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ABSTRACT:

This paper proposes an hybrid online calibration method for a laser scanner mounted on a mobile platform also equipped with an
imaging system. The method relies on finding the calibration parameters that best align the acquired points cloud to the images. The
quality of this intermodal alignment is measured by Mutual information between image luminance and points reflectance. The main
advantage and motivation is ensuring pixel accurate alignment of images and point clouds acquired simultaneously, but it is also much
more flexible than traditional laser calibration methods.

1. INTRODUCTION

1.1 CONTEXT

Mobile mapping systems are becoming more and more widespread
because of their ability to capture extremely accurate data at large
scale. Mobile mapping faces numerous challenges:

• Volume of data acquired calling for very efficient processing
to scale up

• Complexity of the captured 3D scenes (occlusions, radiom-
etry, mobile objects,...)

• Localisation accuracy: GPS outage are frequent in city cores
and may lead to large geolocalization errors.

Whereas mobile mapping systems have been traditionally divided
between laser and image based platforms, hybrid systems (with
both image and laser sensors) are getting more and more popu-
lar.For such systems, the laser and image sensors are calibrated
independently using standard calibration procedures. In our ex-
perience, such independent calibration methods may lead to reg-
istration errors of a few pixels between the image and laser data
(cf figure 2). We believe that reducing this error below a pixel
may unlock new applications for hybrid systems such as:

• Joint image/laser scene interpretation

• Joint image/laser 3D surface reconstruction and texturing

(Vallet et al., 2015) also advocates that precise image/laser align-
ment is required for mobile objects delineation in images. More-
over, the method that we propose is online, meaning that it does
not require a special acquisition in a specially equipped site to
perform the calibration, and that it can be used to assess the sta-
bility of image and laser calibrations in time.

Figure 1: Image (top) and laser data (bottom, coloured with re-
flectance) on Place de la Bastille, Paris
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Figure 2: Image/laser superposition on a zoom of Figure 1 show-
ing a calibration error of a few pixels

1.2 RELATED WORKS

A calibration method is characterized by:

• The features: what is matched between the two sources ? It
can be known targets, feature points (Chen and Tian, 2009),
regions (Liang et al., 1997), edges or primitives, in which
case the method is called sparse, or the points/pixels com-
posing the data, in which case the method is called dense.

• Similarity measure: how good are the matches ?

• Deformation model: how is a source deformed to align to
the other ? (rigid, non-rigid, affine...)

• Optimisation: which deformation ensures the best similarity
? Note that whereas optimization often aims at minimizing
an energy, here we maximize similarity.

Sparse methods use high level features which are more discrim-
inative and lead to a simpler optimization. Plenty of detectors
ensure invariance to orientation, scaling, perspective, lighting,...
However it might be difficult to find features invariant across
modalities and accurate enough, and different features might be
detected in the sources leading to error prone feature matching.
Conversely, dense methods do not rely on feature detection but
only on the similarity measure, which is more simple and yields
alignment information over the whole data. However the opti-
mization is more intensive and the similarity measure can be less
discriminative than features.

For sparse method, the similarity measure is dependent on the
features: based on SIFT descriptors, region shapes, geometric
distance between primitives... For dense methods, the most sim-
ple measure is the (point to point or point to triangle) squared dis-
tance for point clouds, and Zero mean Normalized Cross Corre-
lation (ZNCC) for images. For multimodal registration, the Mu-
tual Information (MI) (Mastin et al., 2009) is often preferred. MI
measures statistical co-occurrence between values of correspond-
ing points/pixels by computing their joint histogram. A flat his-
togram indicates no correlation, whereas strong maxima indicate
high correlation.

Finally, the optimization problem has the form:

max
t∈T

f(I1, t(I2)) (1)

• I1 et I2 are the data sources

• t : transformation to apply to I2 to align it with I1

• T : set of possible transformations

• f : similarity measure

For a rigid transform, T is parametrized by the 3 components of
a translation (the lever-arm) and the 3 bore-sight angles. For a
mobile laser scan, this transformation is expressed in a mobile
frame so the resulting transform is not a rigid transform, even if
it has the same parameters. To optimize these parameters, three
classes of methods may be used:

Closed form For least squares similarity measure and simple
transform space, the optimal transform can be expressed directly
in closed form.

Gradient-based If the gradient is easy to compute, it can guide
the optimization by following the steepest ascent line. Such method
converge rapidly to a precise optimum but for non convex ener-
gies, this optimum can be local without guarantee that the global
optimum is reached. The various methods (gradient descent, New-
ton’s method, Levenberg-Marquardt, conjugate gradient) mainly
differ on the exact choice of the direction and of the step length.
If uncertainties on the inputs are known, then the Gauss-Helmert
method can be used (McGlone et al., 2004).

Gradient-free If the gradient is hard to compute or if the en-
ergy has many local optimas, a gradient free method can be pre-
ferred. Gradient free methods will evaluate the similarity on
samples of T with various heuristics to choose the next sam-
ples. Monte Carlo methods sample the space with a random
distribution that becomes concentrated near local optimas as a
temperature parameter decreases. The bats algorithm evolves a
population of samples inspired by the behaviour of herds. Ge-
netic algorithms randomly combine the best previous solutions
into new ones. The Nelder-Mead (or simplex) algorithm (Deng
et al., 2008) evolves a simplex toward the optimum according to
the similarity measure on its vertices. The conjugate Powell al-
gorithm (Maes et al., 1997) iterates optimization over individual
parameters.

In the case of aerial laser scanner calibration, (Skaloud and Lichti,
2006) choose manually selected planar surfaces as features (es-
pecially gable roofs) then automizes this procedure in (Skaloud
and Schaer, 2007). The similarity measure is simply the plane to
plane distance. The four plane paramteres are added to the set of
unknowns and the optimization is a weighted least squares solved
by a Gauss-Helmert with constraints. This method is adapted
in Riegl’s RiPROCESS software (Rieger et al., 2010) where ad-
ditional constraints on the acquisition are proposed (scans with
opposite direction and different angles). (Le Scouarnec et al.,
2013) proposes a static calibration where lines from planar sur-
faces are put in correspondence. Once again plane parameters
are unknown and the Gauss-Helmert method is used for the opti-
mization. Finally, (Nouira et al., 2015)
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1.3 DATA PRESENTATION

Figure 3: A set of images acquired for one pose (panoramic + 2
stereo pairs)

The data used in this study was acquired by the mobile mapping
system (MMS) described in (own citation). It is equipped with 14
full HD (1920×1080px) cameras acquiring 12 bits RGB images
(8 images panoramic + 2 stereo pairs) as shown in figure 3.

Figure 4: A view of the Mobile Laser Scan (MLS) used in this
study, coloured with reflectance.

The laser sensor is a RIEGL LMS-Q120i that was mounted transver-
sally in order to scan a plane orthogonal to the trajectory. It ro-
tates at 100 Hz and emits 3000 pulses per rotation, which corre-
sponds to an angular resolution around 0.12◦. Each pulse can
result in 0 to 8 echoes producing an average of 250 thousand
points per second. In addition to the (x, y, z) coordinates (in
sensor space), the sensor records multiple information for each
pulse (direction, time of emission) and echo (amplitude, range).
The amplitude being dependant on the range, it is corrected into
a relative reflectance. This is the ratio of the received power to
the power that would be received from a white diffuse target at
the same distance expressed in dB. The reflectance represents a
range independent property of the target.

The MMS is also mounted with an Applanix POS-LV220 geo-
referencing system combining D-GPS, an inertial unit and an
odometer. The laser sensor is initially calibrated by topometry in
order to recover the transformation between the sensor and Ap-
planix coordinate systems which allows to transform the (x, y, z)
coordinates from sensor to a geographic coordinate system. The
result, with a colormap on reflectance, is displayed in Figure 4.

The point cloud is acquired continuously in time, such that when
projecting a point cloud to an image, some projected points may
have been acquired a few moments before or after the moment
the image was acquired.

2. METHODOLOGY

2.1 FRAMES

In this work, we call Tαβ the rigid transforms defined by a rota-
tion Rαβ and a translation Tαβ that transform point coordinates
xα in frame α to coordinates xα in frame β:

xβ = Tαβx
α = Rαβx

α + Tαβ (2)

These transforms link the 4 following frames:

• The World frame W attached to the scene

• The V ehicle frame V attached to the vehicle and given by its
geopositionning system. It depends on time as the vehicle
moves, and is defined by TVW (t)

• The Laser frame L attached to the laser that produces point
coordinates xLi in this frame (i is the point index). The ob-
ject of this work is estimating Ta

LV , through its parameters
a = (tx, ty, tz, θx, θy, θz) where T a

LV is the translation of
vector (tx, ty, tz) and

Ra
LV =

czcy czsysx − szcx czsycx + szsx
szcy szsysx + czcx szsycx − czsx
−sy cysx cycx

 (3)

c• = cos(θ•) s• = sin(θ•)

• The Camera frame defined by TCV that we assume known
(already well calibrated). Assuming that the image has been
resampled to compensate for lens distortion, the image pixel
coordinates are defined from Camera coordinates by a sim-
ple pinhole model:

pCI(x
C) =

[xC
zC
yC
zC

]
(4)

Using these notations, and knowing the exact times ti at which
each 3D point xLi is acquired, and tI at which image I was ac-
quired, we can define the projection of a laser point xL in I:

pa(xL) = pCI ◦TV C ◦TWV (tI)◦TVW (ti)◦Ta
LV (x

L) (5)

In this framework, re-estimating TLV does not lead to a rigid
transform of the pointcloud as TVW (ti) depends on the acqui-
sition time of each point which is illustrated on Figure 5. The
estimation of TLV will be performed by maximizing over the
transformation parameters r a similarity measure between the
reflectance measured on 3D points and the corresponding lumi-
nance on the pixels on which they project.

2.2 MUTUAL INFORMATION

Mutual Information (MI) is a popular similarity measure for mul-
timodal registration. In the image/laser case, there is not a one-
to-one correspondence between the pixels and the 3D points, so
we need to choose over which set the MI will be computed. The
most straightforward choice is to compute MI over the 3D points
projecting in the image (with the initial calibration), keeping the
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Figure 5: Non rigid transform of a mobile laser scan induced by
a rigid transform on the laser frame of 45◦ around the vertical
yaw axis. Top: Mobile laser scan with correct calibration, Bot-
tom: Mobile laser scan with calibration rotated. Scanlines are not
orthogonal to the trajectory any more

one with smallest depth in case more than one point projects in
the same pixel, and we call Pi i = 1..n these points. For the
MI to be comparable between iterations, this set will not be re-
evaluated. The features correlated will be the laser reflectanceRi
of point i and the image luminance L(pa(xLi )) = La

i estimated
from the RGB components for the image (cf figure 1).

Computing MI relies on computing a joint (2D) histogram of
these features over such correspondences:

MI(a) =

nL
bin∑
L=1

nR
bin∑
R=1

plr(L,R,a)log

(
plr(L,R,a)

pl(L, r)pr(R)

)
(6)

where nLbin and nRbin are the respective number of bins of the
Luminance and Reflectance histograms. For simplicity, we as-
sume that La

i and Ri are normalized to lie in [0, nLbin + 1] and
[0, nRbin + 1]. With this convention:

pl(L,a) =
1

n

n∑
i=1

φ(La
i −L) pr(R) =

1

n

n∑
i=1

φ(Ri−R) (7)

plr(L,R,a) =
1

n

n∑
i=1

φ(La
i − L)φ(Ri −R) (8)

φ(t) =

 t+ 1 if t ∈ [−1; 0]
−t+ 1 if t ∈ [0; 1]

0 else
(9)

allows to associate a feature value to the two closest bins.

2.3 LEVENBERG MARQUARDT OPTIMIZATION

We have explained how to compute the MI for a given trans-
form a. The online calibration proposed in this paper relies on

finding the optimal transform a∗ that maximizes the MI. As we
can assume a good initialization a0 (calibration by topometry
for instance), we chose a gradient descent algorithm: Levenberg-
Marquardt (LM). LM optimizes the MI iteratively by:

at+1 = at − (H + µ.diag(H))−1GT (10)

whereG is the gradient andH the Hessian of the MI and µ the so-
called damping factor. The gradient computation goes following
(Dame and Marchand, 2011) and (Dowson and Bowden, 2006):

G = ∇aMI(a) =∑
L,R

∇aplr(L,R,a)

(
1 + log

(
plr(L,R,a)

pl(L, r)

))
(11)

∇aplr(L,R,a) =
1

n

∑
i

∇aφ(L
a
i − L)φ(Ri −R) (12)

∇aφ(L
a
i − L) = ∇aL

a
i φ
′(La

i − L)

= ∇ap
a∇pL

a
i φ
′(La

i − L) (13)

where:

φ′(t) =

 1 if t ∈ [−1; 0]
−1 if t ∈ [0; 1]
0 else

(14)

and ∇pL
a
i is simply the image luminance gradient (estimated

at pa(xLi ) by bilinear interpolation). Calling ∇α the derivative
along coordinates in frame α and applying it to (2), we get:

∇αxβ = ∇αTαβx
α = Rαβ (15)

so from (5) we get:

∇ap
a = ∇CpCIRV CRWV (tI)RVW (ti)∇aT

a
LV x

L (16)

where:

∇CpCI(xC) =

[
1
zC

0 −xC
z2
C

0 1
zC

− yC
z2
C

]
(17)

and following (Chaumette and Hutchinson, 2006):

∇aT
a
LV x

L =

−1 0 0 0 −zL yL

0 −1 0 zL 0 −xL
0 0 −1 −yL xL 0

 (18)

Finally the Hessian is simplified as:

H = ∇TaG = −
∑
L,R

(
1

plr
− 1

pl

)
∇Ta plr∇aplr +

plr
pl
∇2

aplr

(19)
As advised in (Dowson and Bowden, 2006), we will neglect the
second derivative∇2

aplr as it is approximately zero near the min-
imum, so its use only improves the speed of optimisation slightly
at great computational expense. Consequently, the final Hessian
computation only requires pl, plr and its partial derivatives. After
each iteration, we get the new transformation parameters. The µ
control parameter defines how far we go along the gradient direc-
tion. The larger µ, the smaller are the corrections. µ is initialized
at 210 = 1024 and adjusted at each iteration: if the MI increases,
µ → µ/2 to speed up convergence, else the step is not validated
and µ→ 2µ.
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Figure 6: Place de la Bastille - Before (top) and after (bottom)
hybrid calibration

3. RESULTS

3.1 EXPERIMENTS

Results the image/laser calibration method described above on a
first example (Place de la Bastille in Paris) are presented in Figure
6. The quality of the result is evaluated qualitatively on some
close-ups shown on Figure 7.

The MI similarity measure decreases from 25.37% for the initial
calibration to 29.12%. Figure 8 gives the evolution of the MI
through LM iterations.

A second example (Saint Sulpice church in Paris) is presented in
figure 9) with close ups in Figure 10. On that example, we vol-
untarily perturbated the initial calibration to assess the robustness
of the method, which explains the larger error.

Because of this higher initial error, the MI increases more sig-
nificantly from 14.57% to 21.02%. The evolution of MI through
iterations is displayed in Figure 11.

3.2 DISCUSSION

3.2.1 INFLUENCE OF THE NUMBER OF BINS The im-
age grey level is in [0, 255] and laser reflectance in [-20dB, 0dB].
These intervals are split in bins to create the histogram. Larger
bins reduce computation time and ensure more robustness to noise.
The best results were obtained for 32 bins for image gray level
and 16 bins for laser reflectance. However, a low number of bins
might lead to low precision, so after a first convergence, a few
more iterations can be performed with an increased number of
bins.

Figure 7: Place de la Bastille - Close up on the red (top), blue
(middle) and green (bottom) parts before (left) and after (right)
hybrid calibration

Figure 8: Convergence of LM for the Place de la Bastille dataset
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Figure 9: Saint Sulpice area before (top) and after (bottom) hy-
brid calibration

Figure 10: Saint Sulpice: close up on road marks (top) and on
the left sidewalk (bottom) before (left) and after (right) hybrid
calibration

Figure 11: Convergence of LM for the Saint Sulpice dataset.

Figure 12: Calibration result on a road mark

3.2.2 ACCURACY Our initial objective of pixel accuracy is
only possible for points acquired close enough (in time) to the im-
age as the georeferencing drifts in time. For points further away
(in time) we observed an error up to 3 pixels after calibration (cf
Figure 12). The intrinsic calibration of the image might also lead
to errors of around one pixel.

3.2.3 ROBUSTNESS The MI similarity measure is quite ro-
bust to multimodality and illumination changes. This is illus-
trated in complex urban environments: narrow streets (Figure 9),
large squares (Figure 6) or crossings (Figure 13). The calibration
always reaches the correct optimum even in the Sain Sulpice ex-
ample with perturbated input. Robustness to moving objects is
also demonstrated on Figure 13: a bus has moved between the in-
stant it was acquired by the image and the laser. Despite its large
size, the resulting calibration is still accurate.

Figure 13: Correct calibration result despite a large mobile object
(bus)
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3.2.4 STABILITY To measure the stability of our hybrid cal-
ibration, we applied it independently to 3 image/laser couples
from the same acquisition but separated by a few minutes each
(Figure 14). Convergence was achieved in the 3 cases and the
resulting parameters vary of a few centimetres for the translation
and below 0.001◦ for rotation.

Figure 14: Saint Sulpice results on three extracts before (left) and
after (right) hybrid calibration

The relatively low stability for translation is in contradiction with
the pixel accuracy that we observe in the results. The reason is
probably that the translation part of the calibration compensates
for the georeferencing drift that varies in time.

4. CONCLUSION

Mutual Information (MI) is a powerful, precise and dense mea-
sure that is well adapted to aligning image and laser data. It is
robust to illumination variations, multimodality, occlusions and
mobile objects because its exploits all the information contained
in the image and mobile laser scan.

Its computation time (3 to 7 minutes depending mostly on the
number of 3D points projected in the image) is completely ac-
ceptable for the typical use scenarii:

• Laser calibration on an area with good GPS visibility in or-
der to limit the impact of georeferencing errors.

• Calibration on a few extracts of each acquisition performed
by a mobile platform in order to assess the stability of the
calibration through time.

In the future, we aim at improving the method in several manners:

• Handling multiple images instead of a single one

• Authorizing deformations of the laser scan to compensate
for the georeferencing drift, or using image/laser attachment
in a more global registration procedure.

• Selecting the 3D points to project with a fine point visibility
computation.
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