4,013.1 5,025.13 

Built-up 2,462.53 4,521.73 5,510.1 6,430.20 

Open fields 2,035.12 2,500.69 2,688.9 3,034.06 

Water 4,529.93 4,550.49 4,364.8 3,839.30 

Total 74,351.70 

Category 

P
r
e
d

ic
te

d
 L

a
n

d
 u

se
 

2010 2013 2022 

Forest 51968.9 
49258.2

4 
42840.17 

Plantations 3117.08 3835.43 5536.69 

Horticulture 2042.45 2731.07 2935.47 

Crop 4197.59 4208.18 5874.77 

Built-up 5720.22 6639.92 9817.03 

Open fields 2921.21 3320.77 2983.66 

Water 4384.22 4358.10 4363.91 

Table 2. Land use changes from 2004 to 2022. 

Year 2004 2007 2010 2013 

Categori

es 
PA 

U

A 

P

A 

U

A 

P

A 
UA PA UA 

Forest 
87.4

4 
95.
73 

97.
85 

97.
83 

99.
69 

96.0
2 

98.5
6 

93.3
1 

Plantatio

ns 

92.6
0 

76.
51 

84.
69 

84.
71 

60.
09 

95.3
7 

98.2
7 

91.3
2 

Horticult

ure 

98.0
1 

76.
49 

79.
30 

79.
26 

57.
91 

75.6
9 

86.1
3 

37.4
6 

Crop 
92.5

0 
85.
96 

86.
67 

86.
69 

71.
46 

95.0
2 

79.6
6 

81.8
5 

Built-up 
48.6

8 
73.
79 

65.
91 

66.
09 

93.
17 

65.6
1 

60.0
4 

96.5
0 

Open 

fields 

68.2
2 

68.
30 

62.
75 

62.
91 

89.
40 

83.1
3 

93.9
7 

89.7
4 

Water 
80.2

9 

89.

49 

92.

71 

93.

06 

78.

85 

94.5

7 

96.9

4 

97.1

9 

Kappa 0.82 0.85 0.85 0.86 

Overall 

Accuracy 
88.67 91.67 92.6 91.02 

Table 3. Accuracy assessment from 2004 to 2013. 

 

 

Figure 3. Land use analysis of Karwar taluk actual and predicted. 

   

3.2 Geo-visualisation and prediction 

Land use transitions with respect to each category were calculated 
to predict land use for 2010, using Markov chain process based on 
2004 and 2007 land use and CA loop time of 3 years, and was 
continued for 2013 by using 2007, 2010 land use maps. The 
transition probability as shown in Table 4 (a, b), with the 
knowledge of 2004-2007, 2007-2010 and 2010-2013 for 2022 is 
predicted under different conditions (i.e. transition rules, iteration 

numbers). This prediction has been done considering water bodies 
as a constraint and assumed to remain constant over all time 
frames.  The model was analyzed for allowable error by validating 
the predicted versus the actual for the years 2010 and 2013 land 
use maps shown in Figure 5.  The validation results showed in 
Table 5 provides a very good agreement between the actual and 
predicted maps of 2010, 2013 land use with kappa of 0.84 and 
0.83. The Kappa-standard index of optimum point as well as 
Kappa-location index was computed and they show a significant 

correlation between the simulated and the actual maps. 

 

Index  Predicted 2010 Predicted 2013 

Kno 0.90 0.89 

Klocation 0.86 0.87 

Kstandard 0.84 0.83 

Table 5. Validation between predicted and actual images of 2010, 

2013. 
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Figure 4. Temporal land use from 2004-2013. 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Predicted land use maps of 2010, 2013 and 2022. 
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Given Probability of changing to 

For
est 

Planta
tions 

Hortic
ulture 

Cro
p 

Built
-up 

Ope
n 

field
s 

Wa
ter 

Forest 0.8

19 

0.098 0.013 0.0
21 

0.00
4 

0.04
5 

0.0
01 

Plantat
ions 

0.0
149 

0.824 0.005 0.0
03 

0.00
1 

0.01
8 

0.0
00 

Hortic
ulture 

0.0
00 

0 0.807 0.1
93 

0 0 0 

Crop 0.0
09 

0 0.037 0.8

23 

0.09
5 

0.03
6 

0.0
02 

Built-
up 

0.0
33 

0 0.009 0.0
172 

0.74

2 

0.03
7 

0.0
07 

Open 
fields 

0.0
30 

0 0 0.1
04 

0 0.86

6 

0 

Water 0.0
93 

0 0.005 0.0
35 

0.01
1 

0.03
0 

0.8

25 

Table 4(a). Transition probability matrix for 2007-2010. 

 

Given Probability of changing to 

For
est 

Planta
tions 

Hortic
ulture 

Cro
p 

Buil
t-up 

Open 
fields 

Wa
ter 

Forest 0.8

239 

0.026
8 

0.0705 0.0
234 

0.01
2 

0.042
8 

0.0
006 

Plantat
ions 

0.0
937 

0.817 0.0434 0.0
192 

0.00
29 

0.023
7 

0.0
001 

Hortic
ulture 

0.0
001 

0 0.8187 0.1
812 

0 0 0 

Crop 0.0
032 

0 0.0362 0.7

798 

0.16
05 

0.019
4 

0.0
009 

Built-
up 

0.0
529 

0 0.0232 0.0
517 

0.74

38 

0.124
4 

0.0
04 

Open 
fields 

0.0
637 

0 0 0.1
039 

0 0.832

3 

0 

Water 0.0
36 

0 0.0181 0.0
528 

0.03
33 

0.059
6 

0.8

002 

Table 4(b). Transition probability matrix for 2010-2013. 

The simulated land use (Table 2, Fig.5) shows likely increase in 

built up from 3.31 % (2004) to 13.20% (2022). The process of 
urbanization is observed to be high in the areas near project Sea 
bird, Kaiga power house and the national/state highways. The 
analysis highlighted the decline of forest cover from 75.51 (2004) 
to 57.62% (2022) with increase in monoculture plantations from 
3.29% to 7.45%. The natural vegetation being replaced by the 

plantation activities in recent time also indicates their further 
growth in future years. The taluk has witnessed changes within 
and in the neighbourhood due to the introduction of major 
developmental projects that has led to rapid urbanisation. The 
adverse effects of ad-hoc approaches in the developmental 
activities have led to landslides, higher erosion of top soil, etc.. 
This necessitates comprehensive land use management focusing 
on restoration of ecosystems to mitigate the impacts further. 

Analysis and comparison of the simulated and actual land-use 
maps of 2022 reveal that the CA–Markov model has provided 

insights in terms of change quantification and continuous-space 
change modelling. 

 

4. CONCLUSION 

The temporal change in the forested landscape is assessed with 

help of remote sensing data significantly identifying the change 

trajectories. The forest cover has changed from 75.51 (2004) to 

67.36% (2013) and paved surfaces have reached to 8.65% (2013). 

The unplanned developments, construction of hydro projects, 

Kaiga nuclear projects, Project Sea bird etc. have contributed to 

the decline of forest cover. Geo-visualisation indicates landscape 

composition and configuration changes. CA Markov analysis was 

able to effectively simulate land use changes based on the 

dynamic simulation capability and simple calibration of complex 

patterns. However, CA Markov model is limited by its capacity to 

incorporate human decision making, any environmental and 

socio-economic variables of driving factors affecting the region 

over time.  Recently, multi-agent models combining knowledge 

and tools from biophysical and socio-economic sciences have 

been developed to simulate land conversions through considering 

the behaviour of the existing agents, as well as other actors. The 

major impacts of intensive commercial usage of forests should be 

controlled by regulatory authorities, which will help to maintain 

sustainable use of resources than exploiting. The information 

generated in this study will help in analysing underlying causes of 

change and designing management strategies, as it identifies the 

spatio-temporal patterns associated with landscape processes that 

affect policy making, conservation and restoration programs. 
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