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ABSTRACT: 

 

RGB-D sensors are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are 

widely used in various applications, RGB-D sensors have significant drawbacks with respect to 3D dense mapping of indoor 

environments. First, they only allow a measurement range with a limited distance (e.g., within 3 m) and a limited field of view. 

Second, the error of the depth measurement increases with increasing distance to the sensor. In this paper, we propose an enhanced 

RGB-D mapping method for detailed 3D modeling of large indoor environments by combining RGB image-based modeling and 

depth-based modeling. The scale ambiguity problem during the pose estimation with RGB image sequences can be resolved by 

integrating the information from the depth and visual information provided by the proposed system. A robust rigid-transformation 

recovery method is developed to register the RGB image-based and depth-based 3D models together. The proposed method is 

examined with two datasets collected in indoor environments for which the experimental results demonstrate the feasibility and 

robustness of the proposed method. 

 
 

1. INTRODUCTION 

Detailed 3D modeling of indoor environments is an important 

technology for many applications, such as indoor mapping, 

indoor positioning and navigation, and semantic mapping 

(Henry et al., 2014). Traditionally, there are two main 

approaches to indoor 3D modeling, terrestrial laser scanning 

(TLS) and close-range photogrammetry. With TLS technology, 

the obtained 3D point clouds contain detailed structure 

information and are well suited for frame-to-frame alignment. 

However, TLS lacks valuable visual information that is 

contained in color images. Although color images are easily 

captured with off-the-shelf digital cameras and the rich visual 

information can be used for loop closure detection (Konolige 

and Agrawal, 2008; Nistér, 2004), it is hard to obtain enough 

points for dense modeling through regular photogrammetric 

techniques, especially in dark environments or poorly textured 

areas (Henry et al., 2010; Kerl et al., 2013; Triggs et al., 2000). 

 

Recently, the advent of RGB-D sensors such as the Kinect and 

Structure Sensor has led to great progress in dense mapping and 

simultaneous localization and mapping (SLAM) (Dryanovski et 

al., 2013; Hu et al., 2012; Whelan et al., 2013, 2015). The 

remarkable advantages of these systems are their high mobility 

and low cost. However, RGB-D sensors have some significant 

drawbacks with respect to dense 3D mapping. They only allow 

a measurement range with a limited distance  
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and a limited field of view. They may cause tracking loss due to 

the lack of spatial structure needed to constrain ICP (iterative 

closest point) alignments (Henry et al., 2014). In particular, as 

the random error of the measurement depth increases with 

increasing distance to the sensor, only the data acquired within 

a 1-3 m distance to the sensor can be used for mapping 

applications (Khoshelham and Elberink, 2012). The RGB-D 

sensors capture RGB images along with per-pixel depth images, 

which enables the estimation of the camera poses and the scene 

geometry with an image-based algorithm, such as SLAM or 

structure-from-motion (SFM). Although the 3D scenes 

recovered from the RGB image sequences have a larger and 

longer range than the 3D model from the depth sensor, the 

motion between frames can only be recovered up to a scale 

factor, and the error of the motion can accumulate over time 

during frame-to-frame estimation (Kerl et al., 2013; Wu et al., 

2014). The RGB image-based and depth-based methods for 3D 

modeling have their own advantages and disadvantages, but a 

more fundamental solution is desired to enhance the ability of 

the RGB-D sensors for indoor mapping (Steinbrucker and Kerl, 

2013). 

 

We introduce an enhanced RGB-D mapping approach for 

detailed 3D modeling of large-range indoor environments by 

combining the RGB image sequences with the depth 

information. The 3D models produced from the RGB images 

can be used as a supplement to the 3D model produced by the 

depth sensor. A robust automatic registration method is 

proposed to register the 3D scene produced by the RGB image 

sequences and the model from the depth sensor together. 
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This paper is organized as follows. In Section 2, we briefly 

review related approaches. In Section 3.1, we describe the 

calibration methodology for both the RGB camera and infrared 

(IR) camera. In the Section 3.2, we give a general description of 

the device components and working mechanism of the RGB-D 

system. The procedure involved in our enhanced RGB-D 

mapping approach is also briefly introduced. Section 3.3 

presents the relative pose estimation method from color image 

sequences. Section 3.4 describes the robust registration method 

to recover the rigid transformation relationship between the 

camera pose from SFM and from the ICP depth alignment 

algorithm. Section 4 presents the expanded results obtained 

with the enhanced mapping method, and we close with our 

conclusions in Section 5. 

 

2. LITERATURE REVIEW 

Due to  the limitations in the measurement distance and 

accuracy of the RGB-D sensors, most of the research work in 

the past concentrated on alignment methods for depth frames to 

produce a 3D scene. 

 

Newcombe et al. (2011) proposed the KinectFusion method, 

which incrementally registers RGB-D frames. As it also 

accumulates drift during the mapping procedure, the 

KinectFusion is applied in small workspace mapping 

(Newcombe et al., 2011). Henry et al. (2012) proposed a 

method to incorporate visual information into the ICP algorithm 

for image registration, called RGB-ICP. It is fascinating to see 

that the RGB-ICP method can improve the alignment accuracy 

to a certain extent. However, the final models in their two 

experiments were still broken and lacked abundant details in 

unmeasured spaces. The authors suggested that it would be 

favorable to apply a visualization technique such as PMVS 

(patch-based multi-view stereo) to enrich the indoor model 

(Henry et al., 2012). Endres et al. (2014) accomplished similar 

work. They used RANSAC (random sample consensus) to 

estimate the transformations between associated key points and 

then generate a volumetric 3D map of the environment (Endres 

et al., 2014). They mainly concentrated on SLAM instead of 

scene modeling. Stuckler and Behnke (2012) presented an 

approach for scene modeling and pose tracking using RGB-D 

cameras. Only two experiments in a small range were 

conducted to evaluate the performance of the registration 

(Stuckler and Behnke, 2012). Although the improvement of 

depth alignment can enlarge the modeling range of the sensor 

significantly, the absolute distance limitation may cause trouble 

when modeling a large-scale indoor scene with a high arched 

roof such as in airport terminals or churches. 

 

Khoshelham and Elberink (2012) presented an experimental 

analysis of the geometric quality of depth data acquired by the 

Kinect sensor (a typical RGB-D system), and the results of their 

experiments showed that only the data obtained within a 1-3 m 

distance to the sensor can be used for mapping applications. 

The depth resolution also decreases quadratically with 

increasing distance from the sensor. Meanwhile, the field of 

view of the sensor may also cause “details lost” such that these 

lost details may cause trouble that it is hardly found through all 

of the spaces when modeling a large-scale indoor environment. 

Instead, the corresponding color image sequences may provide 

extra information for the unmeasured areas. The image-based 

modeling approaches can create 3D models from a collection of 

input images (Grzeszczuk 2002; Pollefeys et al., 2004; Snavely 

et al., 2006). In this paper, we used the SFM method to recover 

camera parameters and sparse 3D scene geometry (Hartley and 

Zisserman, 2003). PMVS2 was involved for dense 3D 

modeling (Furukawa and Ponce, 2010). Because the SFM 

procedure can only recover the motion between frames up to a 

scale factor, a precise global scale recovery method is required. 

 

We introduce a robust registration method by combining color 

image sequences with depth information. The global scale of 

the pose from SFM can be recovered, and rigid transformation 

between the models from the two sources can be obtained for 

their automatic registration. The major contributions of this 

research are 1) the developed method can extend the modeling 

range of the RGB-D sensors and enrich the scene details by 

integrating depth information and image information; and 2) a 

robust registration method is developed to recover the scale and 

the rigid transformation between the camera pose from SFM 

and from depth alignment with the ICP algorithm. 
 

3. ENHANCED RGB-D MAPPING FOR INDOOR 

ENVIRONMENTS 

 
3.1 Overview of the Enhanced RGB-D Mapping System 

The RGB-D sensor system used in this research contains two 

sensors, an RGB camera and an IR sensor. The IR sensor is 

combined with an IR camera and an IR projector. This sensor 

system is highly mobile and can be attached to an iPad, iPhone, 

or other mobile instruments. It can capture 640x480 registered 

color images and depth images at 30 frames per second. Figure 

1 shows its hardware structure. The lower panels of Figure 1 

show an example frame observed with the RGB-D sensor. The 

white part in the depth image indicates that no depth 

information is measured due to the distance limitation or 

surface material. 

 

RGB Camera

IR Camera

IR Projector

 

 

Figure 1. (Top) The hardware scheme of the RGB-D sensor, 

(bottom left) the acquired depth image, and (bottom right) the 

acquired RGB image 
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Figure 2. Flowchart of the enhanced RGB-D mapping approach

The proposed enhanced RGB-D mapping approach can be 

divided into three stages: the calibration stage, the image-based 

3D modeling stage, and the rigid transformation recovery stage, 

as illustrated in Figure 2. First, an internal calibration method 

for both the RGB camera and the IR camera is conducted to 

obtain the intrinsic parameters of the cameras. Second, the 

SFM method is used for camera pose generation. Third, to 

register the 3D models from color image sequences to the 

models from depth information, a robust registration method is 

proposed by establishing the geometric relationship between 

them. An accurate global scale and rigid transformation can be 

obtained, which are used for absolute camera trajectory 

recovery. Finally, the absolute camera poses are used for dense 

3D modeling with a PMVS tool, and the produced models are 

well matched with the 3D model from the depth sensor. The 

proposed method is examined using actual indoor datasets. The 

experimental results demonstrate the feasibility and 

effectiveness of the proposed method. 

 

3.2 Camera Calibration 

The main concept of camera calibration is based on the pinhole 

camera model, which illustrates the relationship between the 

image point and the corresponding ground point as a function 

of camera internal and external parameters. 

 

The difference between the RGB camera and the depth camera 

is in the method of data collection. The RGB camera collects 

RGB images all the time. However, the data collected by the 

depth sensor depends on the status of the IR projector. When 

the IR projector switches on, the IR camera will collect the 

depth data for the scene, but if the IR projector is switched off, 

the IR camera will capture an ordinary image like the RGB 

image but on the IR band. The depth images on the IR band are 

used for the calibration progress. On the basis of the 

corresponding images, we apply the commonly used Bouguet 

(2011) method to calibrate the RGB camera and depth camera. 

 

Finally, the focal length (𝑓𝑥𝑑𝑒𝑝𝑡ℎ
, 𝑓𝑦𝑑𝑒𝑝𝑡ℎ

) and the coordinate of 

the principal point (𝑐𝑥𝑑𝑒𝑝𝑡ℎ
,  𝑐𝑦𝑑𝑒𝑝𝑡ℎ

) of the IR camera are 

obtained. The internal parameters of the RGB camera are also 

calculated including the focal length (𝑓𝑥𝑟𝑔𝑏
, 𝑓𝑦𝑟𝑔𝑏

) and the 

coordinate of the principal point (𝑐𝑥𝑟𝑔𝑏
,  𝑐𝑦𝑟𝑔𝑏

). These are all 

used in the robust registration process detailed in Section 3.4. 

 

3.3 Relative Motion Estimation 

Relative pose estimation by computing consistent feature 

matches across multiple images is a classic problem. Numerous 

algorithms have been proposed to solve this issue (Chiuso et al., 
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2000; Hartley and Zisserman, 2003; Snavely et al., 2006, 2008; 

Hu et al., 2015). Normally, two steps would be involved in the 

relative motion estimation: key-point detection and matching. 

In our work, we add an advance outlier rejection method to 

eliminate the false matches using the depth information and the 

pose derived from the ICP algorithm as a priori information. 

We summarize the steps in the motion estimation algorithm as 

follows. 

 

3.3.1 Key-Point Detection and Matching: The SIFT detector 

(Lowe, 2004) is used for image feature detection. Typically, 

thousands of SIFT key points can be detected from each color 

image from an RGB-D sensor with 640*480 pixels. Based on 

the local descriptor of each key point, we use the approximate 

nearest neighbors package proposed by (Arya et al., 1998) for 

feature matching. 

 

3.3.2 Camera Pose Estimation: We then robustly estimate a 

fundamental matrix between frames Fn-1 and Fn, and Fn and 

Fn+1, using the five-point algorithm (Nistér, 2004) and 

RANSAC (Fischler and Bolles, 1981). Some outliers are 

removed with respect to the recovered fundamental matrix. It 

should be noted that not all of the RGB images need to be 

processed. Key frames are selected automatically based on the 

number of features tracked. Then, the rotation R and translation 

T are recovered by matrix factorization. This minimization 

problem is solved with the Levenberg-Marquardt nonlinear 

optimization (Nocedal and Wright, 2006), and then R and T are 

further refined. 

 

3.4 Robust Registration of Depth-based and Image-based 

Models 

Due to the nature of the RGB image-based method used for 3D 

modeling, we obtain the transformation relationship Tn,n+1 

between the image pair {n, n+1} through relative motion 

estimation because the motion between frames can only be 

recovered up to a scale factor. The RGB image and the depth 

image are registered automatically by the sensor system itself, 

which facilitates the scaling and transformation of the relative 

model using the global distance from the depth images. The 

key step at this stage is to recover a global trajectory for the 

RGB image sequences by incorporating depth frames. First, the 

depth-based camera model is introduced below. Two kinds of 

coordinate systems, the camera coordinate system and the 

sensor coordinate system, are used. Then, scale and rigid 

transformation recovery are detailed. 

 

3.4.1 Camera Model for Depth Images: The RGB-D camera 

uses the ICP algorithm for depth alignment. A relative camera 

pose for each frame can be obtained. By knowing the focal 

length 𝑓𝑥𝑑𝑒𝑝𝑡ℎ
, 𝑓𝑦𝑑𝑒𝑝𝑡ℎ

 of the camera and the center of the 

depth image (𝑥𝑑𝑒𝑝𝑡ℎ , 𝑐𝑦𝑑𝑒𝑝𝑡ℎ
), we can compute the object 

coordinates Xc, Yc, Zc, in the camera coordinate system as 

follows: 

 

 𝑋𝑐 =
𝑑𝑒𝑝𝑡ℎ

𝑓𝑥𝑑𝑒𝑝𝑡ℎ

 (𝑢 − 𝑐𝑥𝑑𝑒𝑝𝑡ℎ
)                                           

          𝑌𝑐 =
𝑑𝑒𝑝𝑡ℎ

𝑓𝑦𝑑𝑒𝑝𝑡ℎ

 (𝑣 − 𝑐𝑦𝑑𝑒𝑝𝑡ℎ
)                    (1) 

  𝑍𝑐 = 𝑑𝑒𝑝𝑡ℎ                   

 

The rigid body transformation that relates points 

�̃�~[𝑋 𝑌 𝑍 1]𝑇  in the sensor coordinate system of the 

referenced frame to points 𝑋�̃�~[𝑋𝐶 𝑌𝐶 𝑍𝐶 1]𝑇  in the 

camera coordinates of the current frame can be written as 

 

 [

𝑋
𝑌
𝑍
1

] = [𝑅
𝑇 𝑡

0 1
] [

𝑋𝐶

𝑌𝐶

𝑌𝐶

1

]                         (2) 

 

where R is the rotation matrix from current frame Fn to the 

referenced frame, t is the translation matrix from current frame 

Fn to the referenced frame, and X, Y, Z are the real object 

coordinates in the 3D scene.  

 

Figure 3 shows the relationship between the camera and sensor 

coordinate systems. 

 

Fn Fn+1

P(X,Y,Z)

s1
s2

-f -f

u
v

u

v

Transformation1 Transformation2

Sensor coordinate system

Camera coordinate system

 
 

Figure 3. The relationship between the camera and sensor 

coordinate systems 

 

3.4.2 Scale Recovery 

Based on the feature matches on the visual RGB images, the 

object coordinates for each tie point can be obtained by space 

intersection using the image orientation parameters. In this 

work, we select the registered frame that possesses the most 

corresponding points between the RGB frame and the depth 

frame as a control. As shown in Figure 4, for each feature 

match located on the RGB image, the image coordinates can be 

obtained and the corresponding depth value can be extracted 

from the registered depth image. Those points with no depth 

value are discarded. The object coordinates of each point can 

be calculated from Equation (1). 

 

 

Figure 4. (Left) Feature matches from an RGB image. (Right) 

Feature matches on the corresponding depth image 

Two corresponding point sets Pm and Pn can be obtained. The 
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former is obtained from the space intersection of the visual 

images, and the latter from the depth images. Then, the relative 

scale S can be determined from the distance ratio between the 

points pairs of the two points sets Pm and Pn as follows: 

 

𝑆 =
√(𝑋𝑃𝑚

𝑖 − 𝑋
𝑃𝑚

𝑗 )
2

+ (𝑌𝑃𝑚
𝑖 − 𝑌

𝑃𝑚
𝑗 )

2

+ (𝑍𝑃𝑚
𝑖 − 𝑍

𝑃𝑚
𝑗 )

2

√(𝑋𝑃𝑛
𝑖 − 𝑋

𝑃𝑛
𝑗)

2

+ (𝑌𝑃𝑛
𝑖 − 𝑌

𝑃𝑛
𝑗)

2

+ (𝑍𝑃𝑛
𝑖 − 𝑍

𝑃𝑛
𝑗)

2
(𝑖! = 𝑗)       (3) 

 

For robustness, a large number of scale ratios for point pairs is 

calculated at random, and three scale sets can be obtained. In 

our experiment, over 8000 scale values are calculated for this 

relative scale estimation. The Pau ta Norm and RANSAC 

methods are used for outlier rejection as in Equation (4), 

 

{
|𝑆𝑖 − 𝑆| > 3𝜎  (𝑜𝑢𝑡𝑙𝑖𝑒𝑟)

|𝑆𝑖 − 𝑆| < 3𝜎 (𝑖𝑛𝑙𝑖𝑒𝑟   )
                       (4) 

 

where Si is the scale value in one of the scale sets, 𝑺 is the 

median value of the scale set, and 𝝈 is the root-mean-square 

error of the scale set. 

 

Pau ta Norm is conducted iteratively until no outliers exist. 

Then, the proper scale is determined by the mean value of the 

remaining scales. The point sets from the space intersection of 

the visual images are scaled to a new points set Ps as follows: 

 

[

𝑋
𝑌
𝑍
1

] = [

𝑆𝑥 0 0  0
0 𝑆𝑦 0  0

0
0

0
0

𝑆𝑧 0

0   1

] [

𝑋𝑇

𝑌𝑇

𝑌𝑇

1

]                                      (5) 

 

where Sx, Sy, Sz are the scale factors in the three directions, and 

XT, YT, ZT are the object coordinates of the points set from 

triangulation. 
 

3.4.3 Rigid Transformation Recovery: After scale recovery, it 

is necessary to find the optimal rotation and translation between 

the two sets of corresponding 3D points so that they are aligned. 

We compute the rigid transformation matrix using Besl’s 

method (Besl and McKay, 1992). The solution can be used for 

a dataset of any size as long as there are at least three 

corresponding points. A least square solution is used to 

minimize the following error: 

 

min(∑‖𝑅1𝑃𝑠
𝑖 + 𝑡1 − 𝑃𝑛

𝑖‖
2

𝑁

𝑖=1

)                   (6) 

 

In particular, a RANSAC iteration is used for outlier rejection. 

An initial transformation matrix is calculated with all of the 

point pairs. The initial transformation is applied on the points 

set Ps, after which a new transformed points set PST can be 

obtained, and the distance of each points pair in PST and Pn can 

be calculated as in Equation (7). 

 

𝐷𝑖𝑠 = √(𝑋𝑃𝑠𝑇
𝑖 − 𝑋𝑃𝑛

𝑖 )
2
+(𝑌𝑃𝑠𝑇

𝑖 − 𝑌𝑃𝑛
𝑖 )

2
+(𝑍𝑃𝑠𝑇

𝑖 − 𝑍𝑃𝑛
𝑖 )

2
  (7) 

 

A criterion is set up to robustly filter out the outliers whenever 

the distance of points pair Dis is over Threshold (in our 

experiment, Threshold varied with the dataset used). Besl’s 

method is conducted iteratively until no outliers exist. Then, the 

proper rigid transformation matrix R1, t1 between Ps and Pn is 

recovered. The following equation relates the points set 

�̃�~[𝑋 𝑌 𝑍 1]𝑇  in the world coordinate system to the 

points set 𝑋𝑃𝑚
̃ ~[𝑋𝑃𝑚

𝑌𝑃𝑚
𝑍𝑃𝑚

1]
𝑇
 derived from the color 

images. 

 

[

𝑋
𝑌
𝑍
1

] = [𝑅
𝑇 𝑡

0 1
] [

𝑅1 𝑡1
0 1

] [𝑆]

[
 
 
 
𝑋𝑃𝑚

𝑌𝑃𝑚

𝑍𝑃𝑚

1 ]
 
 
 
    (8) 

 

where [𝑆] = [

𝑆𝑥 0 0  0
0 𝑆𝑦 0  0

0
0

0
0

𝑆𝑧 0

0   1

]. 

 

3.4.4 Absolute Camera Trajectory Recovery: As we use a 

pinhole camera model to describe the relationship from 2D to 

3D for the RGB camera, a scene view is formed by projecting 

3D points into the image plane using a perspective 

transformation as follows: 

 

 s [
𝑢
𝑣
1
] = [

𝑓𝑥𝑟𝑔𝑏
0 𝑐𝑥𝑟𝑔𝑏

0 𝑓𝑦𝑟𝑔𝑏
𝑐𝑦𝑟𝑔𝑏

0 0 1

] [
𝑅𝑟 𝑡𝑟
0 1

]

[
 
 
 
𝑋𝑃𝑚

𝑌𝑃𝑚

𝑍𝑃𝑚

1 ]
 
 
 
         (9) 

 

where (u, v) are image coordinates. (𝑓𝑥𝑟𝑔𝑏
, 𝑓𝑦𝑟𝑔𝑏

) are the focal 

lengths of the RGB image expressed in pixel units. (cxrgb, cyrgb) 

is the principal point that is usually at the image center. (Rr, tr) 

indicate the relative camera pose. It is convenient to combine 

equations (8) and (9) into one matrix equation as follows: 

 

s [
𝑢
𝑣
1
] = 𝐾 [

𝑅𝑟 𝑡𝑟
0 1

] ([𝑅
𝑇 𝑡

0 1
] [

𝑅1 𝑡1
0 1

] [𝑆])
−1

[

𝑋
𝑌
𝑍
1

]    (10) 

 

According to equation (10), the absolute camera trajectory Ra, 

Ta can be written as follows: 

 

[
𝑅𝑎 𝑡𝑎
0 1

] = [
𝑅𝑟 𝑡𝑟
0 1

] ([𝑅
𝑇 𝑡

0 1
] [

𝑅1 𝑡1
0 1

] [𝑆])
−1

       (11) 

 

Finally, the absolute camera trajectory can be used for dense 

modeling with the PMVS tool, and the produced 3D dense 

model can be matched with the 3D model obtained from the 

structure sensor. 

 

 

4. EXPERIMENTS AND RESULTS 

 
4.1 Datasets 

In this section, field tests are carried out to validate the 

feasibility and effectiveness of the proposed enhanced RGB-D 

mapping method. Two sets of data are collected using the 

structure sensor attached to an iPad Air. The camera calibration 

results are shown in Table 1. 

 

IR sensor 
Focal length 

(pixels) 

fxdepth 580±3.49 

fydepth 581±3.27 
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Principal point 

(pixels) 

cxdepth 331.59±1.57 

cydepth 236.59±1.98 

RGB 

sensor 

Focal length 

(pixels) 

fxrgb 570.63±3.43 

fyrgb 570.96±3.20 

Principal point 

(pixels) 

cxrgb 319.84±1.55 

cyrgb 244.96±2.01 

 

Table 1. Calibration results of IR camera and RGB camera 

 

For the first dataset, a sample registered frame with the RGB 

image (left) and depth image (right) is shown in Figure 5(a). 

The white part in the depth image indicates that no depth value 

is measured due to the distance limitation or the type of surface 

material. This dataset contains 244 registered frames collected 

in a big meeting room. Because of the lack of shape structure, 

the IR view range is only set at 4.98*2.16*1.37 m to ensure 

uninterrupted tracking. 

 

The second dataset was collected along a corridor. The whole 

length of the trajectory was about 26.5 m. It contains 305 

registered frames. The two images in Figure 5(b) show the 

RGB frame (left) and depth frame (right). 

 

(a)

(b)  
 

Figure 5. (a) Sample images of the first dataset in a meeting  

room. (b) Sample images of the second dataset along a corridor 

 

4.2 Experimental Results and Analysis 

It should be noted that some color deviation may exist in the 

RGB images collected by the RGB-D sensor due to inaccurate 

perception of color in the indoor environment with the 

ever-changing light. Therefore, only the images without color 

deviation were used for pose estimation. 

 

For the first experiment, all 244 RGB images were used for 

dense modeling due to the uniform source of light. For 

geometric registration, 266 feature points with valid depth 

information detected from the first RGB image were filtered 

out, and 1437 homonymous points within the view range were 

used as check points. They were extracted from the 

feature-matching results. The performance of the geometric 

registration was examined in object space. Table 2 lists the 

statistics of the discrepancies between the transformed point set 

and the point set from the depth image, including the Threshold, 

number of iterations, check points, and the RMSE in three 

directions. According to Table 2, the Threshold value was set at 

0.1 due to the smooth surface of the meeting table. 

 

As Table 2 shows, the registration accuracy was examined for 

each iteration. During the first iteration, all of the feature 

matches were used to recover the rigid transformation matrix. 

As expected, it generated the worst results because no outliers 

were rejected. The accuracy in the following two iterations 

generally remained unchanged. However, the accuracy in the Y 

and Z directions was significantly improved in the last iteration, 

in which the discrepancies were reduced from meter-level to 

centimeter-level in both the Y and Z directions. The models 

from the two sources were merged using the derived scale 

matrix and rigid transformation matrix. Figure 6(a) shows the 

model from the image sequences, which was produced from the 

244 RGB images. In consideration of the tracking lost, the 

volume of the model was set to 4.98*2.16*1.37 m. The sensor 

system only selected a part of the depth information to model 

the scene. Figure 6(b) shows the model from the sensor. As 

expected, the image-based modeling approach achieved a larger 

measuring range. Registering of the latter to the former 

significantly enriched the details of the 3D scene

Dataset 

ID 

Threshold 

(m) 

Iteration 

times 

Check 

points 

Registration accuracy 

AverageError-X(m) AverageError-Y(m) AverageError-Z(m) 

1 

0.1 1 1437 0.042  1.167 1.761 

0.1 2 1437 0.033 1.174 1.770 

0.1 3 1437 0.036 1.171 1.767 

0.1 4 1437 0.037 0.040 0.030 

2 

0.03 1 1302 0.852 0.762 1.234 

0.03 2 1302 0.321 0.435 0.865 

0.03 3 1302 0.026 0.039 0.046 
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Table 2. Statistics of discrepancies in object space 

 

(a) (b)

(c)  
 

Figure 6. Generated 3D models from the first dataset. (a) RGB 

image-based 3D model, (b) depth-based 3D model, and (c) 

registered 3D model 

In the second experiment, due to the color deviation of some 

images, only 172 RGB frames with fairly accurate colors were 

used for dense 3D modeling. This involved 432 feature matches 

for geometric registration. Because of the distinguishing shape 

features, the Threshold value was set at 0.03. During the rigid 

transformation recovery process, the outliers were eliminated 

by comparing the registration accuracy with the threshold. 

Table 2 shows the accuracy of the registration. In the first 

iteration, all 432 feature points were used for transformation 

derivation. As there were some false matches, the obtained 

registration accuracy was about 1 m in the three directions. The 

outliers were rejected in the second iteration using the 

RANSAC method, and the discrepancy was reduced to 0.3, 0.4, 

and 0.8 in the X, Y, and Z directions, respectively. The last 

iteration achieved centimeter-level registration accuracy in all 

three directions. Figure 7 shows the scene from the image 

sequences, that from the sensor system, and the registered 

scene. As shown in Figure 7(a), the scene from the image 

sequences can cover only a part of the measured corridor 

because only some of the images were used in the SFM 

procedure. Figure 7(b) shows the obtained corridor model from 

the depth image. Although all of the depth information was 

merged together for model generation, significant details were 

lost, especially on the ceiling and the floor. The main reason for 

this may be the limited field of view of the IR sensor. The 

registered model is shown in Figure 7(c). The two models were 

matched well with the aid of the scale and transformation 

parameters. More importantly, the model obtained from the 

RGB images can be a good supplement to the model obtained 

from the sensor system. The structure information relating to 

the ceiling and the floor is enhanced by combining these two 

models. 

(a) (b)

(c)  
 

Figure 7. Generated 3D models from the second dataset. (a) 

RGB image-based 3D model, (b) depth-based 3D model, and (c) 

registered 3D model 

5. SUMMARY AND CONCLUSIONS 

The key issues when using RGB-D sensors to produce 3D 

models are the limited measurement distance and the field of 

view. We have presented an enhanced RGB-D mapping scheme 

by combining RGB image sequences with depth information. 

This scheme aims to combine the model produced by the image 

sequences with the close detailed model to permit further and 

more detailed indoor modeling. The globle scale of the motion 

between RGB frames can be recovered by integrating the depth 

information and visual information provided by the system. 

Based on the robust registration method, the scaled camera 

motion is automatically transformed to the sensor-used 

coordinates system. Further experiments undertaken in the 

indoor environment to validate the feasibility and robustness of 

the proposed method show that it can automatically achieve 

accurate geometric registration between two models from 

different architectures. The loss of details with the sensor 

model can be well repaired by fusion with the model from the 

image sequences. Accordingly, the enhanced RGB-D mapping 

system can extend the measurement distance of the structure 

sensor system. 

 

The next step in this research will to be improve the depth 

alignment process by using the visual features in the image. 

Although the structure sensor can detect a range up to 9.0 

meters, the sensor manufacturer limits the distance to a 

maximum of 3 meters. One reason for this probably relates to 

the accuracy of ICP alignment. The registered far-range model 

obtained from the RGB image may be able to provide a better 

constraint for depth registration. 
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