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ABSTRACT: 
 

The multivariate alteration detection (MAD) algorithm is commonly used in relative radiometric normalization. This algorithm is 

based on linear canonical correlation analysis (CCA) which can analyze only linear relationships among bands. Therefore, we first 

introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis 

(KCCA). The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct 
relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of 

Landsat-8 data of Beijing, China, and Gaofen-1(GF-1) data derived from South China. Finally, we analyze the difference between 

the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this 

algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a 

KCCA-based MAD algorithm to relative radiometric normalization.                                                                                           
 

 

1. INTRODUCTION 

As the growing need of multi-sensor, multi-temporal remote 
sensing data together used for land-use and land-cover change ( 

LUCC) monitoring, global resource environment analysis and 

climate change monitoring, relative radiometric normalization 

has practical significance for engineering applications. 

 
Relative radiometric normalization can establish the correction 

equation for each corresponding multi-spectral band in 

multi-temporal remote sensing data directly apply ing the pixel 

value of the image, without requiring any other parameters,                                                                                                                                                                                                            

such as atmospheric conditions on the day that remote sensing 
data obtained. Relative radiometric normalization can not only 

correct the differences caused by atmospheric conditions, but 

can also reduce the radiation difference induced by other factors, 

such as integration of multi-temporal remote sensing data.  

 
The pseudo-invariant feature (PIF) method is commonly used in 

relative radiometric normalization. The core task of this 

approach involves is the selection of pseudo-invariant feature 

points (PIFs) (Schott et al. (1988)). Canty (2004) presented a 

new idea for the automatic extraction of PIFs in linear relative 
radiometric normalization. This method is on the basis of the 

multivariate alteration detection (MAD) method proposed by 

Nielson (2002,1998),. The transformation of MAD is applied to 

a pair of multi-spectral scenes, acquired at times 𝑡1  an                                                                                                                                                                                                                                                                           

d 𝑡2 , from which PIFs are selected automatically and 
independently of surface properties, using the statistical 

properties of the data. Unlike the manual selection of PIFs, this 

method is simple, fast, fully automatic, and does not require the 
determination of the complex threshold. Canty (2008) further 

proposed the iteratively reweighted multivariate alteration 

detection (IR-MAD) method which improves on accuracy and 

robustness of the MAD algorithm with the iterative updating of 

weights. At present, this method is commonly used in the 

relative radiometric normalization process. 
MAD transformation is based on linear canonical correlation 

analysis (CCA). CCA method aims at finding a linear 

relationship of two sets of variables, so the spectral curves of 

the PIFs detected by MAD are all linearly changed. In relative 

radiometric normalization the whole scene is corrected by the 
linear relationship on the PIFs. The PIFs generally distribute 

only on asphalt roof, gravel surface, concrete apron, clean water, 

concrete and sand etc. However, the spectral curves of some 

other objects change nonlinearly over an interval [𝑡1, 𝑡2 ]. 
Therefore, it is unsuitable to apply the linear correlation 

information on the PIFs to those nonlinearly changed objects in 

relative radiometric normalization. 
 

In this work, we introduce a new method based on the kernel 

version of canonical correlation analysis (KCCA) that help us 

select PIFs, and we discuss the difference in the MAD versions 

based on CCA and KCCA for relative radiometric 
normalization. The results of this study indicate that the 

KCCA-based MAD can also be employed in relative 

radiometric normalization, and the PIFs it detected can well 

describe the nonlinear relationship between multi-temporal 

images.  
 

This paper is organized as follows. Section 2 introduces the 

principle of CCA-based (standard) MAD and KCCA-based 

(kernel-based) MAD algorithms, and present the obtained data 

and the experiment subsequently. Finally, Section 3 concludes  
the paper. 

  

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-1-49-2016

 
49



 

2. METHOD 

2.1 The CCA Transformation 

Hotelling (1936) proposed that CCA is a multivariate feature 

extraction method that aims at finding the rotation of two sets of 

variables that maximizes their joint correlation. The essence of 

CCA involves the selection of a number of representative 
indicators (linear combination of variables) from the two groups 

of random variables. These indicators can express the 

correlation between both sets of variables. As Canty (2004) 

suggested, we first form linear combinations of the intensities 

for all n channels in two images, acquired in times 𝑡1 and 𝑡2. 

The random vectors namely 𝐱 and y represent the images. It 
can be defined as: 
 

𝐮 = 𝒂𝑇 𝐱  ; 𝐯 = 𝒃𝑇𝐲              (1) 

Where   x=image1 
        y= image2 

        𝒂, 𝒃 =random vectors 

        𝐮, 𝐯 = canonical variable 
 

 

The pearson correlation coefficient is used to measure the 

relationship between image1 and image2. If we can determine a 

set of optimal solutions (𝒂, 𝒃) that can maximize the pearson 

correlation coefficient, then u and v reach the maximum 
correlation. The pearson correlation coefficient can be defined 

as: 

 

𝜌𝐮,𝐯 = corr(𝐮, 𝐯) =
𝒂𝑇∑12𝒃

√𝒂𝑇∑11𝒂√𝒃∑22𝒃
          (2) 

Where ∑11= covariance matrix of 𝒙 

              ∑12= covariance matrix of (𝒙, 𝒚) 

      ∑22= covariance matrix of 𝒚 
 

As first described by Hotelling (1936), the condition of this 

optimization problem involves maximizing 𝒂𝑇∑12𝒃, which is 

in turn subject to 𝒂𝑇 ∑11𝒂=1 and 𝒃∑22𝒃=1. The solution is to 
construct the Lagrange equation. Thus we can derive the 

following: 

 

[
0 ∑12

∑21 0
] [

𝒂
𝒃

] = 𝜆 [
∑11 0

0 ∑22
] [

𝒂
𝒃

]          (3) 

 

Where 𝜆= 𝒂𝑇 ∑12𝒃 
 

We assume that ∑11 and ∑22 are invertible matrices. Eq(3) is 
equivalent to: 

                     𝐵 =[
∑11 0

0 ∑22
] 

                     𝐴 =[
0 ∑12

∑21 0
] 

                     𝑤 =[
𝒂
𝒃

] 

𝐵−1𝐴𝑤 = 𝜆𝑤                  (4) 

 

Where 𝜆= the eigenvalue of 𝐵 −1𝐴 

 
The formula above generates the solution to the eigenvalue 

problem. In accordance with the process described above, we 

can determine the eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯ ≥ 𝜆𝑛(where 
n is matrix dimension). Then the first group of canonical 

variable coefficients namely 𝒂1  and 𝒃1  can be calculated 

when λ is the maximum eigenvalue 𝜆1. Then the second group 

of canonical variable coefficients namely 𝒂2 and 𝒃2 can be 

computed when 𝜆 = 𝜆2, and so on. 

 
2.2 The Kernel CCA Transformation 

Prior to introducing the kernel version of CCA, we must first 

understand the kernel function. A kernel function can convert an 

n dimensional inner product in low-dimensional space into an 

m-dimensional inner product in high-dimensional space (m>n). 
The kernel function is the theoretical basis for solving a 

complex classification or regression problem in 

high-dimensional feature space. The commonly used kernel 

functions are expressed as follows: 

(1)Linear Kernel:   

𝑘(𝒙, 𝒚) = 𝒙𝑇𝒚 

(2)Polynomial Kernel: 

𝑘(𝒙, 𝒚) = (𝛾𝒙𝑇𝒚 + 𝑐)𝑛 

 

(3)Hyperbolic Tangent (Sigmoid) Kernel: 

𝑘(𝒙, 𝒚) = tanh (𝛾𝒙𝑇𝒚 + 𝑐) 
(4) Radial Basis Function Kernel: 

𝑘(𝒙, 𝒚) = exp (−γ‖𝒙 − 𝒚‖2) 
 

In the KCCA transformation the two sets of variables can be 
defined as follows: 

 

𝐮 = 𝒄𝑇𝜙𝑥(𝒙); 𝐯 = 𝒅𝑇𝜙𝑦(𝒚)          (5) 

 

Where   𝜙𝑥=𝒙𝑛 → 𝒙𝑚, low dimension to high dimension 

        𝒄, 𝒅 =m dimension random vector 

         𝒙 =image1 

𝒚=image2 
 

In the standard CCA transformation, the pearson correlation 

coefficient between 𝐮 and 𝐯 can be calculated with Eq.(4) 
However, we must first introduce a kernel function that help us 

analyze the nonlinear relationship between two images in the 

KCCA transformation. 

 

𝑘(𝒙𝑖 , 𝒙𝑗) =< 𝝓(𝒙𝑖), 𝝓(𝒙𝑗) >          (6) 

 

We can obtain the kernel matrix using the kernel function 

written in Eq.(5): 

 
𝑘𝑖,𝑗 = 𝑘(𝒙𝑖 , 𝒚𝑖)               (7) 

 

Eq(4) can satisfy Eq(5) through the construction of a 

Lagrangian function. 
 

𝐿 = 𝐸[(𝐮 − 𝐸[𝐮])(𝐯 − 𝐸[𝐯]) 

−
𝜆1

2
𝐸[(𝒖 − 𝐸[𝒖])2] 

−
𝜆2

2
𝐸[(𝒗 − 𝐸[𝒗])2]             (8) 

 

In this expression, the derivative to be assumed is zero, and the 

canonical variable coefficients namely 𝒄 and 𝒅 are updated to 
the following: 

 

𝒄 = ∑ 𝛼𝑖𝜙𝑥(𝒙𝑖)𝑖                   (9) 
𝒅 = ∑ 𝛽𝑖 𝜙𝑦(𝒚𝑖)𝑖                  (10) 

 

The following can be derived based on Eq (4,8,9): 

 

𝐮 = ∑ 𝒂𝑖 < 𝜙𝑥(𝒙𝑖), 𝜙𝑥(𝒙) >𝑖             (11) 
𝐯 = ∑ 𝜷𝑖 < 𝜙𝑦(𝒚𝑖), 𝜙𝑦(𝒚) >𝑖             (12) 

var(𝐮) = 𝒄𝑇𝑣𝑎𝑟(𝜙𝑥(𝒙))𝒄 = 𝜶𝑇𝑘𝑥𝑘𝑥𝜶      (13) 

var(𝐯) = 𝒅𝑇𝑣𝑎𝑟(𝜙𝑦(𝒚)) 𝒅 = 𝜷𝑇𝑘𝑦𝑘𝑦𝜷      (14) 
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cov(𝐮, 𝐯) = 𝒄𝑇𝑐𝑜𝑣 (𝜙𝑥(𝑥), 𝜙𝑦(𝑦)) 𝒅 = 𝜶𝑇𝑘𝑥𝑘𝑦𝜷    (15) 

corr(𝐮, 𝐯) =
𝜶𝑇𝑘𝑥𝑘𝑦𝜷

√𝜶𝑇𝑘𝑥𝑘𝑥𝜶√𝜷𝑇𝑘𝑦𝑘𝑦𝜷
           (16) 

 

We can see that the look of the equations are basically similar as  
the standard CCA transformation. The correlation coefficient 

just replace covariance matrix with 𝑘𝑥𝑘𝑦 . So the solution 

process is similar too. We can solve the generalized eigenvalue 

problem of KCCA as below: 
 

[
0 𝑘𝑥𝑘𝑦

𝑘𝑦𝑘𝑥 0
] [

𝛼
𝛽] = 𝜆 [

𝑘𝑥𝑘𝑥 0
0 𝑘𝑦𝑘𝑦

] [
𝛼
𝛽]       (17) 

 

As in the standard CCA transformation, we easily obtain the 

eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯ ≥ 𝜆𝑛 (where n is matrix 
dimension) in the KCCA transformation. A series of canonical 

variables can subsequently be derived from these eigenvalues. 

The correlation coefficient corresponding to the canonical 

variable can then be calculated. 

 
2.3 Relative radiometric normalization 

According to the iteratively reweighted multivariate alteration 

detection (IR-MAD) method proposed by Canty (2008), the 

PIFs must meet the following condition: 

 

MAD = 𝐮 − 𝐯 

𝝎 = ∑ (
𝑀𝐴𝐷𝑖𝑗

𝜎𝑚𝑎𝑑𝑖

)2𝑛
𝑖=1 < 𝜏                (18) 

 

Where MAD=|𝑀𝐴𝐷𝑖𝑗|
𝒋=𝟏,𝟐…𝑴

𝒊=𝟏,𝟐…𝑵
 

       𝜎𝑚𝑎𝑑
2 = 2(1 − corr(𝐮, 𝐯)) 

       𝜏 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
 

Under both CCA and KCCA transformation methods, the points 

that satisfy the aforementioned formula are the PIFs. The 
radiation values of these points are linearly correlated in the 

images obtained at different time phases. The regression model 

can be established according to the linear relationship, by 

applying the radiation values of the PIFs. 

 

𝑦 = 𝑝 ∗ 𝑥 + 𝑞 

𝑝 =
∑ (𝑥𝑖−�̅�)∗(𝑦𝑖−�̅�)𝑀

𝑖=1

∑ (𝑥𝑖−�̅�)2𝑁
𝑖=1

            (19) 

𝑞 = 𝑦 − 𝑝 ∗ �̅� 
 

 

where   𝑥, 𝑦 = radiation values of pixels in image1,image2; 

        𝑥𝑖, 𝑦𝑖=the radiation value of PIFs 

        �̅�, 𝑦=the mean radiation value of PIFs 

        𝑝 = gradient 

        𝑞 = interception 

Both 𝑝 and 𝑞 can easily be counted according to the formula 
above. Subsequently, the radiation correction of the entire 

image can be realized. 

 

2.4 Examples and Results 

In this work, two Landsat-8 satellite images of the region of 

Beijing, China, and two GF-1 satellite images satellite images  

of South China are obtained as test data at two different points 

in time, as shown in Figure 1. The object categories in the 

region are varied, which contains lake, vegetation, and artificial 
construction. Figure 1(a) was acquired on Oct. 3, 2013(t1), and 

Figure 1(b) was obtained on Nov. 4, 2013(t2). Although time 

interval is very short, vegetation in North China turns yellow 
and begins to fall down in November. So the surface properties 

of vegetation significantly change between both images over the 

interval [t1, t2]. Figure 1(c) was acquired on Dec. 5, 2013(t3), 

and Figure 1(d) was obtained on Jan. 31, 2013(t4). The 

vegetation is always green. 
 

  
(a)                        (b)  

  
(c)                        (d) 

Figure 1. Experimental data. (a) is Landsat-8 data acquired in 
20131003 ,(b) is Landsat-8 data acquired in 20131104, (c) is 

GF-1 data acquired in 20131205, (d) is GF-1 data acquired in 

20130131 

 

 
Subsequently, we choose PIFs according to the MAD methods. 

The weight of each pixel 𝛚 is calculated, and the results are 
presented as follows Figure 2: 

 

     
          (a)                         (b) 
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          (c)                         (d) 

Figure 2.MAD results. (a) is 𝝎 map of Landsat-8 extracted by 

CCA. (b) is 𝝎 map of Landsat-8extracted by KCCA, (c) is 𝝎 

map of GF-1 extracted by CCA, (b) is 𝝎 map of GF-1 extracted 

by KCCA 
 

The standard MAD and the KCCA-based MAD algorithm 

detected 8,358 and 36,230 PIFs respectively for subsequent 

calculations in Landsat-8 image pairs, and detected 25,507 and 

238,972 PIFs respectively in GF-1 image pairs. These PIFs are 
shown in Figure 3: 

      
       (a)                    (b) 

     
       (c)                    (d) 

Figure 3. The distribution map of PIFs.(a) is results of 

CCA(Landsat-8);(b) is results of KCCA(Landsat-8);(c) is 
results of CCA(GF-1); (d) is results of KCCA(GF-1) 

 

Relative radiometric normalization is performed with the 

regression model. The outcomes suggest that under the 

condition set in this study, the KCCA-based MAD algorithm 
can be satisfactorily applied to relative radiation normalization. 

The results of relative radiometric normalization are as follows 

Figure 4: 

 

   
     (a)                (b)              (c) 

   
     (d)                (e)              (f) 

Figure 4. Relative radiometric correction results  

(a) is the original Landsat-8 image (b)is relative radiometric 
correction result of CCA; (c) is relative radiometric correction 

result of KCCA; (d) is the original GF-1 image, (e) is relative 

radiometric correction result of CCA; (f) is relative radiometric 

correction result of KCCA 

 
The standard MAD method is a commonly used relative 

radiometric correction algorithm, and its outcomes can be 

considered correct. We evaluate accuracy of the radiation 

correction results obtained with the KCCA-based MAD method 

based on the findings of the standard method. The difference 
between both images is calculated, and the D-values of the 

various bands are displayed in Figure 5. This leaves no-change 

area in black, and change areas in white. The discrepancies are 

mainly concentrated in the vegetation area.  

 

    
(a) band 1     (b) band 2    (c) band 3      (d) band 4 

    
(e) band 1     (f) band 2    (g) band 3      (h) band 4 

Figure 5. The difference map of two methods (𝑟𝑒𝑠𝑢𝑙𝑡𝐾𝑀𝐴𝐷 −
𝑟𝑒𝑠𝑢𝑙𝑡𝑀𝐴𝐷). The first row is the difference of Landsat-8 data, 

the second row is the difference map of GF-1 data 

 

3. CONCLUSIONS 

The study results indicate that both CCA-based and 

KCCA-based MAD methods can be applied to relative 

radiometric normalization. The KCCA-based MAD algorithm 

detected more PIFs than the former, and the PIFs it detected can 

well describe the nonlinear relationship between multi-temporal 
images. These PIFs can not only used in relative radiometric 

normalization, but also can further applied to multivariate 

change detection. In future studies, we can focus on how to 

filter these points to generate enhanced results.  

 
 

ACKNOWLEDGEMENTS (OPTIONAL) 

This work was supported by the National High Technology 

Research and Development Program (863) of China under 

Grant 2013AA12A301. 

 

REFERENCES 

Nielsen, A. A., Conradsen, K., & Andersen, O. B. (2002). A 

change oriented extension of EOF analysis applied to the 1996–

1997 AVHRR sea surface temperature data. Physics and 
Chemistry of the Earth, 27(32– 34), pp.1379– 1386. 

 

Nielsen, A. A., Conradsen, K., & Simpson, J. J. (1998). 

Multivariate alteration detection (MAD) and MAF 

post-processing in multispectral, bitemporal image data: New 
approaches to change detection studies. Remote Sensing of 

Environment, 64, pp.1– 19. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-1-49-2016

 
52



 

Canty, M. J., Nielsen, A. A., & Schmidt, M. (2004). Automatic 
radiometric normalization of multitemporal satellite imagery. 

Remote Sensing of Environment, 91(3–4), pp.441−451. Internet 

http://www.imm.dtu.dk/pubdb/p.php?2815 
 

M. J. Canty and A. A. Nielsen. (2008). Automatic radiometric 

normalization of multitemporal satellite imagery with the 

iteratively re-weighted MAD transformation. Remote Sensing of 

Environment, vol. 112, no. 3, pp. 1025–1036. Internet 

http://www2.imm.dtu.dk/pubdb/p.php?5362 
 

Nielsen, A. A., Vestergaard, J.S. (2013) A kernel version of 

multivariate alteration detection. IEEE Int. Geosci. Remote 

Sens. Symp. IGARSS, Melbourne(AUS), pp.3451-3454. 

 
Schott, J. R., Salvaggio, C., & Volchok, W. J. (1988). 

Radiometric scene normalization using pseudo-invariant 

features. Remote Sensing of Environment, vol.26, pp.1– 16. 

 

Hotelling, H. (1936). Relations between two sets of variates. 

Biometrika, vol.28, pp.321−377. 

 

P. L. Lai and C. Fyfe. (2000). Kernel and nonlinear canonical 
correlation analysis. International Journal of Neural Systems, 

vol. 10, no. 5, pp. 365–377 

 

M. J. Canty and A. A. Nielsen. (2012). Linear and kernel 
methods for multivariate change detection. Computers & 

Geosciences, vol.38, pp. 107-114 
 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-1-49-2016

 
53

http://www.imm.dtu.dk/pubdb/p.php?2815



