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ABSTRACT: 

 

The quality of Remote Sensing data is an important parameter that defines the extent of its usability in various applications. The data 

from Remote Sensing satellites is received as raw data frames at the ground station. This data may be corrupted with data losses due 

to interferences during data transmission, data acquisition and sensor anomalies. Thus it is important to assess the quality of the raw 

data before product generation for early anomaly detection, faster corrective actions and product rejection minimization. Manual 

screening of raw images is a time consuming process and not very accurate. In this paper, an automated process for identification and 

quantification of losses in raw data like pixel drop out, line loss and data loss due to sensor anomalies is discussed. Quality 

assessment of raw scenes based on these losses is also explained. This process is introduced in the data pre-processing stage and 

gives crucial data quality information to users at the time of browsing data for product ordering. It has also improved the product 

generation workflow by enabling faster and more accurate quality estimation. 

1. INTRODUCTION 

 

It is pertinent to deliver good quality remote sensing images for 

reliable and accurate interpretation of data for earth observation 

applications. Image quality determination is a part of 

calibration, verification and validation of remote sensing 

systems. Several parameters of the imaging system and data 

transmission conditions influence the image quality. The 

determination of the quality of remote sensing data can, in 

principle, be defined in terms of spectral, radiometric and 

spatial aspects. Different metrics are used to define the 

radiometric, geometric and performance parameters (Ralf 

Reulkea et al 2014). Apart from imaging system performance 

related aspects, Remote Sensing (RS) images are affected by 

different types of noise like Gaussian noise, speckle noise and 

impulse noise introduced during acquisition or transmission 

process. 

 

Although link budget estimation is done for all satellite 

missions and sufficient link margin exists for satellite data 

transmission, losses may still occur due to disturbances in the 

transmission link, problems in reception chain or due to sensor 

anomalies. This paper describes the losses that occur in remote 

sensing data due to transmission and acquisition losses and 

sensor anomalies. An automated process to detect these losses is 

also explained.  

National Remote Sensing Centre (NRSC), Indian Space 

Research Organization (ISRO), Department of Space, 

Government of India, is the nodal organization for acquisition 

and distribution of remote sensing data to user community. The 

quality policy of NRSC is to strive to design, develop and 

deliver high quality, actionable data products and value added 

services in a timely, cost effective and efficient manner and 

facilitate enhanced utilization of remote sensing and geomatics. 

 

In order to achieve the above objectives, NRSC, as a part of 

inter-centre project – Integrated Multi-Mission Ground Segment 

for Earth Observation Satellies (IMGEOS), re-engineered all the 

processes involved in data planning, acquisition, processing and 

dissemination. This action resulted in huge improvements in the 

turnaround time of data acquisition to product delivery. Today, 

NRSC delivers emergency products within an hour of 

acquisition and standard products within a day. 

 

Before placing an order for a Remote Sensing data product, the 

users need to browse through the data to check for availability, 

cloud cover and quality of the desired data. To meet this 

requirement, NRSC generates sub-sampled and compressed 

browse images along with necessary ancillary information and 

presents them for data selection.  In IMGEOS setup, most of the 

data selection, ordering, processing and dissemination related 

activities are automated. In this scenario it is important to 

ensure that all the data that are presented to the user are of good 

quality.  The metadata presented along with the browse chips 

should carry accurate information about the scene quality to 

facilitate data selection. 

Previously quality assessment of raw data was done based only 

on frame sync errors along with visual screening of the sub-

sampled browse images. This had limitations as only one 

parameter was being considered for evaluating the data losses.  

There are various other causes for data losses which need to be 

assessed and which can degrade the product quality. Also 

during manual screening there were chances of data losses not 

being detected as browse images are sub-sampled up to a ratio 

of 1:24. Being a manual process, screening of large number of 

browse chips was a time consuming activity. Thus a new 

process was introduced in the data pre-processing chain with the 

aim to automate quality assessment of full resolution raw scenes 

and assist in quick and accurate anomaly detection and 

correction. 

 

2. METHODOLOGY 

 

Remote sensing data are received as raw data frames which are 

then pre-processed and given as input to product generation 

system. Pre-processing of data involves formatting, decoding 

and decompression of the data and scene identification. The 

process of automated quality estimation of raw scenes explained 

in this paper is done in the pre-processing stage to filter out bad 

quality data before product generation. It involves analysing full 

resolution raw scenes by calculating multiple quality indicators 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-1-129-2016

 
129



which are: Pixel Drop Out due to impulse noise, Spread of Pixel 

Drop Out, Decoding Errors, Single and Consecutive Line losses 

(Frame Losses) and Dead/Frozen detectors.  

2.1. Pixel Drop Out(PDO) 

 

This type of noise is also known as impulse noise, salt and 

pepper noise or data drop out. Pixel Drop out (PDO) is a result 

of random noise in the image which causes sudden variation in 

brightness or color information in an image. This type of error 

occurs during data transmission due to low signal levels or 

interference in the transmission channel (Gonzalez, Woods, 

2008). 

 

The assumption in detecting PDOs is that a noise free image 

will contain smooth variation of intensities whereas in an image 

corrupted with impulse noise, the noisy pixel will have very 

high or very low pixel intensity as compared to its neighbors. 

Thus an impulse can be identified by the height of its brightness 

jump in comparison with the surrounding pixels (Aizenberg et 

al, 2004). 

The performance of the filters for detecting PDOs is based on 

the capability of noise detection. A good noise detector should 

be able to identify most of the noisy pixels, and yet its “false-

hit” rate should be as small as possible. Comparing with other 

methods, (Radhika et al, 2010) have observed that impulse 

noise detector based on second order difference (SODID) 

method can distinguish more number of noisy pixels with fewer 

mistakes. Even when the noise level is as high as 60%, this 

method can still identify most of the noisy pixels. Though the 

number of missed pixels seems to be large in SODID method, 

they are able to locate more number of noisy pixels even at high 

densities.  

In view of the above, impulse noise detection was done using 

second order derivative filter based on the Laplacian operator. 

The spatial filter based on Laplacian operator is most effective 

in highlighting intensity discontinuities in an image and 

deemphasizing regions with slow varying intensity levels 

(Gonzalez, Woods, 2008). 

The Laplacian (Gonzalez, Woods, 2008) for a function f(x,y) is 

defined as: 

∇2 ƒ =  
∂2ƒ

∂x2 + 
∂2ƒ

∂y2   (1) 

  

The second order derivative (SOD) of this function f(x,y) in x-

direction is defined as: 

 
∂2ƒ

∂x2 =  𝑓(𝑥 +  1, 𝑦)  +  𝑓(𝑥–  1, 𝑦) –  2𝑓(𝑥, 𝑦)   (2) 

   

Similarly in the y-direction, SOD is defined as: 

 
∂2ƒ

∂y2 =  𝑓(𝑥, 𝑦 +  1) +  𝑓(𝑥, 𝑦–  1)–  2𝑓(𝑥, 𝑦)           (3)  

 

It follows from Equations (1), (2) and (3) that the discrete 

Laplacian of two variables is: 

 

∇2 𝑓(𝑥, 𝑦) =  𝑓(𝑥 +  1, 𝑦) +  𝑓(𝑥–  1, 𝑦)  +  𝑓(𝑥, 𝑦 +  1) 
+  𝑓(𝑥, 𝑦–  1) –  4𝑓(𝑥, 𝑦) 

      (4) 

Equation 4 can be implemented using the second order 

derivative filter mask as shown in Figure 1. 

0 1 0 

1 -4 1 

0 1 0 

Figure 1. Second Order Derivative Filter Mask 

Impulse noise detection is done by moving this spatial filter 

over the entire image. Impulse noise is said to be detected at a 

point (x,y) on which the mask is centred if the absolute value of 

the response of the mask at that point exceeds the specified 

threshold. Such points are given a value of 255 in the noise 

extracted image while all others are labelled as 0. Thresholds 

are defined based on the radiometric resolution of the sensor. So 

the maximum intensity value that a pixel can hold is defined as 

the threshold for extracting noisy pixels.  

 

2.2. Spread of Impulse Noise 

 

Detection of impulse noise, by itself, does not provide complete 

information about the quality of the image. It is important to 

determine the spread of the noisy pixels. If the impulse noise is 

concentrated within a small region of an image, rest of the 

image may still be usable if the user’s area of interest lies in the 

noise-free portion and thus may be offered to the user. If the 

overall noise is low and distributed, these pixels get corrected 

during data processing through appropriate methods of 

convolution. However, if the noise level is high and is 

distributed evenly, the image may not be usable at all. In case of 

emergency, where availability of data is more important than 

image quality, the noisy data can still provide timely 

information. Information on the spread of noise in image 

enables the user to decide the usability of the data. 

 

2.3. Decoding Errors 

 

The satellite data are encoded before transmission to the ground 

station to minimize data corruption during transmission. ISRO 

adopts appropriate encoding scheme depending upon the data 

rates, on-board compression technique used and band width. 

Reed-Solomon(RS) is a widely used encoding scheme for error 

detection and correction for Indian Remote Sensing satellites. 

For instance, for Resourcesat-2 satellite, Reed-Solomon 

encoding scheme RS (255,247) was used. This means that in a 

block of 255 data symbols, a maximum of 4 symbol errors can 

be corrected. If the number of errors is more than the correction 

capability of the code then the data remains uncorrected. Hence 

it is important to measure these uncorrectable errors and include 

this parameter while determining the data quality. 

 

2.4. Frame Losses 

 

Each frame of raw data is tagged with a frame sync sequence to 

mark the beginning of a frame. A bit error in the frame sync 

sequence indicates that the frame may not be restored correctly 

depending upon the encoding scheme used. The inability to 

restore the frame is termed as a frame loss. When the frame 

length equals the sensor scan line length, up to three 

consecutive frame losses can be corrected during data 

processing by approximating intensity values from neighboring 

lines. However, if more than three consecutive lines are lost, it 

leads to a blocky effect on the image. Thus this type of loss 

needs to be quantified. 

 

2.5. Dead/Frozen detector detection 

 

The sensors have detectors which may degrade during the life 

time of the satellite. Some detectors can become totally dead 
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meaning that they may stop functioning and may give no 

output. In some other case, the output from a detector may be 

the same irrespective of the area being viewed. Such degraded 

detectors are known as frozen detectors (Huang,2011). These 

detector anomalies need to be kept track of, to take corrective 

action. 

 

 

3. IMPLEMENTATION 

 

The process has been implemented for Resourcesat-2 satellite, 

which carries LISS-III, AWIFS and LISS-IV sensors on board 

and can be extended to any optical sensor data.  Satellite / 

sensor specific parameters other than the ones discussed in the 

paper can be considered while assessing the overall scene 

quality. 

A multithreaded approach was used in order to achieve faster 

results as it deals with large quantity of full resolution data. In 

the case of Resourcesat-2, a 10 minutes’ satellite pass duration 

results in 15 GB of raw data.  The threads are spawned based on 

the available computing power in terms of processing units 

available. The number of CPU/Cores available is determined 

during run time and the number of threads to be created is thus 

determined dynamically. Since the sensors are multispectral, 

each thread works on a single band data and after all the bands 

are processed completely, their results are merged and the 

overall scene quality is tagged by the main thread. 

Pixel drop outs are assessed using second order derivative filter. 

The spread is estimated by keeping track of the number PDOs 

in each line of the raw image. A line is considered to be affected 

by impulse noise only if the number of PDOs in the line is 

greater than 0.1% of the total number pixels in a line. Frame 

sync losses related information is obtained from the frame 

synchronization and data formatting process. A track of the 

lines containing frame sync errors is kept and their distribution 

is arrived at to calculate the number of consecutive frame 

losses. RS uncorrectable errors are obtained from the decoding 

process.  

 

The process also checks for the presence of dead/frozen 

detectors in the image based on the intensity values of each 

detector throughout the image. This information is used for 

alerting and further monitoring the performance of the detector. 

 

As per the current quality policy of NRSC, the following 

thresholds have been used for marking the scene quality as 

‘Bad’ if one or more conditions are applicable to the scene. 

1. PDOs are more than 0.1% of the total number of 

pixels in the image 

2. PDO spread is more than 0.1% of total number of 

lines in the image or 9 lines, whichever is greater 

3. Number of occurrences of consecutive line losses is 

more than 3  

4. RS Uncorrectable errors are more than 156 for LISS-

4, 258 for LISS-3 and 768 for AWIFS 

5. Line losses (single) are more than 10% of the total 

number of lines in the image 

 

Based on the thresholds described above, each scene is given 

one of the quality scores: “Good”, “Bad” or “Fail”. “Good” 

means that there are no anomalies present in the entire scene. 

“Bad” means that one or all of the above mentioned anomalies 

are present in the scene. A scene is tagged as “Fail” when it has 

more than 90% frame sync losses, meaning that the scene is not 

usable. 

All scenes tagged with “Good” and “Bad” quality scores are 

presented to the users for ordering. Thus users now have a 

choice to order for scenes tagged as “Bad” quality if they feel 

that the product can satisfy the needs of his application 

irrespective of its quality. The scenes marked as “Fail” are not 

presented to the users at all. 

 

The scene quality parameters are populated into database along 

with scene definition information. This database is also 

accessible to many other processes like product quality check, 

data quality evaluation and monitoring and control systems. 

 

 

4. RESULTS AND DISCUSSION 

 

It is observed that using the above methodology, impulse noise 

and line losses were successfully detected. Figure 2 shows sub-

sampled browse image of AWiFS data collected over parts of 

Oman on 27-Aug-2015 as shown on the User Order Processing 

System (UOPS) website of National Remote Sensing Centre 

(NRSC) (B.Lakshmi et al). The scene contains both PDOs and 

line losses. A warning about the presence of data losses beyond 

acceptable limits is also displayed to alert the users. Figure 3 

shows the area in the inset of Figure 2 in full resolution. Figure 

4 depicts the extracted losses from Figure 3 using the 

methodology described above.  

 

It is observed that during detection of impulse noise, point 

edges are also likely to get detected. Further, Resourcesat-2 data 

are compressed using Differential Pulse Code Modulation 

(DPCM) for LISS-4 and LISS-3 sensors. The DPCM is a lossy 

compression and renders artefacts when images are 

decompressed on ground (Pushpakar et al,2013). These artefacts 

also get detected as spurious PDOs. Thus the impulse noise 

detected initially is further verified using the information about 

RS uncorrectable errors to ensure that there are no false hits. If 

the scene contains no RS uncorrectable errors it is deduced that 

the PDOs detected were spurious. 

 

Presence of sun glint in AWiFS sensor, at times, also results in 

spurious detection of PDO in scenes collected over water 

bodies. Sunglint is a transient anomaly that occurs when 

sunlight is reflected from the seawater surface directly into the 

down looking optical sensor (Garaba et al, 2012). In order to 

eliminate this uncertainty in detecting impulse noise, sun glint 

was also detected using SWIR band (1.55 – 1.75 microns) data 

of AWiFS sensor. This is based on the assumption that the 

water-leaving radiance in this part of the spectrum is negligible 

and so any signal entering the sensor must be due to sun glint 

(Kay et al, 2009). 

 

The improvement and speed-up in quality assessment that this 

automated process has brought as compared to the older process 

of manual screening is exemplified in Tables 1, 2 and 3. Table 1 

gives the details of number of scenes acquired during the period 

2012-2014, some of which contained data losses but which 

could not be detected visually due to sub-sampling. Due to this, 

not all the scenes with data losses were screened out in the early 

stages of processing. They were eventually rejected much later 

in the production chain after their data products were already 

generated and were going through rigorous product quality 

checks. This led to wastage of time and computing resources 

and corrective action was taken much later in the product 

generation workflow. 
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Figure 2  AWiFS image corrupted with impulse noise as shown on NRSC UOPS website with quality indication 

 

 
 

 

 

Sensor 

 

Number  of 

Products 

generated 

from   

2012-2014 

No of browse 

scenes marked as 

Bad through 

‘visual inspection’ 

before  Product 

generation 

Residual No of  

scenes  

rejected due to 

Bad Data 

quality  after 

product 

generation 

LISS-3 111999 217 51 

AWiFS 199884 220 61 

LISS-4 173092 165 59 

Table 1. Number of products rejected for Resourcesat-2 during 

2012-2014. Many products were rejected after manual 

screening 

The performance of the automated process is shown in Table 2. 

It gives details of the number of full resolution images 

evaluated by this process and the number of scenes found to be 

corrupted due to data losses during 2015. Out of the 71911 

scenes acquired, products were generated for 29974 scenes and 

it is observed that none of the scenes were rejected after product 

generation as prior information about scene quality was readily 

available. This illustrates the effectiveness and accuracy of the 

automation process which involves early alert and report 

mechanisms. 

Figure 3 Full resolution display of the inset in Figure 2                           Figure 4. Impulse noise extracted from the image shown in Figure 3. 

Bad Quality Indication 
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Table 2. Number of full resolution scenes evaluated by the 

automated process 

 

The introduction of this process has automated the quality 

estimation of raw, full resolution scenes based on 5 quality 

indicators. This process has thus eliminated manual intervention 

in qualifying browse chips and has improved the accuracy of 

quality estimation. This has led to quick quality analysis thus 

reducing the turnaround time and quicker detection of 

anomalies enabling faster corrective actions and reducing the 

load of product generation and quality check system. This will 

also give better quality information of the data to the users, 

enabling them to order data products according to their needs. 

Table 3 indicates the time taken processing scenes for each 

sensor for 7 minutes pass duration. This indicates that within 

few minutes after pre-processing, the browse scene gets tagged 

with its quality score. This is surely an improvement over the 

older process which had limitations due to the manual 

intervention involved. 

 

 

 

Table 3. Time taken to evaluate the data losses 

 

 

5. CONCLUSION 

 

Automatic assessment of data acquisition and transmission 

losses has helped in quick quality tagging of browse images 

which is extremely useful for the users while placing order for 

data products. Image quality related information is presented to 

the users which enables them to decide whether the data are 

usable instead of blindly weeding out data with losses. This 

process has helped to overcome the shortcomings of manual 

quality estimation of browse scenes related to time and accuracy 

of data loss detection. The automated process is more accurate, 

efficient and unbiased when compared to visual inspection. It 

has also enabled quick feedback and corrective actions 

whenever data losses occur through the reporting workflow. In 

future, the information provided by this process can also be 

used to characterize the quality of data reception chain. 

Automated quality estimation process will be even more 

beneficial for future Remote Sensing missions of ISRO 

involving higher data rates and more complex data processing.  
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Sensor No. of 

Scenes 

Evaluated 

in 2015 

 

No of browse 

scenes 

marked as 

Bad  through 

‘Automatic  

quality 

detection’ 

Residual No of  

scenes   

rejected for 

Bad Data 

quality  after 

product 

generation 

LISS-3 17903 57 0 

AWiFS 20230 107 0 

LISS-4 33778 72 0 

Total  71911 236 0 

Sensor Number 

of scenes 

Scene 

Size 

(pixels) 

No. of 

bands 

Radiometric 

resolution in 

bits 

Time 

taken to 

evaluate  

(secs) 

LISS-3 22 6000 x 

6000 

4 10 115 

AWiF

S 

25 12000 x 

12000 

4 12 245 

LISS-4 19 12000 x 

12000 

3 10 249 
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