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ABSTRACT: 

 

Unmanned Aerial System (UAS) technology is nowadays willingly used in small area topographic mapping due to low costs and 

good quality of derived products. Since cameras typically used with UAS have some limitations, e.g. cannot penetrate the vegetation, 

LiDAR sensors are increasingly getting attention in UAS mapping. Sensor developments reached the point when their costs and size 

suit the UAS platform, though, LiDAR UAS is still an emerging technology. One issue related to using LiDAR sensors on UAS is 

the limited performance of the navigation sensors used on UAS platforms. Therefore, various hardware and software solutions are 

investigated to increase the quality of UAS LiDAR point clouds. This work analyses several aspects of the UAS LiDAR point cloud 

generation performance based on UAS flights conducted with the Velodyne laser scanner and cameras. The attention was primarily 

paid to the trajectory reconstruction performance that is essential for accurate point cloud georeferencing. Since the navigation 

sensors, especially Inertial Measurement Units (IMUs), may not be of sufficient performance, the estimated camera poses could 

allow to increase the robustness of the estimated trajectory, and subsequently, the accuracy of the point cloud. The accuracy of the 

final UAS LiDAR point cloud was evaluated on the basis of the generated DSM, including comparison with point clouds obtained 

from dense image matching. The results showed the need for more investigation on MEMS IMU sensors used for UAS trajectory 

reconstruction. The accuracy of the UAS LiDAR point cloud, though lower than for point cloud obtained from images, may be still 

sufficient for certain mapping applications where the optical imagery is not useful. 

 

 

1. INTRODUCTION 

Unmanned Aerial Systems (UASs) are getting recently more 

interest in the mapping community. They are offering similar 

products as traditional (manned) airborne systems but at lower 

costs. The current practice of UAS mapping is based on the 

imagery data that is indirectly georeferenced using Ground 

Control Points (GCPs). However, some applications need active 

sensors (e.g. LiDAR) that require direct georeferencing 

approach using navigation sensor data. 

 

The navigation sensors, such as Global Navigation Satellite 

System (GNSS) receivers and Inertial Measurement Units 

(IMUs) that are used for controlling and navigating typical 

Unmanned Aerial Vehicles (UAVs) are of lower performance 

and are not able to provide enough accurate georeferencing 

data. High grade IMUs might be used only for large UAS (Yang 

and Chen, 2015) what significantly increases system weight and 

costs. In the case of small UAS (sUAS), typically low grade 

micro-electro-mechanical systems (MEMS)–based IMUs are 

suitable and are frequently used for navigating and stabilizing 

the UAS platform. MEMS technology allowed for the 

significant reduction of the cost, weight, size, and power 

requirements of IMU sensors, but at the price of the 

performance, since such IMUs are characterized by large bias 

and noise (El-Sheimy, 2009). With strong developments in 

MEMS sensor technology, the newest IMUs are approaching 

the tactical grade performance, which is the dominant grade in 

typical aerial mapping systems. Some works have already 

proved that MEMS IMU might support UAS mapping (Hirose 

et al., 2015; Tulldahl and Larsson, 2014). 

 

In the case of GNSS receivers and antennas, UAS platforms are 

usually equipped with single-frequency Global Navigation 

System (GPS) receivers which are of sufficient performance for 

navigating the platform, but not for mapping purposes. 

However, a high (geodetic) grade miniaturized multi GNSS 

receivers are already available on the market at a reasonable 

price, and can be easily carried on even by the sUAS. These 

receivers very often support Real Time Kinematic (RTK) 

positioning that can be potentially used in real time applications. 

However, the drawback of the RTK is that it requires stable data 

linkage (e.g. through radio modem) and the computed position 

cannot be improved in post-processing since the raw 

observations are unavailable. 

 

The variety of the LiDAR sensors that are suitable for UAS is 

also growing. The first scanners used for that purpose, e.g. 

SICK LMS-291 were of relatively low performance, and their 

weight required the use of very heavy platforms (Nagai et al., 

2009). The improvement in the LiDAR technology resulted in 

the reduction of weight and thus light-weight sensors, such as 

the ibeo LUX and SICK LD-MRS-400001 (Line et al. 2011; 

Wallace et al., 2012), and ultra-light weight (0.2 kg) Hokuyo 

UTM-30LX scanner (Kuhnert and Kuhnert, 2013; Roca et al., 

2014; Hirose et al., 2015) were used on UAS platforms. 

However, these sensors were still of low performance. The first 

high performance laser scanner dedicated for UASs is the Riegl 

UAVX-1UAV (Amon et al., 2015; Mandlburger et al., 2015). In 
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contrast to other UAS scanners, the Riegl UAVX-1UAV is 

characterized by very long range measurements (up to 920 m). 

The good performance, however, comes with larger weight (3.6 

kg) that limits the use of this sensor only to larger platforms. 

Due to the use of multiple laser diodes (channels) inside a single 

LiDAR sensor, Velodyne scanners are gaining attention in UAS 

mapping, in particular the Velodyne HDL-32E (Tulldahl and 

Larsson, 2014; Zhe et al., 2015) and the new Velodyne VLP-16. 

Although the range of these sensors is not very high, the data 

acquisition rate, low weight and price make these scanners very 

attractive to use in UAS topographic mapping. 

 

This work investigates the performance of a UAS equipped with 

Velodyne laser scanner, where the platform direct 

georeferencing is based on the MEMS IMU and dual-frequency 

miniaturized GPS receiver data. The optical imagery obtained 

by the same platform is used for comparison purposes and to 

support alternative approaches of the platform georeferencing. 

 

2. MATERIALS 

2.1 Test UAS 

The platform used in this study is the multipurpose Bergen 

octocopter equipped with variety of navigation sensors (Figure 

1), including: 

 

1. NovAtel OEM615 dual-frequency GPS receiver and 

Antcom antenna 

2. Garmin GPS-18LV single-frequency GPS receiver 

and antenna for time tagging the Velodye LiDAR data 

3. Solmeta Geotagger N3 single-frequency GPS receiver 

and antenna for position tagging of Nikon camera 

images 

4. Wookong-M autopilot systems consisting of single-

frequency GPS receiver and antenna, MEMS IMU, 

and magnetometer; used only for navigating and 

controlling octocopter flight 

5. MicroStrain 3DM-GX3-35 consisting of single-

frequency GPS receiver and antenna, MEMS IMU, 

and magnetometer; GPS sensor was used only for 

time tagging IMU data; magnetometer data was not 

used in this study 

6. Epson M-G362PDC1 MEMS IMU 

 

 

Figure 1. Navigation sensors mounted on the Bergen octocopter 

 

The platform was also equipped with Gigabyte GB-BXi7 4500 

small computer for recording data obtained from the Velodyne 

laser scanner, NovAtel GPS receiver, and MicroStrain and 

Epson IMUs. Besides collecting GPS raw observations, the 

NovAtel receiver was also used for time tagging Epson IMU 

data, and recording GPS time stamps for Nikon camera images. 

The two MEMS IMUs mentioned above are approaching the 

tactical grade performance level (Table 1) that should result in 

the data of sufficient accuracy for the integration with the GPS 

data acquired by the NovAtel receiver, and subsequently, for 

direct georeferencing. The two IMUs were used for comparison 

purposes. Note that according to the specification (Table 1) 

Epson IMU has better gyros (lower value of gyro bias stability) 

and slightly worse accelerometers than the MicroStrain IMU. 

 

IMU 
Epson 

M-G362PDC1 

MicroStrain 

3DM-GX3-35 

Gyros   

Measurement range [°/s] ±150 ±300 

In-run bias stability [°/h] 3 18 

Initial bias error [°/s] ±0.5 ±0.25 

Noise density [°/s/Hz1/2] 0.002 0.03 

Accelerometers   

Measurement range [g] ±3 ±5 

In-run bias stability [mg] <0.1 0.04 

Initial bias error [mg] ±8 ±2 

Noise density [mg/Hz1/2] 0.1 0.08 

Other   

Power consumption [mA] 30 200 

Net weight [gram] 7 23 

Table 1. Parameters of used IMU sensors 

 

Since the used Bergen octocopter is a multipurpose platform, it 

can support variety of mapping sensors. In this study, four 

sensors are investigated, including: 

 

1. Velodyne HDL-32E profile laser scanner 

2. Velodyne VLP-16 profile laser scanner 

3. Nikon D800 camera with Nikon a Nikkor AF-S 50 

mm f/1.4G lens 

4. GoPro Hero 3+ Black Edition camera with non-stock 

5.4 mm lens 

 

Velodyne laser scanner HDL-32E VLP-16 

Appearance 

  
Channels 32 16 

Max. operation range [m] 100 100 

Accuracy [cm] ±2 ±3 

Dual returns yes yes 

Horizontal field of view [°] 360 360 

Horizontal resolution [°]  

@ rotation rate [Hz] 

0.08 @ 5 

0.16 @ 10 

0.35 @ 20 

0.1 @ 5 

0.2 @ 10 

0.4 @ 20 

Vertical field of view [°] -30.67 to +10.67 -15 to +15 

Vertical resolution [°] 1.3 2.0 

Measurement rate [pts/s] ~700,000 ~300,000 

Power consumption [W] 12 8 

Net weight [kg] 1 0.8 

Table 2. Parameters of two Velodyne sensors 

 

Tables 2 and 3 list the parameters of investigated LiDAR and 

imagery sensors, respectively. The performance of both LiDAR 
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sensors is similar, however the HDL-32E can acquire more data 

resulting in higher density, but VLP-16 is less heavy and does 

not contain outer moving parts. 

 

Camera Nikon GoPro 

Appearance 

 

 

Sensor width @ height [mm] 35.9 @ 24.0 6.2 @ 4.65a) 

Image width @ height [pix] 7360 @ 4912 4000 @ 3000 

Pixel size [m] ~4.88 1.55 

Focal length [mm] 50 5.4 

Horizontal field of view [°] 39 60 

Weight [kg] 1.3 0.076 
a) calculated from pixel and image size 

Table 3. Parameters of the used cameras 

 

Obviously, the payload of the used platform is limited and the 

octocopter cannot be equipped with all aforementioned sensors 

at the same time. However, besides the flight with one sensor at 

a time, the size and weight of the Velodyne VLP-16 and GoPro 

camera allow to mount them simultaneously and perform the 

flight. Note that the used UAS in the heaviest configuration did 

not exceed 13 kg of the total takeoff weight (platform, sensors, 

power supply, etc.). The span of the Bergen octocopter is 1 m. 

 

2.2 Test Flights 

Test flights were executed in a waypoint based mode over 

relatively flat terrain containing moderate complexity of non-

ground objects. Although the plan (Figure 2) was identical for 

all flights, the actual flight trajectories may differ due to lower 

performance of the navigation sensors included in the autopilot 

system. Table 4 lists parameters that are common for all flights, 

and nominal parameters specific for each mapping sensor. 

 

Common parameters  

Flying altitude AGL [m] 25 

Flying speed [m/s] 4 

Number of strips 3 

Length of the strip [m] 73.72 

Distance between strips [m] 12.57 

NovAtel data acquisition rate [Hz] 5 

Minimum IMU data acquisition rate [Hz] 100 

Parameters for 

Nikon / GoPro flights 
 

Image acquisition rate [Hz] 1 / 2 

GSD at nadir [mm] 12 / 2.5 

Footprint width [m] 17.95 / 28.70 

Footprint height [m] 12.00 / 21.53 

Image endlap [%] 67 / 93 

Image sidelap [%] 30 / 56 

Parameters for Velodyne 

HDL-32E / VLP-16 flights 
 

Rotation rate [Hz] 10 

Across flight FOV [°] 60 

Swath width [m] 28.87 

Strip overlap [%] 56 

Average point spacing across flight a) [m] 0.08 / 0.10 

Average point spacing along flight a) [m] 0.4 

Along flight overlap [%] 98 / 97 

Nominal average point density [pts/m2] 1,039 / 416 
a) for single 0° channel 

Table 4. Parameters of the flight and data acquisition 

 

Figure 2. Test flights plan 

 

The cameras were mounted on the platform to take vertical 

images; Nikon camera was fixed to the octocopter body while 

GoPro camera was mounted on a gyro-stabilized gimbal. For 

that reason, the actual tilt angle of the Nikon camera was 

dependent on the platform attitude. Similarly, Velodyne 

scanners are fixed to the platform with rotation axis aligned 

with the octocopter nominal movement direction (Figure 3). 

Since each of the Velodyne scanners has more than a single 

laser diode, during each rotation a pattern of 32 or 16 lines 

(depending on the scanner) is created. The consecutive patterns 

overlap, and for the particular parameters (Table 4), this overlap 

is equal 98% or 97%, depending on the scanner. This causes 

that actual point spacing along flight direction is much higher 

than if obtained by single channel sensors. Consequently, this 

overlap causes also higher nominal point cloud density. The 

difference in nominal point cloud densities for HDL-32 and 

VLP-16 is mainly due to the different number of sensor 

channels and slightly different horizontal resolution for the 

same scanning rate (Table 2). 

 

 

Figure 3. Scanning principle of a horizontally mounted 

Velodyne HDL-32E scanner on a UAS platform 

 

To support direct georeferencing of the UAS platform, a GPS 

base station was established to collect dual-frequency GPS 

observations in the period of UAS flights. For indirect image 

georeferencing, a set of GCPs was measured with the average 

3D accuracy of 2 cm. Similarly, for accuracy assessment, a set 

of check points was surveyed in the field. A total number of 

measured ground points was 19, including 10 signalized targets 

and 9 natural, easy to identify points. 
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3. METHODS 

3.1 Dense Point Cloud Generation from Images 

The image based point cloud was generated by the commercial 

software that implements the standard workflow for UAS 

images processing. In particular, first the bundle block 

adjustment (BA) is applied (based on the GCPs) to find the 

position and orientation of each image, and then the dense 

image matching creates the dense point cloud. 

 

3.2 Georeferencing of LiDAR Point Cloud 

The generation of the georeferenced point cloud is the 

transformation from the scanner local coordinates (scanner 

frame s) to the global coordinates (frame g). The model of 

generating local coordinates from the Velodyne raw 

measurements for the channel k is as follow (Glennie and 

Litchi, 2010): 
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where              is the calibrated range 

measurement 

    = raw range measurement 

    = range scale factor 

    = range offset 

    = vertical angle correction 

   = horizontal angle measurement encoder 

    = horizontal angle rotation correction 

    = horizontal offset from scanner origin 

    = vertical offset from scanner origin 

 

The local scanner coordinates s of the point acquired at a time t 
are then georeferenced according to the model: 
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 = coordinates of the body frame origin given 

in the mapping frame g 

   
 
                      is the rotation matrix 

from the body frame b to the mapping frame g that is 

dependent on the Euler angles: roll r, pitch p, and 

heading h 

   
  = rotation matrix from the scanner frame s to the 

body frame b that is dependent on the a priori rotation 

matrix based on the body frame definition and scanner 

assembly, and rotation caused by the boresight 

misalignment 

  

  
  
  

 

 

 = lever-arm offset between scanner and body 

frame origins defined in the body frame b 

 

The Velodyne scanners are factory calibrated, i.e., all six 

calibration parameters (see Eq. (1)) for each scanner channel are 

known. In general, this simplifies georeferencing to the Eq. (2). 

The intra-sensor calibration parameters, such as lever-arm 

offsets between scanner and IMU origins or GPS antenna 

reference point and IMU origin are usually obtained by direct 

measurements and can be adjusted during processing. Similarly, 

boresight misalignment is usually assumed to be zero on the 

beginning and then can be adjusted during processing (Skaloud 

and Lichti, 2006). 

 

The essential part of the point cloud georeferencing is the 

estimation of time dependent position and orientation of the 

body frame in the global/mapping frame. This task is known as 

platform direct georeferencing or trajectory reconstruction. The 

six parameters (3D position and attitude) are usually estimated 

by integrating GPS and IMU data where the body frame is 

chosen as the IMU frame. The state-of-the-art in GPS/IMU data 

integration is the Extended Kalman Filter (EKF); note that there 

are many filter designs and implementations. In particular, the 

integration can be executed in loosely or tightly coupled modes, 

and the filters can differ by the state vector length (Jekeli, 

2001). In this work the integration was performed in loosely-

coupled mode with the EKF state vector length of 21, including 

3 positions, 3 velocities, 3 orientation angles, 3 gyro biases, 3 

accelerometer biases, 3 gyro scale factors, and 3 accelerometer 

scale factors. 

 

3.3 Accuracy Assessment 

The accuracy of the image based point cloud was evaluated 

using precisely measured ground reference points. Since the 

dense matching can provide points with RGB information for 

almost every pixel of the image, the point spacing for the test 

data was very high. Consequently, the identification of 

corresponding reference points was possible. Based on the 

coordinate residuals, both horizontal and vertical accuracies 

were calculated. 

 

In the case of LiDAR point clouds, direct comparison with 

ground reference points is nearly impossible due to lower point 

cloud density, as ground targets may be difficult to find based 

on LiDAR intensity information and point coordinates. In 

addition, sparse data introduces additional error. For example, 

in our tests, the nominal average point spacing for Velodyne 

VLP-16 point cloud is about 5 cm, and none of these points may 

be exact reflection from the reference point measured directly in 

the field. For that reason the accuracy of the point cloud must be 

estimated in a different manner. 

 

Since the LiDAR point clouds are usually used for surface 

modeling, the vertical accuracy was estimated on the basis of 

the created Digital Surface Model (DSM). After removing noise 

points, the DSM of the GRID size equal 0.1 m was interpolated 

and compared against heights of ground reference points. Based 

on height residuals the vertical RMSE was calculated. 

 

The surface modeling can also benefit in the estimation of the 

accuracy for horizontal and vertical components separately. 

Similarly to the evaluation of the image based point cloud 

described above, a comparison with ground reference points can 

be executed. However, points corresponding to reference are not 

selected directly in the point cloud, but must be estimated 

during a modeling process, e.g. as the intersection of modeled 

edges. Obviously, such approach requires appropriate objects 

that can be modeled from the point cloud in order to extract 

feature points. In addition, the accuracy estimated using this 

approach is affected by the accuracy of modeling, e.g. fitting 

surfaces to the point cloud, surface intersecting, etc. 
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The point cloud based modeling of geometrical features can be 

used to assess an internal accuracy of both types of point clouds. 

From the georeferenced point cloud several subsets of points 

can be extracted that belong to flat surfaces (e.g. building 

roofs). Using least squares methods (LSQ), planar patches can 

be fitted to each set of points allowing for calculating residuals 

and other statistical parameters, including RMSE that can be 

treated as an accuracy estimate. To avoid estimating the planar 

patch parameters from outlier points, a robust LSQ may be 

applied. Obtained estimate is a measure of internal 3D accuracy 

(consistency) of the point cloud since selected planar patches 

usually have different orientations. 

 

The relative comparison of two types of point clouds (LiDAR 

and imagery) can be also executed based on the planar patches. 

In this case LiDAR point residuals are computed with respect to 

planar patches estimated from the image point cloud. These 

values cannot be considered as absolute accuracy of the LiDAR 

point cloud, because the accuracy of the image point cloud, 

obtained even form high resolution and good geometry images 

may be too low to treat them as a reference. However, such 

approach can indirectly compare two types of point clouds. 

 

LiDAR and image point clouds can be also compared directly. 

For well mapped objects, a set of corresponding point clouds 

can be extracted and the distance between LiDAR with respect 

to image based point cloud, treated as the reference, can be 

calculated. Obtained values may provide relative point cloud 

accuracy. 

 

4. RESULTS AND DISCUSSION 

Depending on the test flight, the GPS positions estimated from 

the NovAtel data showed 3D accuracy of 10 cm or better. The 

analysis of IMU data showed strong noise in accelerometer 

readings. Table 5 shows the mean accelerometer readings for 

two parts of the flight, including the system test before the 

takeoff; note that both IMUs were aligned to have the same 

orientation of Z axis (opposite polarity) and then the axis X of 

one IMU corresponded to the axis Y of the other IMU. 

Test case IMU 

Mean of accelerometer 

readings [m/s2] 

Total X Y Z 

Static MicroStrain 9.81 0.96 0.21 -9.43 

(motors off) Epson 9.81 0.21 0.91 9.44 

Inflight MicroStrain 8.88 -0.02 0.38 -8.28 

(motors on) Epson 9.72 -0.57 -0.22 8.49 

Table 5. Analysis of accelerometer readings for the flight with 

Velodyne HDL-32E 

 

To integrate unreliable IMU data with relatively good GPS 

positions, the parameters of the EKF were tuned to account for 

the high acceleration noise. This approach caused that obtained 

positions were nearly identical to positions calculated from GPS 

data, and the calculated platform orientation was mainly 

dependent on gyro readings. In addition to the 6DoF trajectory 

reconstruction by GPS/IMU data integration, the 6DoF 

octocopter trajectory for one flight was obtained from imagery 

data as a result of BA. This allowed to see the impact of the 

noisy IMU data to the platform orientation. 

 

Since properly executed indirect georeferencing is usually more 

accurate than direct georeferencing, the GCPs based BA 

solution based on the good geometry Nikon imagery was treated 

as a reference. Because the reference solution was estimated 

with 1 Hz rate, only the corresponding part of GPS/IMU 

solution was compared. The comparison of the GPS and 

reference BA trajectory points showed that the actual 3D 

accuracy of GPS positions with respect to reference BA solution 

was about 4 cm. The analysis of the attitude (Figure 4) showed 

that the solution obtained from MicroStrain data is very similar 

to the reference, but the solution from Epson data is not reliable 

because it shows very large tilt angle (even 50º) that would 

cause the octocopter to crash if this tilt happens in the reality. 

For that reason, the direct georeferencing of the LiDAR point 

cloud was performed using the MicroStrain solution. The 

unreliable attitude obtained from Epson data may be explained 

by very strong influence of motor vibrations to Epson gyro 

readings. 

 

 

Figure 4. Euler angles obtained from GSP/IMU data integration using modified EKF and Nikon images (reference) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Obtained point clouds: Velodyne HDL-32E - heights (a), Nikon - heights (b), Velodyne HDL-32E - intensity (c), Nikon - 

RGB (d) 

 

Results of the georeferenced point clouds obtained from 

Velodyne HDL-32E scanner data and Nikon images are shown 

in Figure 5. Clearly, the LiDAR point cloud is more complete as 

it contains reflections from the objects that lack the texture 

necessary for dense image matching (roofs) and objects that 

were moving during data acquisition – wind caused the 

movement of tree branches. The Velodyne point cloud is also 

sparser than the point cloud obtained from Nikon images. The 

calculated point cloud density is 867 and 12,429 pts/m2 for the 

Velodyne HDL-32E and Nikon point clouds, respectively. 

However, the point cloud density for used LiDAR sensor is still 

much larger than obtained from traditional airborne LiDAR 

systems. The detailed analysis of the Velodyne point cloud 

geometry showed issues with the trajectory reconstruction, 

because many points were unaligned with flat surfaces (e.g. 

building roofs), and edges of the straight objects (e.g. curb 
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separating parking lot from the lawn, and edges of buildings) 

were not straight. For that reason, only initial estimate of 

absolute vertical accuracy of created DSM was computed and 

was equal 0.49 and 0.03 m for Velodyne and Nikon point 

clouds, respectively. As reported earlier (Toth et al., 2015) the 

absolute 3D accuracy of Nikon point cloud is 7 cm, this point 

cloud can be used as the reference in the relative comparison 

with the Velodyne point cloud. 3D distances between Velodyne 

and Nikon point clouds were calculated using the 

CloudCompare software (Girardeau-Montaut, 2016) resulting in 

the average distance of 0.90 m; the standard deviation of these 

distances was 0.65 m. Obtained values are rather large 

comparing to the accuracy of the Velodyne HDL-32E range 

measurements or the accuracy of positioning using geodetic 

grade GPS receiver. Further improvement of the UAS LiDAR 

point cloud requires more accurate estimation of the platform 

attitude. 

 

5. POSSIBILITIES OF LIDAR POINT CLOUD 

IMPROVEMENT 

5.1 Trajectory Reconstruction with Imagery Data 

There are few aspects to improve the UAS Velodyne point 

cloud accuracy for the investigated hardware in this study. First 

is the reduction of the vibration impact on the IMU readings. 

This may be obtained by modifying the mount and adding 

dampers to isolate the IMU and scanner from the vibrating 

octocopter frame. Obviously, IMU and LiDAR sensor should 

not be isolated. 

 

The use of multiple laser diodes in one sensor may be 

potentially beneficial in refinement of the platform attitude. 

Because all Velodyne pulses for the same horizontal angle are 

emitted nearly simultaneously, created profiles from different 

rotations may be matched adding constraints to the attitude 

estimation. However, this approach needs further algorithmic 

developments. 

 

Finally, the 6DoF trajectory of the UAS can be estimated also 

from the imagery data without any data from navigation 

sensors. In this case, the position and orientation is computed 

for each taken image. This task can be solved by image block 

BA based on GCPs. Consequently, for the LiDAR point cloud 

georeferencing, the sensor body is the image frame instead of 

IMU frame. Such type of solution can be beneficial if the IMU 

data is not reliable, e.g. affected by the motor vibrations (Zhe et 

al., 2015). The requirement is that the LiDAR and imagery data 

needs to be acquired during the same flight. In the case of the 

testing platform, due to its limited payload capacity, only 

Velodyne VLP-16 and GoPro camera could be mounted at the 

same time on the octocopter. 

 

Since the GoPro camera does not provide accurate time of 

image acquisition, the reconstructed points based on BA 

trajectory lack the time stamps. Obviously, the NovAtel GPS 

data is able to provide reliable time and position of the platform. 

The trajectories (3DoF) obtained from images and GPS data can 

be matched and interpolated to get the time dependent 6DoF 

trajectory and to georeference the LiDAR point cloud according 

to Eq. (2). In this case, the platform orientation is transferred 

from the image BA results and the time stamps are transferred 

from the GPS data. Since both solutions are of much lower rate 

than the LiDAR data acquisition, interpolation is necessary. 

Finally, the accuracy of the point cloud will be then also 

dependent on the flight dynamics, and the chosen interpolation 

model. 

6. CONCLUSIONS AND FUTURE WORK 

This work showed initial results of the performance assessment 

of the UAS LiDAR point cloud obtained with the Velodyne 

sensor. The analysis was executed to assess the performance of 

dual-frequency GPS and medium-grade MEMS IMU sensors in 

the trajectory reconstruction for georeferencing LiDAR point 

cloud. The results showed that miniaturized dual-frequency 

GPS receivers are suitable for direct georeferencing of the UAS 

platform while some of the IMU sensors experience strong 

vibrations caused by platform motors that degrades their 

performance. The reduced IMU performance resulted in 

decreased accuracy of the LiDAR point cloud that was 0.49 m 

for the vertical component, and was much lower than the 

accuracy of the point cloud created from images taken during 

similar flights. The relative comparison between these point 

clouds showed that the accuracy of the horizontal component of 

the LiDAR point cloud is in the same magnitude as for vertical 

component. Although the LiDAR point cloud is sparser than 

image point cloud, in many situations, it is more complete as it 

allows to map dynamic scenarios and objects that lack of the 

texture necessary for dense image matching. 

 

Reducing the impact of vibration, e.g. by adding mechanical 

dampers to the IMU mount will be investigated in the future. A 

promising result of accurate platform direct georeferencing was 

obtained by trajectory reconstruction based on imagery data. 

The georeferencing of the LiDAR point cloud based on the 

solution obtained by indirect georeferencing of images will be 

investigated in the future by performing simultaneous flight 

with light-weight Velodyne VLP-16 laser scanner and GoPro 

camera. 
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