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ABSTRACT:

Traffic lights detection and their state recognition is a crucial task that autonomous vehicles must reliably fulfill. Despite scientific
endeavors, it still is an open problem due to the variations of traffic lights and their perception in image form. Unlike previous studies,
this paper investigates the use of inaccurate and publicly available GIS databases such as OpenStreetMap. In addition, we are the first
to exploit conic section geometry to improve the shape cue of the traffic lights in images. Conic section also enables us to estimate the
pose of the traffic lights with respect to the camera. Our approach can detect multiple traffic lights in the scene, it also is able to detect
the traffic lights in the absence of prior knowledge, and detect the traffics lights as far as 70 meters. The proposed approach has been
evaluated for different scenarios and the results show that the use of stereo cameras significantly improves the accuracy of the traffic
lights detection and pose estimation.

1. INTRODUCTION

The traffic light detection and its state recognition is essential for
quickly emerging fully automated vehicles. The state of traffic
light includes red, yellow, and green signals that authorizes the
right of way and consequently, correctly recognizing the state of
traffic light is crucial for safe driving. Although many sensors are
applied in fully automated vehicles, the recognition of the state of
traffic light is feasible using color cameras on the platform. Thus,
we focus on the traffic light detection and its state recognition
using color cameras mounted on the platform.

This is still a challenging problem due to the fact that there are
many variations of traffic lights. For instance, the shape of traffic
lights are not always identical and traffic light lenses can be in-
stalled horizontally or vertically. Moreover, size of traffic lights
may change from one country to another or from one state to an-
other. Traffic light may be installed on a pole or suspended and
they can be located on the right or left side of the road. Moreover,
there may be one traffic light for all the lanes or multiple traffic
lights for each lane.

In addition, camera sensors are imperfect and the environment
may not be benign to capture good images. The images are al-
ways noisy especially when low cost cameras are used. Also,
motion blurriness deteriorates the image quality when the plat-
form moves. Additionally, camera lens distortion may change
geometry of the traffic light if it is not calibrated. In addition,
the traffic light has low resolution when it is far from the camera
and the low resolution traffic lights may not maintain the shape
cue. Furthermore, the lighting situation may create problems that
impede correct detection of the traffic lights. For instance, the
images can be overexposed during sunrise and sunset when the
sun is low. Also, colors are not observed identical in daylight and
nightlight.

Knowing these problems, traffic light detection is not a trivial
task. In this paper, the color and shape cues are used to detect
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the traffic lights. In addition, prior knowledge of existence of a
traffic light is applied using GIS maps. However, the GIS maps
may not be comprehensive and accurate and the traffic lights may
not to be accurately localized in the maps. This paper provides an
approach to detect traffic lights considering the changes in color
and shape cues due to different error sources and inaccurate GIS
maps.

In this paper, we apply conic section geometry to detect the traffic
lights since conic sections are primitive geometry shapes with
multiple properties. Traffic light lens is a circular object which is
a conic section. Additionally, conic sections are preserved under
perspective geometry, that is, the projection of conic section is
a conic section. Conic sections are represented by matrices and
conic section geometry is easy to manipulate.

1.1 Previous work

The traffic light detection remains an unsolved problem in fully
automated vehicles. More successful works apply prior knowl-
edge such as GIS maps to initialize their search space and im-
prove the traffic light detection results. Levinson et al. (Levinson
et al., 2011b, Levinson et al., 2011a) have assumed that the traffic
lights can be retrieved from databases such as Google Maps and
the search space of traffic lights will be reduced knowing their po-
sition. Fairfield and Urmson (Fairfield and Urmson, 2011) have
also considered the use of prior maps to predict the location of
traffic lights in images. Their GIS maps are fairly accurate and
their results show that the use of prior information improves the
traffic light detection accuracy. However, these databases are not
publicly available in vector format. One of the spatial databases is
OpenStreetMap (OSM) which is a vector based GIS database, has
world coverage, and is publicly available. This database does not
guarantee accurate features and these features may be positioned
far from their actual location and even some of the features may
be erroneously excluded in the database. OSM has been used in
this paper to predict the existence of the traffic lights.

In addition to GIS maps, shape cue can be applied to detect traf-
fic lights. Since the traffic light lens is circular, geometry is a
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strong constraint to detect the traffic lights. The circular Hough
transform is applied to detect the traffic signs (Caraffi et al., 2008,
Huang and Lee, 2010) that may be applicable to traffic lights too.
However, the use of Hough transform is computationally expen-
sive and it may not be applicable for real time applications. Conic
section geometry has been extensively studied for many years and
it has been used for stereo, motion, and pose estimation (De Ma,
1993). It has been shown that the pose of the camera can be es-
timated with respect to the object by observing conic sections of
the object (Kannala et al., 2006). In this paper, the use of conic
sections obtains a strong geometric constraint to detect the traffic
lights and their pose.

Furthermore, color cue plays an important role in every traffic
light detection. As previously mentioned, the color of traffic
lights can be changed due to different lighting situations. Dif-
ferent color spaces have also been investigated to more robustly
detect the traffic lights (John et al., 2014) and multiple expo-
sure images are tested to rigorously detect traffic lights in dark
and bright environments (Jang et al., 2014). Diaz-Cabrera et al.
(Diaz-Cabrera et al., 2015) claim that color segmentation using
fuzzy clustering can improve the traffic light detection results. In
this paper, Hue, Saturation, Luminance (HSL) color space is used
to detect the traffic lights since it is more resilient to illumination
as opposed to Red, Green, Blue (RGB) color space.

The spatial constraint also restrict the position of traffic lights and
it can be used to remove false positive detection results that do not
follow certain height characteristics. For instance, Siogkas et al.
(Siogkas et al., 2012) apply the fact that the traffic light should
be above the horizon and they reduce the search space for the
traffic lights detection. Finally, characteristics of the traffic light
box have been used and several classifiers have been trained to
detect these boxes. Wang et al. (Wang et al., 2011) have used
the template matching algorithm to detect the traffic light boxes.
Also, a few papers, such as (Levinson et al., 2011b, Levinson et
al., 2011a), have used machine learning approach to detect the
traffic light boxes.

2. METHODOLOGY

This section explains how the visible traffic lights are selected
and retrieved from GIS maps. The projection of visible traffic
lights into image is not sufficient to initialize search space. Prior
knowledge based approaches are not accurate enough when in-
accurate GIS maps are used. We apply conic section geometry
to detect traffic lights using mono and stereo cameras. The pose
of the detected traffic light can be estimated with respect to the
camera coordinate system using conic section geometry.

2.1 Visible traffic lights from database

Let’s assume that the sensors installed on the platform have been
calibrated and the lever arms and boresights of the sensors have
been specified. Therefore, the observations are converted to a uni-
fied coordinate system which is camera coordinate system here.
The integrated GPS/IMU navigation system provides position and
orientation of the platform and its solution is accurate as long as
the GPS signals are not blocked. Knowing absolute position of
the platform enables us to retrieve the information of the nearby
traffic lights from available databases such as OpenStreetMap
(OSM). Figure 1 shows the position of the platform in blue, the
road links in black and the traffic lights in red, for 500 meters
within the vicinity of the platform. The neighborhood of the plat-
form is zoomed and the visibility of the camera mounted on the
platform is shown by a blue triangle.

Figure 1: Left: the road links and traffic lights (red points) in the
vicinity, 500 meters × 500 meters, of the platform (blue point).
Right: the traffic light which is within the region of interest is
selected from OpenStreetMap. The region of interest, which is
the field of view of the camera up to 70 meters, is shown in blue
triangle.

The traffic lights that are visible in the image and are close to the
platform should be retrieved from OSM. The absolute position
estimated by GPS is used to find the adjacent traffic lights. In
addition, the orientation of the platform estimated by IMU and
the field of view of the camera, here 90◦, are used to find the
visible traffic lights.

2.2 Projection of the visible traffic lights into image

If two dimensional position of a traffic light is retrieved from GIS
maps, three dimensional position of the traffic light, X, is pro-
vided assuming the height of the traffic light is known. In order
to estimate the image position of traffic lights, projection ma-
trix, P, should be estimated. The projection matrix maps three
dimensional position of the traffic light into two dimensional im-
age space. Two dimensional image coordinates, x, is estimated
such that

x = PX. (1)

The projection matrix can be calculated using rotation matrix and
translation vector of the traffic light in the camera coordinate sys-
tem. Let’s assume that Rco and tc are the rotation matrix and
translation vector between the traffic light coordinate system and
the camera coordinate system in the camera coordinate system.

P = K[Rc|tc]. (2)

If the camera is calibrated before the operation, the calibration
matrix, K, is known. The rotation matrix can be brought to the
camera coordinate system, such that

Rc = R
c
iR
i
nRn, (3)

where Rci is called boresight between the camera and IMU sensors
and it is estimated from the calibration procedure. The rotation
matrix between the traffic light coordinate system and the camera
coordinate system in global coordinate system is Rn. The trans-
lation vector, tn, is the difference of the traffic light position and
camera position in the global coordinate system and it can be con-
verted to the translation vector in the camera coordinate system.
The translation vector in global coordinate system is transferred
to the camera coordinate system such that

tc = R
c
i (R

i
ntn + tci ), (4)
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where tci is the lever arm between IMU and camera sensors and
it is estimated from calibration procedure. If the GIS database
and navigation system are fairly accurate, the projected position
of the traffic light can be used to initialize the search space of
the traffic lights. Generally speaking, the direction and height
of the traffic lights are not stored in GIS databases. In addition,
the traffic light is projected as a point and its size is not known.
Moreover, the information of traffic lights may not be correctly
collected and stored in GIS database. Therefore, reducing the
search space of the traffic lights may lead to incorrect traffic light
detection especially for inaccurate GIS databases such as OSM.

The position of visible traffic lights are retrieved from OSM and
projected into image space in Figure 2. There are a few problems
if the search space is initialized using the projected traffic light.
First, there are multiple traffic lights in the image, whereas the
traffic lights are marked as one feature in OSM. Second, the size
of the traffic light is not known in the image space and therefore,
different scales of the traffic lights should be searched.

Figure 2: The projection transformation of the traffic light is
approximated using the position of the traffic light in Open-
StreetMap. The projected traffic light lens into the image space is
shown with a circle and a rectangle is drawn around it for better
visualization.

2.3 Traffic light detection using mono camera

The traffic light lens is circular on a plane. Therefore, the traffic
light lens is a conic section and it follows the conic section ge-
ometry. Conic sections are closed form, compact, easy to manip-
ulate shapes that have a symmetric matrix representation. Under
perspective geometry, the circular lens will be seen as an ellipse.
Let’s assume that the circular lens is a conic section, C and its
image is an ellipse which is still a conic section, C′ in the image
space. Since the traffic light is assumed to be planar, transforma-
tion between the traffic light lens and its image is homography
transformation. Therefore, the homography transformation, H, is
used to map C into C′ such that

C
′ = H

−>kCH−1, (5)

Equation (5) estimates the homography transformation up to scale
and k is the scale of the homography transformation. Let’s as-
sume that the traffic light lens radius is r, the conic section in
the traffic light lens plane is a circle represented by a symmetric
matrix, such that

C =

 1
r2

0 0
0 1

r2
0

0 0 −1

 . (6)

The rotation matrix, R, is composed of three column vectors, R =
[r1, r2, r3]. The homography transformation is calculated such
that

H = K[r1r2tc] = KRT, (7)

where T =

1 0 −t1
0 1 −t2
0 0 −t3

, to = [t1t2t3]> is the translation vec-

tor in the traffic light (object) coordinate system and tc = −Rto.
Replacing the conic section, C, in (6) and homography transfor-
mation, H, in (7) into (5) provides conic section in the image
space, C′. By inverting (5), the conic section in image space is
converted into the conic section in the traffic light coordinate sys-
tem, such that

kC = H
>
C
′
H. (8)

Replacing (7) into (8), the homography transformation is esti-
mated, such that

kC = T
>
R
>
K
>
C
′
KRT. (9)

Let’s move T to the left side of (9) such that

kT−>CT−1 = R
>
K
>
C
′
KR. (10)

If two sides of (10) are equal, their eigenvalues are equal too. If
λ1,λ2, and λ3 are the eigenvalues of K>C′K, it has been shown
that (De Ma, 1993)

λ1λ2λ3 =
−k3

t23r
4
, (11)

λ1λ2 + λ1λ3 + λ2λ3 = k2
d2 − 2r2

t23r
4

, (12)

λ1 + λ2 + λ3 = k
d2 + t23 − r2

t23r
2

, (13)

where r is the radius of the traffic light lens and d2 = t21 + t22 + t23
is the distance between the camera and traffic light coordinate
systems. When t3 and d are calculated, the choice of t1 and t2 is
not important since the traffic light lens is a circle and it should
only be chosen to the extent that d2 = t21 + t22 + t23.

Two sides of (10) are decomposed to their eigenmatrices and
eignevlaues using singular value decomposition, K>C′K = UDU>

and T−>CT−1 = VDV>, where U and V are eigenmatrices and D

is a diagonal matrix containing the eigenvalues, λ1,λ2, and λ3.
Equation (10) is applied to estimate the rotation matrix, R, such
that

UDU
> = R

>
VDV
>
R. (14)

and rotation matrix is calculated in the way that

R = UWV,−1 (15)

where W = ±I3×3. The rotation matrix and translation vector are
calculated from these equations are used to estimate the homog-
raphy transformation and the estimated homography transforma-
tion is used to back-project the conic section in image space into
the traffic light coordinate system. Unfortunately, a single conic
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does not provide enough information to verify if a conic section
is a traffic light. In the next section, stereo cameras are used to
improve the geometry and provide sufficient constraints to detect
the traffic lights.

2.4 Traffic light detection using stereo cameras

If there are two cameras installed on the platform, the traffic lights
can be detected using stereo cameras. Let’s assume that RL and
tL are rotation matrix and translation vector from the left camera
coordinate system to the traffic light coordinate system and RR
and tR are rotation matrix and translation vector from the right
camera coordinate system to the traffic light coordinate system.
In addition, R and t are the rotation matrix and translation vec-
tor from the right camera coordinate system to the left camera
coordinate system. These parameters, which are called extrinsic
camera calibration parameters, can be estimated from the calibra-
tion procedure. The rotation matrix and translation vector of left
or right camera can be estimated using the rotation matrix and
translation vector of the other camera, such that

RR = RRL, (16)

tR = RtL + t. (17)

similar to (8), the traffic light lens and its projection into left and
right images are written, such that

kLC = H
>
LC
′
LHL, (18)

kRC = H
>
RC
′
RHR. (19)

If the 2×2 upper left submatrix of (18) and (19) are chosen, these
two equations will be simplified, such that

kL(C)2×2 = (R>LK
>
LC
′
LKLRL)2×2, (20)

kR(C)2×2 = (R>RK
>
RC
′
RKRRR)2×2. (21)

Since the left side of (20) and (21) are equal up to a scale, these
equations can be reduced such that

[R>L (K>LC
′
LKL −

kL
kR

R
>
K
>
RC
′
RKRR)RL]2×2 = 0

2×2 (22)

It can be proven that if the 2× 2 upper left matrix of a 3× 3
matrix is zero, the determinant of the 3× 3 matrix is zero. Let’s
assume the inner part of (22) is B matrix, where B = K>LC

′
LKL −

kL
kR

R>K>RC
′
RKRR. The determinant of this matrix is zero, det(B) =

0.

Therefore, one of the eigenvalues of matrix B is zero. Let’s as-
sume λ1 and λ2 are non-zero eigenvalues of matrix B and its cor-
responding eigenvectors are s1 and s2. The third column vector
of the rotation matrix is estimated such that

r3 = ±norm(
√
λ1s1 ±

√
λ2s2). (23)

Let’s construct matrix A = K>LC
′
LKL − r3r

>
3 K
>
LC
′
LKL. One of

the eigenvalues of matrix A is zero since det A = 0. The two
eigenvectors corresponding to non-zero eigenvalues are the first
and second column vectors of rotation matrix, r1 and r2. When
the rotation matrix, RL = [rL1 rL2 rL3]>, the rotation matrix RR
is constructed using (16). The translation vector is the solution
the equations system


t>LC

′
LrL1 = 0

t>LC
′
LrL2 = 0

t>RC
′
RrR2 = 0

tR = RtL + t,

(24)

where rR2 is the second row vector of RR.

2.5 Conic matching between epochs

If the traffic light is visible in two consecutive epochs, A corre-
sponding conic section should be matched in two epochs. Let’s
assume that C′t and C′t+1 are two conic sections at time t and t+1
and it should be verified whether these conics belong to one ob-
ject and therefore, these are correspondence. If the image points
xt and xt+1 lay on the conic sections, such that

stx
>
t C
′
txt = 0, (25)

st+1x
>
t+1C

′
t+1xt+1 = 0, (26)

If these conic sections are correspondence, there is a homography
transformation between the image points of these conics, such
that

sxt = H
t
t+1xt+1, (27)

where s is a scale factor. It can be shown that the homography
transformation, Htt+1, is estimated based on the rotation matrix
and translation vector, such that

H
t
t+1 = k(Rtt+1 +

ttt+1n
>

d
), (28)

where Rtt+1 is the rotation matrix between two images and it can
be estimated from IMU sensor and converted to image coordinate
system. Similarly, translation vector, ttt+1, can be estimated GPS
sensors and this vector is transferred into the image coordinate
system. If the normal vector to the traffic light plane, n, and the
distance of traffic light to the image, d, are known from previ-
ous epoch, the homography transformation is estimated up to the
scale k.

If () is replaced into (), the conic section at time t, C′t, is related
to conic section at time t+ 1, C′t+1, such that

x>t+1H
>
t+1C

′
t+1Ht+1xt+1 = cC′t, (29)

Two sides of these equations are known up to scale, c. Therefore,
the scale factor can be estimated, such that
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c =
det (x>t+1H

>
t+1C

′
t+1Ht+1xt+1)

det (C′t)
, (30)

when scale factor, c, is determined, the conic section at time t is
converted into time t + 1 and if the difference of the converted
conic and observed conic at time t+ 1 is less than a threshold, ε,
these conics are matched between time t and t+ 1, such that

||x>t+1H
>
t+1C

′
t+1Ht+1xt+1 − cC′t|| < ε (31)

2.6 Temporal constraint

Let’s divide a conic section state into two classes of traffic lights,
o1, and others, o2. Let’s assume that p(Ct = o1) is the proba-
bility of the conic is a traffic light at time t and p(Ct = o2) =
1 − p(Ct = o1) otherwise. If the shape and color of the traffic
light is observed at time t, the probability of the traffic light given
the observed shape and color cue, Zt, is p(Ct = o1|Zt). In ad-
dition, if a conic section is labeled as traffic light in the previous
epochs, it is most likely to be labeled as traffic light at this epoch.
Therefore, the probability of the traffic light detection at time t is
p(Ct = o1|Zt, C1:t−1 = o1). By Markov a

The traffic light detection can be modeled as Hidden Markov
Model (HMM), such that

p(Ct|Zt, C1:t−1) = p(Zt|C1:t)
p(Ct|C1:t−1)

p(Zt|C1:t−1)
(32)

Since observation at time t, Zt, is independent from the state
of the conic at time 1 : t − 1, therefore p(Zt|Ct = o1) =
p(Zt|C1:t = o1) and p(Zt) = p(Zt|C1:t−1 = o1). In addition,
p(Zt) is a normalization factor, α and does not have impact on
the probability. Therefore, this equation can be shortened, such
that

p(Ct|Zt, C1:t−1) = αp(Zt|Ct)p(Ct|C1:t−1) (33)

By the Markov assumption, the state of the conic only depends
on the previous state of the conic, such that

p(Ct|C1:t−1) = p(Ct|Ct−1) (34)

If the traffic light is detected in the previous epoch and the pose of
the camera is accurately estimated, the location of the traffic light
can be transferred into the next epoch. If the platform does not
move, the location of the traffic light in the previous epoch does
not change in the next epoch and p(Ct = o1|Ct−1 = o1) = 1.
However, the pose of the camera between two epoch is estimated
using GPS/IMU navigation solution. Therefore, the transition
term, p(Ct|Ct−1), depends on the accuracy of the navigation so-
lution. Let’s assume the position and orientation errors δp and
δθ, the transition condition is estimated such that

p(Ct|Ct−1) =
1

(2π)2s2δps
2
δθ

exp(−1

2
(
δp

s2δp
+
δθ

s2δθ
)) (35)

2.7 Evidence

The conic section geometry provides strong constraint on the
shape of the traffic light lenses. However, there are other obser-
vations that may be applied to detect the traffic lights. The color
of the traffic light lens is limited to red, yellow, and green. Unfor-
tunately, the color may be changed due to different illuminations
and distance of the traffic light. Also, the box of the traffic light is
applied since it has a standard shape. If the traffic light lens is de-
tected correctly, the box of the traffic light can be reconstructed.
The observed box and reconstructed box should be in agreement.
Otherwise, the object may be a red, yellow or green light located
on the different objects such as cars.

Therefore, the observation is actually a set of color, shape, box
cues and depth, Zt = {zc, zs, zb, d}. Unfortunately, all of these
observations are correlated. The box reconstruction highly de-
pends on the shape of the traffic light lens. The shape of the
traffic light lens depends on the color cue and the color cue de-
pends on the depth of the traffic light. Therefore, the probability
of these observations is

p(Zt|Ct) = p(zc ∩ zs ∩ zb ∩ d|Ct) =

p(zb|zc, zs, d, Ct)p(zs|zc, d, Ct)p(zc|d,Ct)p(d|Ct)
(36)

The depth of the object does not depth on its label and therefore,
p(d|Ct) = p(d). The probability of the measure depth merely
depends on the accuracy of the depth measurement. Therefore,
if the stereo images are used for the depth estimation, the prob-
ability of the measured depth depends on the accuracy of stereo
matching. The laser scanner is used, the accuracy of the laser
scanner indicates the accuracy of the measured depth.

In order to calculate the probability of the color of the traffic light
lens, the image color space is converted from Red,Green, and
Blue (RGB) into Hue, Saturation, and Luminance (HSL). The
HSL color space is more resilient against different illuminations.
The less saturation and luminance the darker and less likely the
traffic light lens. Here, we use logistic function for the probablity
distribution function of the saturation of luminance.

{
p(S) = 1

1+exp(−ks(x−xs))

p(V ) = 1
1+exp(−kv(x−xv))

(37)

where ks and kv are the steepness of the logistic function curves,
xs and xv are the midpoint of the logistic functions and these
parameters are related to the measured depth of the traffic light.

For the hue component, we assume that the probability of a hue
component is the summation of the probability of the red, yellow,
and green colors. Obviously, the probability distribution function
should be normalized. Adding the hue, saturation, and luminance
of the color space, the probability of the color cue for a traffic
light is estimated such that

p(H) =
1

3
[p(H = r) + p(H = y) + p(H = g)] (38)

where p(H = r), p(H = y), and p(H = g) are the probabilities
of the traffic light in red, yellow, and green and these probabilities
are estimated based on the histogram of the traffic light lens color.

p(Zc|Ct = o1) = p(H)p(S)p(V ) (39)
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The traffic light lens is a circle with the known radius, r. There-
fore, the observed ellipse in the image space can be back-projected
into the traffic light space and the back-projected ellipse may be
still an ellipse due to different error sources. Let’s assume â and
b̂ are the semi-major and semi-minor axes of the estimated ellipse
and they follow normal distribution, such that

â ∼ N (r, σ2
a)

b̂ ∼ N (r, σ2
b ),

(40)

where σ2
a and σ2

b are the variances of â and b̂. Since the variances
are not know, it can be estimated and the estimated variances of
â and b̂ are s2a and s2b . The covariance between â and b̂ is ignored
since these values are orthogonal. The probability of the observed
ellipse is estimated, such that

p(zs|zc, d, Ct) =
1

(2π)2s2as
2
b

exp(−1

2
(
â− r
s2a

+
b̂− r
s2b

)) (41)

The geometry of the box of the traffic light follows the standards
of the transportation and highways administrations. Therefore, if
one of the lenses of the traffic light is accurately detected, other
lenses is determined since the traffic lights are installed horizon-
tally or vertically. If the other lenses are not led on, they should
be appeared black in the image. Therefore, other objects such
as tail lights of the cars that do not follow the geometry of the
traffic light box, have low probability to be detected as traffic
lights.Without loss of generality, let’s assume the red lens is led
on, the probability of the box is estimated such that

p(zb|zs, zc, d, Ct) = p(l2 = yellow ∩ l3 = green|l1 = red) =

p(l2 = yellow|l1 = red)p(l3 = green|l1 = red).

(42)

The probability of the yellow of green lenses are not active is a
logistic function, such that{

p(l2 = Y |l1 = R) = 1
1+exp(−kY (x−xY ))

p(l2 = G|l1 = R) = 1
1+exp(−kG(x−xG))

(43)

where kY and kG are the steepness of the logistic function curves,
xY and xG are the midpoint of the logistic functions and these
parameters.

3. IMPLEMENTATION

The projected traffic light may not be helpful since position of
the traffic light is not accurate in Figure 2. Therefore, the whole
image is searched for traffic lights. Since traffic lights have red,
yellow, and green circular lenses, the color and geometry cues of
these lenses are used to detect traffic lights. Although use of color
is not enough to detect the traffic lights, it narrows the search
space by removing many objects such as ground which is not
red, yellow, or green. In order to find red, yellow, or green color
objects, image is converted to Hue, Saturation, Luminance (HSL)
color space. The acceptable red, yellow and green thresholds are
given in (46). It should be noted that the range of hue is between
0 and 180, and the range of saturation and luminance are between
0 and 255, here. Saturation less than 10 and luminance less than

50 are not acceptable in our algorithm since the objects are too
dark with these saturation and luminance.


if 14 > h or 170 < h then color = red
if 13 < h < 30 then color = yellow
if 30 < h < 100 then color = green.

(44)

The results of the red, yellow, and green objects are shown in
Figure 3. However the traffic light lenses are red, yellow, and
green, these colors may be shifted in the image. For instance, the
green color of the traffic light may be seen as light blue and there-
fore, the thresholds in (44) are designed in a way that it includes
other possible colors of the traffic lights such as light blue. The
sky in Figure 3 is chosen as green object for the same reason. In
addition, the boundary between red and yellow colors is ambigu-
ous and the red traffic light lenses may be seen as dark yellow
lenses and vice versa. Therefore, the red and yellow colors have
an overlap in hue.

Figure 3: The red, yellow, and green objects are selected using
threshold on the hue component of HSL color space. Yellow
channel is shown in blue for better visualization.

Noise in color, which is unavoidable in inexpensive cameras, can
create salt and pepper noise after the color mask is applied. A
median filter is used to remove these fictitious red, yellow, and
green pixels. The filtered image when the median filter is applied
is shown in Figure 4.

The shape cue of the traffic light lenses can also also be used. The
lenses of traffic lights are circular and each circle can be seen an
ellipse under perspective geometry. Therefore, objects that their
are red, yellow, or green and their geometry is similar to ellipse
are chosen as the possible traffic lights. For every red, yellow,
and green object the boundaries of the object is extracted and the
points on the boundaries are used in a least squares to estimate
the best fitted ellipse (Fitzgibbon and Fisher, 1999). If an object
is not ellipse shape object, the residuals of the ellipse fitting will
be high and therefore, the residuals of the ellipse fitting are used
to reject non-ellipse objects. Figure 5 shows the fitted ellipses to
red, yellow, and green objects.

Although the color and shape cues have been used, there are many
objects in Figure 5 that are not traffic light lenses. For instance,
the tail light of the car is a red object which has a shape similar to
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Figure 4: A median filter is applied to the red, yellow and green
objects to remove noise from these objects. Yellow channel is
shown in blue for better visualization.

Figure 5: An ellipse is fitted to the boundaries of the connected
red, yellow, and green pixels. The objects with large residuals
of the ellipse fitting are not ellipse-shape objects and should be
removed.

an ellipse. These objects should be detected and removed to de-
tect the traffic lights. The homography transformation in (7) can
be used to transfer the red, yellow, and green ellipses in Figure 5
from the image space into the traffic light coordinate system. This
back-projection is performed using homography transformation,
H. Ideally, Ĉ should be equal to the conic section C in (6). How-
ever, the back-projected ellipse will not be a circle due to noise in
color image and inaccurate homography transformation. There-
fore, ||Ĉ− C|| can be used to detect the traffic lights.

In addition, the image geometry is enforced that the traffic lights
must be in front of the camera and therefore, tz > 0. In addition,
the traffic light installation is enforced that the traffic light should
be above the ground in a certain height. The traffic light position
constraints are used to ensure these limitations in this paper, such
that

{
3m < tu < 10m

1m < tz < 70m,
(45)

where tz is the distance of the traffic light in the camera principal
axis direction and tu is the traffic light height above the ground.

Figure 6 shows the traffic light lenses detected in the image us-
ing mono camera. The results are not acceptable since there are
other objects that are incorrectly labeled as the traffic light lenses.
There are two main error sources that leads to incorrect traffic
light lens detection: The color is not a robust source of infor-
mation and it can change in different illumination environments
and optical instruments, especially in inexpensive cameras; The
shape cue may not be accurate for far traffic lights where these
traffic lights have low resolution.

Figure 6: The traffic light lenses are detected using mono camera.
There are many false positive traffic light lenses and this approach
is not sufficiently robust approach.

3.1 using stereo to improve robustness

In the previous section, it has been shown that the traffic light
lenses cannot be robustly detected using one image since there
are not sufficient geometrical constraints. Therefore, the stereo
cameras are used to provide redundant information and therefore,
improve the accuracy of the traffic light detection. If the possible
traffic lights are determined using mono camera approach for left
and right images independently, the conics in two images should
be matched and the pose of each possible traffic light should be
estimated using a pair of conics. Let’s assume that the rotation
matrix and translation vector of a traffic light in left and right
images are RL, RR, tL, and tR. If these rotation matrices and
translation vectors satisfy (18) and (19) in a certain level of accu-
racy, the conic in left and right images are matched. These criteria
allows multiple conics allocations and the wrong matches should
be removed in further steps. Figure 7 illustrates the matching
conics of two images. It should be noted and the red, yellow and
green conics should be matched to the similar color conics.

Figure 7: The red, yellow and green ellipses are matched in left
and right images.
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The approach in section 2.4 can be used to estimate the pose of
the conics and validate whether the object is a traffic light. In
this paper, those equations are approximated using the intersec-
tion approach. If the two ellipses are matched, the center of these
ellipses are used to estimate three dimensional position of the
traffic light. Let’s assume the center of the fitted ellipse of a traf-
fic light lens in the left and right images are xL = [px py]> and
xR = [qx qy]>.The position of the traffic light in camera co-
ordinate system, X, is estimated using the disparity to distance
matrix, Q, such that

X̂ = Qx′ (46)

where x′ = [px py dx 1]> and dx = px − qx. The parallax in
y direction, dy = py − qy should be close to zero if the cameras
are aligned in x direction. The disparity to distance matrix, Q, is
calculated such that

Q =


1 0 0 −cx
0 1 0 −cy
0 0 0 f
0 0 − 1

b
− δcx

b

 , (47)

where c = [cx cy]> and f are the principal point of the image
and focal length of the camera and these parameters are calcu-
lated from the calibration procedure. The distance between the
principal points of two cameras is baseline b and δcx is the dif-
ference of the principal points of the left and right images in x
direction. When three dimensional coordinates of the object is
estimated, the homography transformation in (7) can be updated
such that

Ĥ = K[r1r2X̄], (48)

where X̄ is inhomogeneous coordinates of the object and X̂ =
[X̄> 1]>. The homography transformation can be estimated for
left image, ĤL, and right image, ĤR, if the information of the left
camera or right camera are used. If the estimated homography
transformation, Ĥ, is replaced in (8), the estimated traffic light
lens in traffic light coordinate system, Ĉ will be much more accu-
rate than the one estimated using mono camera.

Figure 8 shows the detected traffic lights using stereo cameras.
Two of the three traffic lights are correctly detected and there is
no object that incorrectly labeled as the traffic light lens. The state
of the traffic lights is correctly recognized and the traffic lights
are correctly colored. However, one of the traffic light lenses is
not correctly detected. The traffic light lens is missed because its
shape is strongly distorted. The resolution of the projected traffic
light is low since the traffic light is far from the camera.

4. RESULTS

The images that have been used to describe the methodology and
the ones that are used in this section are chosen from the KITTI
dataset. Two color 1.4 Megapixel PointGray Flea2 cameras are
used to detect the traffic lights. The position of the platform ob-
served by an OXTS RT 3003 integrated GPS/IMU navigation sys-
tem is used to retrieve the traffic lights from GIS maps (Geiger
et al., 2012, Geiger et al., 2013). The calibration procedure has
been performed and the calibration parameters such as lens focal
length and principal points have been estimated. In addition, the

Figure 8: The detected traffic light lenses are correctly detected
and their status are correctly recognized using stereo cameras.
Although, there is no false positive, there is a missed traffic light
lens and it is the result of strong distortion in the shape of traffic
light lens.

lever arm and boresight of the sensors have been determined with
respect to the platform coordinate system (Hosseinyalamdary and
Yilmaz, 2014, Hosseinyalamdary et al., 2015).

One of the KITTI scenarios has been used in section 3. to describe
the implementation procedure. In addition, three more scenarios
are studied in this section and the results are given in Figures 9,
10, and 11. The first row of every figure is the original image
taken from the left color camera. The second row is the masked
red, yellow and green objects in the left image. The median filter
has been applied to remove noise in color cue, similar to Fig-
ure 4. The third row is the traffic light detection algorithm using
mono camera. The fourth row shows the results of the traffic light
detection using stereo cameras.

In Figure 9, the traffic light signal is green. Surprisingly, the
green traffic light signal is actually light blue and the hue thresh-
old in (44) should be selected in the way that the light blue is
selected as possible green traffic light lens. If the threshold is
extended to select the light blue, sky is most likely chosen as the
possible traffic light and it should be removed in further processes
such as ellipse fitting. In addition, the shade of the objects may
be chosen as green object since the boundaries of the shade may
be seen as light blue. In mono camera the traffic light lens is cor-
rectly detected and its status is correctly recognized. However,
many objects are incorrectly labeled as the traffic light lenses. In
stereo camera approach, no other object is incorrectly labeled as
the traffic light lens while the traffic light lens is correctly se-
lected. It can be concluded that using stereo camera significantly
improves the accuracy of the traffic light detection.

Figure 10 shows color of the objects can be changed due to illu-
mination. In this image, sky is captured in white since it is too
bright, the trees are captured in black since trees are too dark and
there are shades on the street that are captured as green. Due to
significant illumination changes in the image, mono camera ap-
proach is not able to detect the traffic light correctly and a false
positive (shade on the road) is incorrectly labeled as the traffic
light. The stereo camera approach detects the traffic light cor-
rectly although there is a false positive in this approach, too.

Figure 11 is a challenging scenario since the traffic lights are far
from the camera and their projection into image contains few pix-
els. In addition, these traffic lights are missed in OSM and no
prior knowledge of these traffic lights is available. The mono
camera based traffic light detection has many false positives that
are labeled as traffic light. In stereo camera approach there are
still few false positives and the stereo camera algorithm was not
able to remove these false traffic lights. These false positives are
removed when the camera becomes closer to the traffic lights and
resolution of the traffic lights increases in the image.
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Figure 9: The traffic light detection algorithm using mono cam-
era (third row) has a few false positives. The stereo cameras ap-
proach (fourth row) does not contain any false positive while it it
maintains the true positives.

5. CONCLUSION

In this paper, the traffic light detection has been studied and two
approaches, mono camera based approach and stereo cameras
based approach, are proposed. The color and shape of the traffic
light lens and its geometry with respect to the road and the plat-
form are used to distinguish the traffic lights from other objects
in the scene. The proposed approaches also investigated the use
of prior knowledge in the GIS maps such as OpenStreetMaps to
detect the traffic lights. The mono camera based approach is not
as robust as the stereo cameras base approach and usually there
are a few false positives and false negatives in this approach. It
is suggested that a sequence of images are used to improve the
robustness of the proposed approach in future.
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