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ABSTRACT:

Networks of small, low cost Unmanned Aerial Systems (UASs) have the potential to improve responsiveness and situational awareness
across an increasing number of applications including defense, surveillance, mapping, search and rescue, disaster management, mineral
exploration, assisted guidance and navigation etc. These ad hoc UAS networks typically have the capability to communicate with each
other and can share data between the individual UAS nodes. Thus these networks can operate as robust and efficient information
acquisition platforms. For any of the applications involving UASs, a primary requirement is the localization i.e. determining the
position and orientation of the UAS. The performance requirements of localization can vary with individual applications, for example:
mapping applications need much higher localization accuracy as compared to the applications involving only surveillance. The sharing
of appropriate data between UASs can prove to be advantageous when compared to a single UAS, in terms of improving the positioning
accuracy and reliability particularly in partially or completely GNSS denied environments. This research aims to integrate low cost
positioning sensors and cooperative localization technique for a network of UASs. Our hypothesis is that it is possible to achieve
high accurate, real-time localization of each of the nodes in the network even with cheaper sensors if the nodes of the network share
information among themselves. This hypothesis is validated using simulations and the results are analyzed both for centralized and
distributed estimation architectures. At first, the results are studied for a two node network which is then expanded for a network
containing more number of nodes. Having more nodes in the network allows us to study the properties of the network including the
effect of size and shape of the network on accuracy of the nodes.

1. INTRODUCTION

Unmanned Aerial Systems (UAS) are now being increasingly
used in a number of applications including surveillance, map-
ping, defense, search and rescue, mineral exploration, disaster
management, assisted guidance and navigation etc. To effectively
use UAS or swarms of UAS in any of the applications, determin-
ing the correct position and orientation of the UAS (or all the
UAS in the network) is of utmost importance. At present it is
achieved by installing GNSS receivers along with some inertial
sensors and processing the data collected by sensors using an ap-
propriate filter such as Kalman Filter. Although UAS is an in-
teresting technology which is yet to realize its full potential, a
number of challenges need to be addressed before the technology
can be efficiently used in any application. The existing challenges
can be classified in to two categories namely, performance chal-
lenges and practical challenges. Performance challenges include:
(i) Meter to Sub-meter positioning accuracy of current systems
which is limiting its use in high accuracy demanding applications
such as mapping, (ii) Poor reliability on the system, meaning the
whole mission is at the risk of failure due to the failure of a single
UAS, (iii) Degradation of the positioning accuracy in GNSS chal-
lenged environments. Practical challenges include: (i) Payload-
power conundrum, i.e. more power is required to carry more pay-
load and one needs a bigger battery to have more power which in
turn increases the payload. This is limiting in the sense that not
many sensors can be installed on a single UAS, (ii) Failure of one
UAS results in mission failure which is not true in a network of
UAS. Further as the size of the UAS becomes smaller, its payload
capacity decreases and high accuracy sensors cannot be installed
due to their heavy weights resulting in poor positioning accuracy
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and thus resulting in the poor accuracy of the derived products.
Also, smaller UAS are much more prone to system failure result-
ing in failure of the complete mission which can have devastat-
ing consequences especially in missions involving defense and
search and rescue.

A network of UASs may be able to overcome the above men-
tioned challenges and they also offer much more advantages espe-
cially in terms of increased reliability, robustness and efficiency,
meaning the mission for which UAS is being used wouldn’t be
compromised even if one of the UAS in a network of UASs fails
or crashes. Further, a network of UASs is expected to improve
the positioning accuracy (Roumeliotis and Bekey 2002) as well
as aid those UASs which have lost access to the GNSS signal
or are operating under GNSS challenged environments. Also a
network of UASs can perform tasks such as search and rescue
(Waharte et al. 2009, Chung and Burdick 2008), exploration and
mapping (Rekleitis et al. 2003, Santamario et al.), surveillance
(Sutton et al. 2008, Grocholsky et al. 2006, Jones 2009), dis-
aster management and situational awareness (Maza et al. 2011,
Kuntze et al. 2012), exploration of unknown environments (Rek-
leitis et al. 1997, Zheng et al. 2005) etc. much more efficiently
and much faster as compared to a single UAS. A single UAS
may not even be able to complete the tasks mentioned before be-
cause of the limited power available on-board. For all the above
mentioned applications, the key component is accurate localiza-
tion of all the nodes in the UAS network. In this paper we aim
at improving the positioning accuracy of a network of UASs by
sharing information cooperatively. This research focuses on de-
veloping a network of UASs by integrating low cost positioning
sensors along with cooperative localization techniques with the
hypothesis that it is possible to maintain a given accuracy for a
longer period of time in the GNSS challenged environments for
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each of the nodes in a network in real time only if all the nodes in
the network share their information with all the other nodes. This
paper analyzes the localization accuracy of the nodes in a coop-
erative network which is a function of the estimation architecture
and algorithm employed, quality of available measurements and
geometry of the network.

The researchers in Roumeliotis and Bekey (2002) and Bailey et
al.(2011) proposed partially distributed EKF based estimation al-
gorithms to compute the pose of the robots. Roumeliotis and
Bekey (2002) uses relative position and heading of the robots
as the measurements for cooperative localization while Bailey et
al.(2011) uses laser scanner and bearing measurements for the
updation stage. Some of the researchers like Rashidi and Mo-
hammadloo (2011) have used range sensor measurements along
with inertial sensors with in the centralized EKF estimation al-
gorithm. Majority of these researchers (Roumeliotis and Bekey
2002, Bailey et al. 2011, Rashidi and Mohammadloo 2011) have
solved the problem for two dimensional spaces and while ne-
glecting or not using the observations of inertial measurement
unit (IMU). A number of estimation algorithms including UKF
(Shi et al. 2010), Covariance Intersection (Carrillo-Arce et al.
2013), Split Covariance Intersection (Wanasinghe et al. 2014, Li
and Nashashibi 2013), Belief propagation (Savic and Zazo 2013),
MAP (Nerukar et al. 2009), Iterated Kalman filter (Pillonetto and
Carpin 2007) etc. have been used in the distributed estimation
architecture. The work for distributed cooperative localization
using ground based robots seems to be very extensive (Shi et al.
2010, Carrillo-Arce et al. 2013, Wanasinghe et al. 2014, Savic
and Zazo 2013, Nerukar et al. 2009, Madhavan et al. 2002, Pil-
lonetto and Carpin 2007,Bailey et al. 2011) but the work for air-
borne platforms seems to be somewhat limited (Indelman et al.
2012, Qu et al. 2010, Qu and Zhang 2011, Melnyk et al. 2012,
Chen et al. 2013, Wan et al. 2015). Some of the researchers (In-
delman et al. 2012, Melnyk et al. 2012) have attempted to use
vision based sensors for cooperative localization.

In this research, we focus specifically on UAS which are installed
with GNSS and inertial sensors. In addition, each of the UAS
possesses a ranging and a communication sensor (like UWB or
Wi-Fi). In what follows, we describe the mathematical frame-
work for centralized fusion architecture for UAS and extend the
same for distributed architecture. Unlike previous approaches,
we present the results for a full 3D environment without neglect-
ing the inertial sensor observations. Further we examine how the
cooperative localization approaches affect the localization accu-
racy as compared to non-cooperative modes both in the GNSS
available and challenged environments. Also, the centralized co-
operative localization approaches are then compared with decen-
tralized approaches and the pros and cons of each of the ap-
proaches are examined.

2. KINEMATIC MODEL

Before proceeding to describe the cooperative localization ap-
proaches, we will explain the mathematical structure of our state
used in the proposed method and also provide details on the kine-
matic equations which form the basis of state space model. The
state vector for ith UAS in a network containing N UASs is a
16 dimensional state vector comprising of position, velocity, atti-
tude, gyroscope drift, accelerometer bias and receiver clock bias.
It is possible to choose a smaller state vector if one is only inter-
ested in positioning component and not the navigation component
but we are interested in a general state including the navigation
component. Thus the state vector for the ith node can be written

as,

xi =
[ (

ri
)T (

vi
)T (

αi
)T (

big
)T (

bia
)T (

cib
) ]T

(1)
where the superscript ‘T ’ denotes the transpose and superscript
‘i’ denotes the number of node (UAS) in the network. The nota-
tions ri, vi, αi, big , bia and cib denote the position, velocity, atti-
tude, gyroscope bias, accelerometer bias and receiver clock bias
of the ith UAS respectively. The equations of motion for a single
node (UAS) can be written in ECEF frame as:

ṙe = ve (2)

v̇e = Re
bfb − 2Ωe

iev
e + ge (3)

α̇e = Rαeωib (4)

where Rαe is given by:

Rαe =

 1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ


where re denotes the position of the node in ECEF frame, ve de-
notes the velocity and αe denotes the attitude vector, Ωe

ie denotes
the skew symmetric matrix of the earth rotation vector in ECEF
frame with respect to the inertial frame, Re

b denotes the rotation
vector from IMU body to ECEF frame and fb denotes the ob-
servations taken by accelerometer on-board the node. Although
it is easier to work in ECEF frame, working with NED frame
may be more convenient in certain applications. Here, we choose
ECEF as the reference frame but the same framework would be
extended for NED frame or local navigation frame. The propaga-
tion model for biases are assumed to follow the markov property
and can be written as follows,

(bg)k+1 = (bg)k + wk
g (5)

(ba)k+1 = (ba)k + wk
a (6)

(cb)k+1 = (cb)k + wk
cb (7)

where wk denotes a random noise and follows any given distri-
bution (e.g. normal distribution). Thus equations 2 to 4 and 5 to 7
can be combined to write,

ẋ = f (x, u, w) (8)

where f(x, y) denotes a nonlinear function of x and y and ẋ de-
notes the first derivative of x with respect to time. The notation u
denotes the observations from IMU (i.e. accelerometer and gyro-
scope measurements).

3. CENTRALIZED COOPERATIVE LOCALIZATION

Extended Kalman Filter forms the basis of centralized coopera-
tive localization. We use EKF only to demonstrate the central-
ized cooperative localization methodology and any other filter
like UKF or Particle filter can be used instead of EKF within the
same mathematical framework. Although we develop the math-
ematical framework for a general case having ‘N’ UASs in the
network, we first demonstrate the framework for two UASs each
of which is installed with GNSS, IMU, and Range and commu-
nication sensor. The same framework will then be extended for
a network containing more number UASs in the network and the
results will be then analyzed and compared with the cases when
the UAS was not communicating with other nodes in the network.
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3.1 State Space Model

In a centralized cooperative localization framework, the states
and covariances of all the nodes (UAS) in the network is pro-
cessed simultaneously at a centralized fusion center. Thus the
joint state vector of all the ‘N ’ nodes can be written as,

X =
[ (

x1
)T (

x2
)T

. . .
(
xi
)T

. .
(
xN

)T ]T
where xi is given by equation 1. Thus equation 8 can be written
for the joint state as,

Ẋ = f (X,U,W ) (9)

Since we are using EKF for the centralized architecture, equa-
tion 9 can be linearized about a nominal state Xo using taylor
series expansion and thus state space model can be re-written in
discretized form as follows,

Xk+1 ≈ FkXk + (f(Xo)− FXo) δt+GkWkδt+BkUkδt
(10)

where f(Xk) is the non linear function defining the state evo-
lution, δt is the IMU sampling interval, Fk = I + Fδt, F is

the jacobian and is given as F = ∂f(X,W )
∂X

∣∣∣∣
X=Xo

and Wk ∼

N(0, Sk) is the noise vector. The noise vector Wk can be written
as,

Wk =
[ (

w1
k

)T (
w2

k

)T
. . .

(
wi

k

)T
. .

(
wN

k

)T ]T
where wi

k can be written as follows,

wi
k =


wfb

wωib

wba

wbg

wcb


where wfb and wωib denote the random errors in accelerometer
and gyroscope sensors. The matrices Fk and Gk for a single node
are given as,

F
i
k =



I3×3 I3×3δt 03×3 03×3 03×3 03×1
03×3 (I3×3 − 2Ωe

ieδt) Eδt −Re
bδt 03×3 03×1

03×3 03×3 I3×3 + Dδt 03×3 −Rαeδt 03×1
03×3 03×3 03×3 I3×3 03×3 03×1
03×3 03×3 03×3 03×3 I3×3 03×1
01×3 01×3 01×3 01×3 01×3 1


(11)

Gi
k =


03×3 03×3 03×3 03×3 03×1

Re
bδt 03×3 03×3 03×3 03×1

03×3 Rαeδt 03×3 03×3 03×1

03×3 03×3 I3×3 03×3 03×1

03×3 03×3 03×3 I3×3 03×1

01×3 01×3 01×3 01×3 1

 (12)

where E = − ∂(Re
bba)

∂αe and D = − ∂(Rαe bg)
∂αe . The matrix Bk

and vector Uk in equation 10 are given as,

Bi
k =


03×3 03×3

Re
b 03×3

03×3 Rαe

03×3 03×3

03×3 03×3

01×3 01×3


U i

k =

[
(fb)k
(ωib)k

]

With the assumption that none of the nodes affect the motion of
any of the other nodes (UAS) i.e. each of the nodes is moving
independently of its own and is not controlled by any of the other
nodes, the state transition matrix (and other matrices) for the cen-
tralized fusion can be written as follows,

Fk =


F 1
k 0 . . . . 0 0
0 F 2

k . . . . 0 0
. . . . . . . .
. . . . . . . .
0 0 . . . . FN−1

k 0
0 0 . . . . 0 FN

k


N×N

In the next subsection, we will demonstrate how the measure-
ments are used to update the propagated states.

3.2 Measurement Model

The measurement model comprises of GNSS pseudorange mea-
surements as well as relative range measurements among differ-
ent nodes. Additionally, other relative measurements such as rel-
ative angles, relative position, overlapping images taken by dif-
ferent UASs can also be considered within the same mathematical
framework. As of now, we restrict ourselves only to relative range
measurements. Thus, the measurement model can be written as,

zik = h(Xi
k) + eik (13)

where zik denotes the measurement vector for the ith UAS at the
kth time instant, h(x) denotes the measurement function and eik
denotes a random measurement error following a certain distri-
bution (which we assume to be normal). Thus, the measurement
vector zik can be written as below.

zik =
[
ρi1 ρi2 . . ρipi di1 di2 . . diqi

]T
where ρij denotes the pseudorange measurement from the jth

satellite to the ith UAS and dij denotes the relative range mea-
surement between node i and j. If at any given time, node i can
see pi satellites and can measure relative ranges to qi different
nodes, then the size of measurement vector is (pi + qi). It is to
be noted that the variable qi described above as an upper limit of
(N − 1), since a single node can only take relative measurements
from the remaining (N − 1) nodes. Thus the joint measurement
vector for all the nodes can be written as,

Zk =
[ (

z1k
)T (

z2k
)T

. . .
(
zN−1
k

)T (
zNk

)T ]T
For the general case of N UAS in a network where each node i
can track pi satellites and can communicate with qi other nodes,

the size of measurement vector will be
N∑
i=1

(pi + qi) and the max-

imum possible size of measurement vector will be
N∑
i=1

pi +
(
N
2

)
,

when each and every node in the network can measure its relative
range with respect to every other node. The measurement func-
tion h(x) can be broken down in to two different categories: One
for satellite observations and second for relative range measure-
ments. Thus, the measurement model can be written as follows,

ρip =

√
(xp − xi)2 + (yp − yi)2 + (zp − zi)2 + (cb)

i + eρip
(14)

and

d̂ij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + edij (15)
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where d̂ij denotes the estimated distance between the two nodes
i and j. Having defined the measurement model for each of the
nodes, we can write the joint measurement model for centralized
fusion as,

Zk = h(Xk) + rk (16)

where Zk denotes the joint measurements and Xk denotes the
joint state vector. The linearized version of measurement model
(equation 16) can be written as follows.

Zk ≈ HkXk + h(Xo)−HkXo + ek (17)

where Xo denotes the nominal state vector about which measure-
ment model is linearized and Hk denotes the jacobian and is eval-

uated as Hk = ∂h(Xk)
∂Xk

∣∣∣∣
Xk=Xo

. For example, for the case when

there are only two nodes (i and j) in the network, the jacobian
Hk can be written as follows.

Hk =

 Hii
k Hij

k

Hji
k Hjj

k

Hdi
k Hdj

k

 =


∂Zi

k
∂Xi

∂Zi
k

∂Xj

∂Z
j
k

∂Xi

∂Z
j
k

∂Xj

∂d̂ij
∂Xi

∂d̂ij
∂Xj


where Hij

k denotes the jacobian at the kth instant of the measure-
ment vector of ith node with respect to the state vector of the jth

node and Hdi
k denotes the jacobian for the relative measurements

with respect to the ith node. Thus, the elements of the jacobian
matrix are given as follows,

Hii
k =



∂ρi1
∂ri

01×3 01×3 01×3 01×3 1
∂ρi2
∂ri

01×3 01×3 01×3 01×3 1
. . . . . .
. . . . . .

∂ρipi
∂ri

01×3 01×3 01×3 01×3 1


pi×16

Hij
k =

[
∂Zi

k
∂Xj

]
=

[
0

]
(pi)×16

Hdi
k =

[
∂d̂ij
∂ri

01×3 01×3 01×3 01×3 0

]
where pi denotes the number of satellites tracked by the ith node
and i ̸= j. Thus, the above example for 2 UAS in the network
can be extended for any number of nodes in the network and the
whole mathematical structure would remain intact. One could
write a measurement super matrix Hk for N nodes in the network
for a case when each and every node is visible to every other node
in the network as follows.

Hk =



H11
k 0 0 . . . . . 0
0 H22

k 0 . . . . . 0
. . . . . . . . .
0 0 0 . . . . . HNN

k

H
d11

k H
d12

k H
d13

k . . . . . H
d1N

k
. . . . . . . . .
. . . . . . . . .

H

d(N
2

)1

k H

d(n
2

)2

k H

d(N
2

)3

k . . . . . H

d(N
2

)N

k



In the above super matrix, the notation H
dj i

k =
∂d̂j
∂Xi

denotes

the jacobian matrix for the ith node and distance equation d̂j be-
tween any two nodes m and n of the network. Obviously, some
of the matrices Hdji

k will be zero in the cases when the distance
is measured between m and n and the jacobian is with respect to
i, where m ̸= n ̸= i.

3.3 Centralized Extended Kalman Filter

We can use the standard Extended Kalman Filter (EKF) to co-
operatively compute the states of all the UASs. The centralized

Kalman filter runs at a central processing center where all the
measurements and observations from all the nodes (UASs) are
received. After processing, the fusion center transmits back the
states of each of the UAss. If some of the measurements (either
the pseudorange or relative range) are not available, then those
measurements are removed from the measurement vector. The
standard prediction-correction model of EKF can be used to com-
pute the states. It is to be noted that after the first update, the states
of the UASs which have participated in the measurement update
phase get correlated. This correlation will play an important role
if one decides to distribute the above processing to all the nodes
instead of processing them at the centralized processor, as has
been demonstrated here. The importance of this correlation will
be discussed in section 4..

4. DISTRIBUTED COOPERATIVE LOCALIZATION

Distributed approaches have attracted quite a significant attention
from the researchers mostly because they are scalable and can ac-
count for increase (or decrease) in the network sizes. The com-
putational complexity for centralized approaches increases expo-
nentially with the increase in the number of nodes (UASs) which
is limiting its applications. Also CL approaches have a single
point of failure as compared to more robust distributed localiza-
tion approaches.

A major challenge in distributed processing is the accurate esti-
mation of correlations among the nodes in a network. Not tak-
ing in to account these correlations or an incorrect estimation of
these correlations may result in the estimator getting inconsistent
(Carrillo-Arce et al. 2013, Li and Nashashibi 2013) and may even
cause the solution to diverge in some cases. Thus to implement
distributed approaches, one has to either maintain a log of all the
interactions occurring among all the nodes to keep track of the
correlations or compute the correlation on demand, i.e. whenever
two nodes come in contact with each other. In practice, keeping
a log of interactions among the nodes requires a book keeping
approach (Bahr and Walter 2009) and is not feasible in practice
especially as the size of the network increases. Thus a number
of methods focus on computing these correlation whenever two
nodes come in contact with each other. These methods are called
Covariance Intersection and Split Covariance Intersection meth-
ods (Carrillo-Arce et al. 2013, Wanasinghe et al. 2014, Li and
Nashashibi 2013). A third category of algorithms exist which are
inherently distributed in nature and come under the category of
belief propagation methods (Savic and Zazo 2013, Chen et al.
2013, Wan et al. 2015). However in case of loopy networks, be-
lief propagation methods may not result in exact inference (Savic
et al. 2010) or may not even converge to the solution at all.
While covariance (and split covariance) intersection methods do
not suffer from this limitation and can perform equally well even
in loopy networks. The state vector and kinematic equations for
each of the UAS is the same as described in section 2.. In dis-
tributed CL, we are interested in estimating the state (and covari-
ance) of each of the nodes individually instead of the joint state
(and covariance) as was done in centralized CL method in sec-
tion 3.. It is to be noted that instead of processing the data at a
centralized fusion center as was done in centralized CL, the pro-
cessing is distributed among all the nodes in the network i.e. each
of the nodes runs a EKF and CI method locally and no centralized
processor exists in this case. Having said that, in what follows we
will describe the EKF-CI processing approach which is adopted
at each of the nodes in the network.
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4.1 Distributed Fusion: Covariance Intersection

Let at any time instant ‘k’ the state of any two UASs i and j in a
network containing ‘N ’ UASs is given by xi

k and xj
k, respectively

and the corresponding covariances by P i
k and P j

k . Let these two
nodes i and j communicate with each other and share relative in-
formation between them which can either be the relative distance,
relative angle or relative position and orientation or any other in-
formation relating the states of nodes i and j. The objective is to
then fuse this relative information with the states of either of the
UASs and derive a new estimated state vector and correspond-
ing covariance. One of the problems associated with distributed
processing approaches (other than taking care of unknown corre-
lation and loopy networks) is that it should be possible to express
the state of node i explicitly using the relative information and the
state of the other node j (Carrillo-Arce et al. 2013, Wanasinghe
et al. 2014, Li and Nashashibi 2013). This disadvantage limits
the use of distributed processing in the case when only implicit
constraints are available between the two states, like the relative
range measurement. In this paper we assume that the relative
position is available to us by some means. Let us say we are in-
terested in determining the state (and covariance) of the node i
which has received relative information about itself from node j.
Apart from sending the relative information, node j also shares
its state and covariance information with node i. Now two es-
timates of the state of the node i at time ‘k + 1’ are available:
one from the time propagation of state space and second using
the relative information. Here for simplicity we assume that the
relative information contains only the relative position ‘rijrel’ and
is measured in global coordinate system. If the relative position is
not in global coordinate system then it can converted to the same
using appropriate rotation matrices. Thus, the two estimates can
be fused using the CI method where the fused estimate is given
as,

(xi
k+1)

+ = (xi
k+1)

− +Kk+1

[
(xi

k+1)
rel −Hk+1(x

i
k+1)

−
]

(18)
where (xi

k+1)
− denotes the time propagated state of node i and

is given by the time propagation model (Step-1) of EKF as de-
scribed in section 3.3. The covariance corresponding to the state

(xi
k+1)

− is given as P i
1 =

P−
k

W1
where P−

k is given in section 3.3,
W1 denotes a weighing factor and Kk+1 is given by equation 21.
The notation (xi

k+1)
rel denotes the estimate of node i obtained

using the relative information and state of node j and is expressed
mathematically as,

(xi
k+1)

rel = Hk+1x
j
k+1 + rijrel (19)

where Hk+1 is similar to measurement matrix in a standard EKF
and is given as,

Hk+1 =

 1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0

 (20)

The covariance corresponding to (xi
k+1)

rel is given as P i
2 =

Prel
k+1

W2
where W2 is a weighing factor and P rel

k+1 is given by the
following expression,

P rel
k+1 = Hk+1P

j
k+1H

T
k+1 +Rrel

k+1

where Rrel
k+1 is the covariance matrix associated with the accu-

racy of relative information and in this case can be taken to be
a diagonal (3× 3) matrix and Hk+1 is given by matrix in equa-
tion 20. The notation P j

k+1 denotes covariance matrix associated
with the the node j at the time instant k + 1. The notation Kk+1

in equation 18 is similar to kalman gain in a standard EKF and is
given by the following expression,

Kk+1 = P i
1H

T
k+1

(
Hk+1P

i
1H

T
k+1 + P i

2

)
(21)

The only unknown(s) in the equations 18 to 21 are W1 and W2

which are obtained through an optimization process which min-
imizes the trace (or determinant) of the covariance of the fused
state estimate (Carrillo-Arce et al. 2013, Wanasinghe et al. 2014,
Li and Nashashibi 2013). Thus optimization function cab be
mathematically expressed as,

min
[
tr

(
(I −Kk+1Hk+1)P

i
1

)]
{W1,W2}

(22)

subject to the constraint that
N∑
i=1

Wi = 1. The notation tr(x)

denotes the trace of matrix x and all the other notations in equa-
tion 22 have already been defined. The optimization shown in
equation 22 needs to be performed every time node i interacts
with node j. It is to be noted that all the above mentioned pro-
cessing takes place at node i and in the absence of any relative
information or communication with any other node, the process-
ing steps follow a standard EKF procedure.

5. RESULTS AND DISCUSSION

This section presents the results of the simulation both for central-
ized and distributed approaches and attempts to compare the two
approaches as well as see the advantage(s) of information sharing
(i.e. cooperative localization) over the cases when no information
is shared.

5.1 Centralized Cooperative Localization

Let us first consider a case of two UASs in a network, both of
which are equipped with GNSS and MEMS INS sensor as well
as ranging and communication sensors. We assume that both the
nodes are equipped with similar quality sensors. The UASs are
flying at some distance apart from each other in a pre-defined
pattern (as seen in figure 1). Figure 1 shows the XY plot of the
trajectory followed by all the UASs in the network. During the
flight, one of the nodes loses GNSS signal for some duration δt
and relies on its inertial sensors. However, during this time period
the UASs can communicate with each other and measure relative
ranges to each other. After the time period δt, the UAS regains the
GNSS signal while also communicating with the other UAS. We
also present the results for the case when none of the nodes loses
its GNSS signal and measures and communicates the relative dis-
tance between the two nodes and compares it to the case when no
communication is done but both nodes have access to GNSS sig-
nal. The GNSS accuracy is assumed to be 2 cm in horizontal and
5 cm in vertical. The relative range is assumed to be accurate to
2 cm. The two nodes (UASs) send their state information (along

Figure 1: XY plot of the simulated trajectory of the UASs in the
network.

with corresponding covariances), the data from respective GNSS
and inertial sensors and relative range information to the central
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fusion center which computes the joint state and covariance and
passes it on to the corresponding nodes. Since the true trajectory
of the UAS which lost its GNSS signal (referred to as the faulty
UAS) is known to us, we can compute the advantage (to the faulty
UAS) gained by information sharing and compare it to the case
when no information was shared between the two nodes. Figure 2
shows a comparison of the error in the estimated position of one
of the nodes when computed with information sharing (i.e. rela-
tive range or relative position is shared) and without information
sharing while there was no loss of GNSS signal. As can be seen
in figure 2 accuracy appears to be a little better in the case when
range is shared between the two nodes, however this difference
in accuracy is not much significant and it can be said that no sig-
nificant improvement is obtained by sharing relative range when
it is about as accurate as the GNSS information and there is no
loss of GNSS signal. However, sharing relative position infor-
mation does result in a significant improvement in the accuracy.
The second case when one of nodes loses access to GNSS signal

Figure 2: Error comparison for the position of a node for the
case with and without information (relative range and relative
position) sharing. The relative range accuracy in this case is as-
sumed to be 2cm while relative position accuracy is about 5 cm
and GNSS signal was available to both the nodes throughout the
operation.

for a limited period but continues to communicate with the other
node which has access to GNSS signal is presented in figure 3.
As can be seen in figure 3, the UAS loses the GNSS signal at
time step 100 and regains the signal at time step 500. The effect
of information sharing is seen clearly here. The error in position
continues to increase with time when GNSS signal is unavailable
but the rate of increase of error is less in the case when (relative
range) information is shared between the two UASs as compared
to the case when there is no sharing of information. The relative
range information in this case is not able to stop the error from
increasing because relative range from one node only is not suf-
ficient to solve for the position of the faulty node. However, if
range information is available from 3 or more nodes or if relative
position can be directly measured as will be demonstrated later,
then the error in position of the faulty node can be contained.
When the relative position information is shared instead of rela-
tive range, then it is observed that no deterioration in the accuracy
is observed when GNSS signal is lost. This is of importance that
it validates the hypothesis that cooperation among UASs may en-
able some nodes in the network to operate under GNSS denied
regions.

5.1.1 Centralized fusion in a cooperative network: Let us
include more nodes in a network and consider a network of n
nodes where n > 5. The behavior of network changes with the
connectivity, geometry and number of nodes in the network. Here
we assume a fully connected network i.e. every node in a network
is able to measure relative range to every other node. We con-

Figure 3: Error comparison for the position of a fault node which
temporarily loses its GNSS signal for the case with and with-
out information sharing. It also compares the cases for sharing
relative range vs sharing relative position. The relative range ac-
curacy in this case is assumed to be 2cm.

sider two scenarios: (1) When all the nodes in the network have
GNSS availability, (2) When only few nodes have GNSS avail-
ability while all the other nodes can not access GNSS at all. Other
simulation parameters remain the same as in the above cases. We
present the results for the cases when there are 10 and 20 nodes in
the network respectively, with variability in the nodes having ac-
cess to GNSS signal. Figure 5 shows the error plots when GNSS

Figure 4: Network geometry at a given time instant with 10 nodes
in the network with each node having full GNSS availability. The
lines in the network represent the interactions between the nodes
and the numbers represent the identification of the node.

is available to all the nodes while figure 6 shows the error plots
when GNSS is available only to 50% of the nodes in the net-
work. Thus nodes 1, 2, 4, 9, 10 have no GNSS access at all. It
is interesting to note that even though these nodes have no GNSS
through out the mission, the error remains bounded due to the
information sharing. Also, the error for these nodes is not alike
and is generally more than the nodes with GNSS. The reason for
this is that the accuracy of a particular node is dependent on the
relative position of the other nodes with respect to itself. The
second interesting thing to note is that the maximum error in case
of full GNSS availability is about 2 cm while in case of partial
GNSS, it is about 25 cm. Similar pattern is observed when the
number of nodes in the network are increased. As long as there
are a minimum of 4 (or 3 in some cases) nodes with GNSS and
the geometry of the network is sufficiently well, the error for all
the nodes in the network will remain bounded. In the worst case
scenario, if 4 nodes in a network have GNSS but all the 10 nodes
lie in straight line, then this technique may not be able to stop
the solution from diverging. Thus, the geometry of the network,
relative accuracy of information shared and connectivity of the
network plays an important role in determining the node local-
ization accuracy.
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Figure 5: Error plots for all the nodes in the network assuming
fully connected work and full GNSS availability.

Figure 6: Error plots for all the nodes in the network assuming
fully connected work and when GNSS is available only to 5 of
the nodes.

5.2 Distributed Cooperative Localization

For distributed localization we only consider the case of relative
position information sharing. Figure 7 shows the performance
of distributed CI algorithm and also compares it with the case
of centralized architecture. Further we consider two cases in dis-
tributed processing: (1) When GNSS is present on both the nodes,
(2) When GNSS is present on only the first node. We are inter-
ested in studying the effect of having a GNSS on-board vs no
GNSS while the relative position is shared. This is important
in the sense that we can understand the effect of sharing infor-
mation among the nodes in a distributed environment and how
the accuracy is affected even if there are no GNSS outages. It is
very clearly visible that having a GNSS on-board and also sharing
relative information enhances the accuracy even in a distributed
framework. In the following sections we will provide a compari-
son of centralized and distributed approaches.

5.3 Centralized vs Distributed framework

An interesting difference between the distributed and the central-
ized approaches (apart from the fact that processing is distributed)
is that correlation is estimated in distributed approaches while
this correlation is exactly available in the centralized approaches.
Hence, it would be interesting to compare the performance of
centralized and distributed approach based on EKF. To be fair,
we choose the similar conditions for both, i.e. Only one of the
nodes has access to GNSS and relative position information is
shared. The only difference is that in one case, the processing
is performed using centralized EKF approach while in the sec-
ond case processing is performed in a distributed manner using
EKF based on CI method. Figure 7 shows a comparison of the
centralized processing with distributed processing. As expected,
the centralized processing approach outperforms the distributed
processing but at the expense of higher processing and commu-
nication cost. The reason for better accuracy in the centralized
processing is due to the availability of joint covariance matrix
and thus the exact correlation between the states is known which

Figure 7: Error comparison for the position of a node when po-
sition information is shared by the node and there is no GNSS
on-board for the case of centralized vs distributed processing.

is estimated by the CI algorithm in distributed processing. Al-
though accuracy is better in CL approach, distributed approach
offers other advantages like scalability, less communication and
processing cost etc and applying CL approaches in a large net-
work may pose computational challenges and may not be feasi-
ble. The centralized framework may be useful in cases when the
network is relatively small and accuracy requirements are rather
stringent. In the case when GNSS is available throughout, both
the frameworks perform almost equally well. This is interest-
ing because CL approaches achieve the similar accuracy as dis-
tributed approaches in GNSS available environments but at the
expense of higher communication and processing costs. Thus, if
GNSS is available and the nodes are capable of information shar-
ing then it is advisable to implement a distributed localization
architecture as compared to a centralized one.

6. CONCLUSIONS AND FUTURE WORK

This paper presented the first phase of research into which in-
cluded a mathematical framework for centralized and distributed
processing approaches for cooperative localization of a network
of UAS which are equipped with low cost GNSS and MEMS
based inertial sensors. The developed mathematical framework
is analyzed using simulations and their performance studied. It is
found that even when all the nodes of a network have access to
GNSS signal, information sharing among the nodes may help in
maintaining the consistent accuracy for a longer period of time
under GNSS restricted environments depending on the quality
and type of the information shared. Further, information sharing
also assists UASs operating in GNSS challenged environments
by allowing them to localize themselves. In general, centralized
localization approach outperforms distributed approach because
of the exact calculation of the correlations between the states of
the UASs which are communicating with each other but at the
expense of more communication and processing requirements.
But distributed approaches can match the performance of CL ap-
proaches in GNSS available scenarios. Further, CL approaches
are susceptible to failure because if the fusion center fails then
all the nodes in the network will also fail resulting in a total
collapse, while the same is not true for distributed approaches.
In distributed approach, the processing is distributed among the
nodes and each node is capable of operating independently. Thus
if one node in a distributed approach collapses, other nodes in
the network can continue operating without any impact on them.
This makes the distributed approaches quite attractive. The future
work would involve validation of the simulated results with field
experiments.
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