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ABSTRACT: 

 

Mobile mapping systems (MMS) can capture dense point-clouds of urban scenes. For visualizing realistic scenes using point-clouds, 

RGB colors have to be added to point-clouds. To generate colored point-clouds in a post-process, each point is projected onto camera 

images and a RGB color is copied to the point at the projected position. However, incorrect colors are often added to point-clouds 

because of the misalignment of laser scanners, the calibration errors of cameras and laser scanners, or the failure of GPS acquisition. 

In this paper, we propose a new method to correct RGB colors of point-clouds captured by a MMS. In our method, RGB colors of a 

point-cloud are corrected by comparing intensity images and RGB images. However, since a MMS outputs sparse and anisotropic 

point-clouds, regular images cannot be obtained from intensities of points. Therefore, we convert a point-cloud into a mesh model and 

project triangle faces onto image space, on which regular lattices are defined. Then we extract edge features from intensity images and 

RGB images, and detect their correspondences. In our experiments, our method worked very well for correcting RGB colors of point-

clouds captured by a MMS. 

 

 

1. INTRODUCTION 

A mobile mapping system (MMS) can be used to capture point-

clouds of urban scenes. A MMS is a vehicle on which laser 

scanners, digital cameras, GPS, and IMU are mounted (Figure 1). 

Laser scanners output point-clouds, which contain 3D 

coordinates, intensity values, and GPS times. Intensity values 

represent the strength of reflected laser beams, and GPS times 

indicate when points were captured. MMSs measure their 

positions by receiving GPS data. When MMSs fail to catch GPSs, 

they estimate the vehicle position using IMUs and odometers. 

Digital cameras on a MMS capture successive digital images of 

scenes while a vehicle moves. 

 

Since the original coordinates from a laser scanner are described 

on the scanner-centered coordinate system, they have to 

transformed to global coordinates, such as WGS84 coordinates, 

by using the vehicle positions. Positions of a vehicle are typically 

measured using GPSs, IMUs, and odometers. 

 

In this paper, we use the Mitsubishi MMS-X, as shown in Figure 

1. In this system, the positions and attitudes of cameras and laser 

scanners are represented relative to the coordinate system defined 

on the vehicle. These data were calibrated by the MMS vendor 

and the calibration data were given to the users. When the 

software tool, which is bundled with the MMS, processes raw 

MMS data, it outputs 3D coordinates with intensity, the 

transformation matrices of cameras and laser scanners, and 

camera parameters. 

 

This software can also add RGB colors to points using a well-

known pin-hole camera model (Weng et al. 1992; Zhang, 2000). 

The software tool transforms scanner-centered coordinates onto 

the camera coordinate system using the given transformation 

matrixes. Then, each 3D is projected on image space, as shown 

in Figure 2. The RGB color of a point is determined as the color 

of the pixel, on which the point is projected. 

 

                                                                 
*  Corresponding author 
 

In this paper, we implemented the pinhole camera model 

proposed by Zhang, et al. (Zhang, 2000), and projected each point 

on images. To calculate each projected positions, we used 

transformation matrices and camera parameters provided by the 

MMS vendor. 

 

Although pin-hole camera models are useful to calculate colors 

of points, incorrect colors are often added to point-clouds. Main 

reasons for incorrect colors are calibration errors of cameras and 

laser scanners, misalignment of laser scanners, the failure of GPS 

acquisition, and so on. 

 

Correction of RGB colors of point-clouds is necessary to realize 

high quality visualization. For correcting colors of point-clouds, 

some researchers calculated correspondences between camera 

images and range images (Herrer et al, 2011; Stamos and Allen, 

2000; Scaramuzza et al, 2007; Unnikrishnan and Hevert, 2005; 

Viora et al, 1997; Zhang and Pless, 2004). These methods extract 

feature points, such as corners of planar regions, from range 

images and RGB images, and compared them. Kurazume et al. 

used intensities of points instead of coordinates and extracted 

features from intensity images and RGB images (Kurazume et al, 

2002). 

 

Figure 1. Mobile Mapping System 
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However these methods are based on dense point-clouds captured 

using terrestrial laser scanners (TLS). On the other hand, a MMS 

produces very noisy, sparse, and anisotropic point-clouds 

although it can capture a wide range of urban scenes. It is 

typically difficult to obtain regular range images or intensity 

images from point-clouds captured using a MMS. 

 

Figure 3 shows laser scanning based on a MMS. A laser scanner 

on a vehicle irradiates laser beams in a spiral manner, as shown 

in Figure 3(a). We suppose that the rotation frequency of the laser 

scanner is 100 Hz, the number of captured points in a second is 

300,000. Then when the vehicle moves at 40 km/h, the distances 

between neighbor points on a scan line are about 1cm in the range 

of 5 m, and the distances between scan lines are approximately 

11cm, as shown in Figure 3. 

 

Figure 4 shows an example of a point-cloud. In this figure, 3D 

points, which were captured using a MMS, are projected on a 

digital image, which was captured by a digital camera. Although 

points are dense along the trajectories of laser beams, they are 

very sparse in the moving directions of the vehicle. Therefore, 

point-clouds captured using a MMS are anisotropic. In addition, 

coordinates of MMS data are much noisier than ones of TLSs, 

because their preciseness is influenced by uncertainties 

accumulated by a laser scanner, GPSs and IMUs, and calibrations. 

Therefore, we have to develop a new method that can handle 

noisy, sparse, and anisotropic point-clouds. 

 

In this paper, we correct misaligned RGB colors of point-clouds 

by comparing intensity images and RGB images. In this paper, 

we describe a 2D image generated from intensities of a point-

cloud as an intensity image, and a 2D image captured by a digital 

camera as an RGB image. To handle point-clouds captured using 

a MMS, we convert point-clouds into mesh models and generate 

regular intensity images. Then we extract edge features from 

intensity images and RGB images, and correct RGB colors of 

points by detecting correspondences of features in the both 

images. 

 

In the following section, we propose a new method for generating 

regular intensity images from sparse and anisotropic point-clouds. 

We explain feature extraction methods in Section 3, and then 

describe a matching method in Section 4. We show experimental 

results in Section 5 and finally conclude our work. 

 

 

2. GENERATION OF REFLECTANCE IMAGE 

2.1 Converting Point-Clouds into Mesh Model 

In our method, intensity images are generated from point-clouds, 

and they are compared to RGB images captured using a digital 

camera. However, points from a MMS are sparse in driving 

directions, as shown in Figure 4. Obviously, 3D points are too 

sparse to fill image space. 

 

To remedy this problem, we convert point-clouds to mesh models 

and fill gaps on image space by projecting triangle faces. Our 

mesh generation method is based on a GPS-time based 

triangulation method (Masuda and He, 2015). 

 

At first we connect points on scan lines when distances are 

smaller than a threshold, as shown in Figure 5. Since points are 

saved in a file in the order of measurement, we can obtain scan 

lines by sequentially connecting points. 

 

Then we add edges between neighbor scan-lines, as shown in 

Figure 6. Since laser beams rotates with a constant frequency f 

Hz, neighbor points on the next scan line are expected to be found 

around 1/f second later. We search for the nearest point in a small 

range on the next scan line. 

 

When the distances to the nearest points are smaller than a 

threshold, edges are generated and polygon faces are created, as 

shown in Figure 7(a). Finally, we subdivide polygonal faces into 

triangle faces using the Delaunay triangulation, as shown in 

Figure 7(b).  

 

 

  

(a) Path of laser beams (b) Point distance 

Figure 3. Laser beams of a MMS 

 

Figure 2. Pinhole camera model 

  

(a) Point-cloud (b) Scan lines 

Figure 5. Scan lines of points 

 

Figure 4. Density of points on image space 
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2.2 Projection of Triangles 

Each triangle in a mesh model is projected on image space. In our 

method, three points of a triangle are projected on an image, and 

then the inside of the triangle is interpolated from the values of 

the three points. We project each point using the pinhole camera 

model (Zhang, 2000), which is defined using a focal point 

distance, a cross point of the optical axis and the imaging plane, 

distortion coefficients of the coordination, and distortion 

coefficients of the lens. 

 

Intensity values inside a triangle are linearly interpolated using 

the intensity values of the three vertices. In our implementation, 

we used the Gouraud shading technique (Gouraud, 1971) to 

interpolate intensity values inside triangles. 

 

However, a lot of salt-and-pepper noises are observed in an 

intensity image, as shown in Figure 9(a), because intensity values 

are much more noisy than RGB values. To remove noises, we 

apply the median filter on each scan line before mesh generation. 

Our median filter is shown in Figure 8. We used the previous and 

next four points for the median filter. 

 

Figure 9(b) shows a smoothed intensity image. In our 

experiments, our scan-line based median filter was very effective 

to remove salt-and-pepper noises. 

 

 

 

 

3. EXTRACTION OF EDGE FEATURES  

3.1 Edge Detection from Intensity Images 

We extract edge features from intensity images and RGB images. 

We use the Canny edge detection method (Canny, 1986) for 

detecting edge features. 

 

Figure 10 shows edge features extracted from an intensity image. 

To remove noises shown in Figure 10(b), we apply the Gaussian 

filter with the 3 x 3 kernel.  

 

Figure 10 (c) shows a smoothed edge features. Figure 11 shows 

an intensity image and extracted edge features. This result shows 

that our method is effective to extract edge features from 

intensities of sparse and anisotropic point-clouds.  

 

3.2 Edge Detection from RGB Images 

We also extract edge features from RGB images. Edge features 

can be more clearly detected from RGB images. We use the 

Canny edge detection method.  

 

Then we merge feature points into line segments. Pixels of edge 

features are expanded using the morphological operation, and 

they are shrunk using the thinning algorithm proposed by Zhang 

et al. (Zhang and Suen, 1984). An example is shown in Figure 12 

Figure 13 shows an RGB image and edge features.  

 

 

(a) Connection with the 

nearest point 

 
(b) Triangle faces 

Figure 7. Generation of mesh model 

 

Figure 6. Detection of the nearest point using GPS time 

 

Figure 8. Median filter on scan line 

 

(a) Intensity image 

 

(b) Edge features (c) Gaussian filter 

Figure 10. Edge features extracted from intensity image 

  

(a) Intensity image generated 

using a mesh model 

(b) Intensity image smoothed 

by a median filter 

Figure 9. Elimination of noises 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-1-167-2016

 
169



 

 

4. MATCHING OF EDGE FEATURES 

4.1  Matching Edge Features 

When edge features are extracted from an intensity image and an 

RGB image, their correspondences are estimated. Edge features 

on an RGB image are more reliable than ones on an intensity 

image, as shown in Figure 14. Therefore, we select representative 

points on an RGB image, and search for their corresponding 

points on an intensity image. 

 

Figure 15 shows a process to detect corresponding points. When 

line segments are extracted from an RGB image, representative 

points are sampled at an equal interval, as shown in Figure 15(a). 

In this research, we defined the interval as 25 points, which were 

determined based on experiments. Then representative points are 

compared to pixels on an intensity image. Since an intensity 

image and an RGB image are approximately aligned using the 

pinhole camera model, representative points are placed near 

feature edges on the intensity image (Figure 15(b)). We 

iteratively shift representative points in a small range, and detect 

the position at which the most number of points are overlapped 

with edge features on the intensity image (Figure 15(c)). 

 

Representative points and their corresponding points are 

calculated for each line segment.  Finally we obtain a set of 

representative points P = {pi} and their corresponding points   Q 

= {qi} (i=1,2,..,n). 

 

4.2 Segmentation of Corresponding Points 

When pairs of representative points and corresponding points are 

detected, they are segmented based on surface segmentation. 

Since point-clouds are converted into a mesh model in our 

method, normal vectors of triangle faces can be easily calculated. 

In our method, triangles on the approximately same plane are 

categorized into the same group. In Figure 16, points in each 

group are shown in the same color.  

 

4.3 Projective Transformation 

We refine colors of points in each segmented group. For each 

group, we calculate a projective transformation using pairs of 

representative points and their corresponding points. We describe 

a representative point as pi = (xi, yi, 1)t, and a corresponding point 

as qi = (si, ti, 1)t. Then the homography matrix can be defined as:  

 

 

(a) Intensity image 

 

(b) Edge features 

Figure 11. Edge features extracted from intensity image 

  

(a) Edge features (b) Connected edges 

Figure 12. Connection of edge features 

 

(a) RGB image 

 

(b) Edge features 

Figure 13. Edge features extracted from RGB image 
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                                  (1) 

 

Since the matrix H can be determined using four pairs of (pi, qi), 

we search the optimal four pairs using the MLESAC method 

(Torr and Zisserman, 1998), which a variant of the RANSAC 

algorithm. In our method, four pairs are randomly selected from 

all pairs, and H is calculated using the selected four pairs. Then 

all corresponding points are transformed using H, and calculate 

the following equation.  

 

                     (2) 

 

The optimal H is selected when the value of D is minimized in 

iterative trials. When the optical H is determined, all points in the 

same segmented group are projected onto image space, and then 

transformed using the homography matrix. RGB colors are 

copied to the points at the transformed positions on the RGB 

image. 

 

 

 

5. EXPERIMENTAL RESULTS 

We evaluated our methods using point-clouds and RGB images 

that were captured using a MMS. First we aligned intensity 

images with RGB images using a pinhole camera model. Then 

we corrected them using our method. 

 

In our implementation, we selected points for each RGB image 

using GPS time. Since each digital image has GPS time T, we 

selected points that have GPS time within [𝑇 − 𝛿1, 𝑇 + 𝛿2]. The 

values 𝛿1 and 𝛿2 are determined according to the vehicle speed. 

When points are projected outside the digital image, they are 

discarded. In this scheme, each point may be projected two or 

more images. Then we use the color of the point that are nearest 

from the centers of images to avoid peripheral distortion of the 

pinhole camera model. 

 

In Figure 17, feature edges were extracted from drawings on 

roads, and they were matched between the intensity image and 

the RGB image. Representative points and their corresponding 

points are shown in Figure 18. The pinhole camera model tended 

to produce misaligned colors at sides of roads. Our method could 

correct colors of points and could align the intensity image with 

the RGB image. 

 

In Figure 19, feature edges were extracted on contours of objects.  

In this example, a thin pole is placed near a tree crown and the 

pinhole camera model assigned the crown color to a part of the 

pole. A traffic plate was also misaligned. Our method could 

successfully correct these misaligned colors. 

 

Table 1 and 2 show the comparison of misaligned original colors 

and corrected colors with Figure 17 data and Figure 19 data. They 

were evaluated using different data sets. In Table.1, the average 

error decreased from 11.1 pixels to 5.55 pixels. In Table.2, the 

average errors decreased from 16.3 pixel to 8.1 pixels. 
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(a) Edges from  

intensity image 

(b) Edges from  

RGB image 

Figure 14. Edge features 

 

(a)Representative 

 points 

(b)Projection on 

intensity image 

(c) Corresponding  

 points 

Figure 15. Matching edge features 

 

Figure 16. Segmented points 

 

(a) Projection using a pinhole camera model  

 

(b) Corrected colors by our method 

Figure 17. Corrected colors 
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6. CONCLUTION

In this paper, we proposed a new color correction method for 

point-clouds captured using a MMS. Since a MMS outputs noisy 

and sparse point-clouds, we converted discrete points into a mesh 

model. Then we projected triangles on image space and generated 

regular intensity images. Then feature points were extracted from 

intensity images and RGB images, and colors of points were 

corrected using coincident feature points. In our experiments, our 

method worked very well to correct misaligned colors of point-

clouds. 

In future work, we would like to enhance our method to handle a 

wide variety of scenes. In our current implementation, corrected 

colors have to be placed on approximately planar regions. This is 

because our method uses a linear projective transformation. We 

would like to investigate transformation methods that can handle 

non-planar regions. In addition, we would like to investigate 

more flexible feature detection methods for 2D images. Recently 

robust feature detection methods have been proposed. These 

methods might improve the robustness and applicability of our 

method. 
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