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ABSTRACT:

This paper presents methodology and evaluation of Digital Surface Models (DSM) generated from satellite stereo imagery using
Semi Global Matching (SGM) applied in image space and georeferenced voxel space. SGM is a well known algorithm, used widely
for DSM generation from airborne and satellite imagery. SGM is typically applied in the image space to compute disparity map
corresponding to a stereo image pair. As a different approach, SGM can be applied directly to the georeferenced voxel space similar to
the approach of volumetric multi-view reconstruction techniques. The matching in voxel space simplifies the DSM generation pipeline
because the stereo rectification and triangulation steps are not required. For a comparison, the complete pipeline for generation of
DSM from satellite pushbroom sensors is also presented. The results on the ISPRS satellite stereo benchmark using Worldview stereo
imagery of 0.5m resolution shows that the SGM applied in image space produce slightly better results than its object space counterpart.
Furthermore, a qualitative analysis of the results on Worldview-3 stereo and Pleiades tri-stereo images are presented.

1. INTRODUCTION

The availability of very high resolution (VHR) satellite stereo im-
agery continues to increase due to launch of various VHR stereo
imaging capable satellites over the past decade. This stereo im-
agery is now utilized in various applications including 3D city
modelling and topographic mapping. In addition to typical two
image stereo, satellite vendors deliver tri-stereo imagery as a stan-
dard product. These satellites are further capable of acquiring
multi-view images from a single pass (d’Angelo and Kuschk,
2012). Stereo imagery with up to 30 cm GSD (Ground Sampling
Distance) is now commercially available. To exploit the poten-
tial of VHR satellite stereo imagery, robust and accurate dense
image matching and 3D reconstruction algorithms are required.
This paper, presents and evaluates methods for generating digital
surface models from VHR satellite stereo data.

This paper has two main components. Firstly, the methodology
of in-house implementation of automatic 3D reconstruction algo-
rithm from satellite pushbroom sensors is presented, which uses
semi global matching as the dense matching algorithm. Secondly,
a technique to apply SGM directly in the georeferenced voxel
space, without the need of stereo rectification and triangulation
is presented. The minimum cost at each grid point directly gives
the height at each grid element. The evaluation of the proposed
methods is performed on the ISPRS stereo matching benchmark,
which uses the DSM generated from LiDAR data as ground truth
for quantitative evaluation.

2. LITERATURE REVIEW

The three major components of the pipeline for 3D reconstruc-
tion from stereo imagery are: stereo rectification, dense matching
and triangulation, which generates a 3D point cloud. In satellite
stereo imagery applications, this point cloud is often interpolated
in to a 2.5D raster or a digital surface model (DSM). In compari-
son to stereo images from frame cameras, there are two major dif-
ferences when dealing with satellite stereo imagery. Firstly, the

satellite imaging systems typically acquire images from a push-
broom sensor, which sequentially captures images line by line
following the satellite motion. Secondly, the transformation be-
tween the image and the object space is given in terms of Ratio-
nal Polynomial Coefficients (RPC) (Fraser et al., 2006), which
should be incorporated in the stereo reconstruction pipeline.

The first step in the 3D reconstruction pipeline is the stereo rec-
tification or epipolar resampling of the satellite stereo images.
The process of stereo rectification transform the images in such a
way that the corresponding points between the two images lie on
the same image row. This simplifies the search of corresponding
points and off-the-shelf stereo matching algorithms can be used.
The standard procedure of stereo rectification in frame cameras
involves estimation of Fundamental matrix using automatic de-
tection of corresponding points like SIFT (Lowe, 2004) and then
based on this Fundamental matrix a homomorphy is estimated for
each image. In contrast to frame cameras, the epipolar geometry
of the satellite pushbroom sensors shows different behaviour. The
epipolar curves of the pushbroom cameras are not straight and
the conjugate pair does not exist (Morgan et al., 2004; Oh et al.,
2010; Habib et al., 2005). Therefore, the commonly used tech-
niques for stereo rectification of frame cameras can’t be directly
applied for rectification of images from pushbroom sensors. Sev-
eral techniques have been proposed for pushbroom rectification
with the affine camera model approximation being the most pop-
ular solution for pushbroom rectification. The affine assumption
is suitable due to the following reasons: the height variations
in the object space are small compared to the satellite altitude,
the angular field of view is small and the satellite is assumed to
travel in a straight line with a constant velocity (Morgan et al.,
2004; Habib et al., 2005) during the short image acquisition time.
An affine transformation is estimated using corresponding points
between the two images and the resulting transformation causes
the corresponding points to lie along the same image rows. In
De Franchis et al. (2014) this affine rectification model is applied
on small image tiles of size e.g. 500 × 500, which results in
epipolar error of less than 1/10th of a pixel. Similarly, the re-
sults in Wang et al. (2011), show that the vertical parallax from
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the affine approximated stereo rectification method is less than
0.4 pixels (RMS value) using data from different satellites. Some
authors (Gruen, 1985; Hirschmüller, 2008) use the information
from epipolar geometry directly in the dense matching without
rectifying the original stereo images.

The second and the most essential component is the dense image
matching or the stereo matching. Semi global matching is the
most widely used dense image matching algorithm for 3D recon-
struction from aerial (Haala and Rothermel, 2012) and satellite
stereo (d’Angelo and Reinartz, 2011) imagery and is also used in
applications like driver assistance system (Hermann and Klette,
2013). SGM is ranked high on KITTI (Geiger et al., 2012) and
Middlebury (Scharstein and Szeliski, 2002) stereo benchmarks.
The widespread use of SGM is due to its accuracy, time efficiency
and ease of implementation (Drory et al., 2014). In computer vi-
sion, there is a large collection of publications on the topic of
stereo matching, while most of the work on satellite stereo uti-
lizes SGM with a few exceptions. In Kuschk et al. (2014) a vari-
ational stereo matching algorithm is used for DSM generation
from satellite stereo data. In Pierrot-Deseilligny and Paparodi-
tis (2006) a multi-resolution maximum flow algorithm is used for
dense image matching.

Several authors have presented automatic workflows for genera-
tion of DSM from satellite stereo data ((De Franchis et al., 2014;
Kuschk et al., 2014; Wohlfeil et al., 2012). The automatic satellite
stereo workflows mentioned above use SGM as the dense match-
ing algorithm.

A different class of multi view stereo matching algorithms of-
ten referred as volumetric reconstruction algorithms, apply dense
matching in object space (Vogiatzis et al., 2007; Roy, 1999). These
methods first discretize the object space in to voxels and then
project the images on to these voxels and apply some photo-
consistency measure. A satellite based multi view reconstruction
in object space using SGM has been presented in d’Angelo and
Kuschk (2012). Another example of application of SGM in object
space is presented in Bethmann and Luhmann (2014). A similar
scheme of matching in object space is also implemented in soft-
ware MicMac developed at French National Survey (IGN) (De-
seilligny, 2015), which uses a graph based min cut max flow al-
gorithm (Roy and Cox, 1998) for optimization. The object space
variant of SGM presented in this work is similar to the method-
ology used in d’Angelo and Kuschk (2012) and Bethmann and
Luhmann (2014).

3. METHODOLOGY

This section presents all the steps of the 3D reconstruction pipeline
from satellite stereo imagery. The whole process is automatic
and doesn’t require any ground control points (GCP). The recti-
fication and triangulation process relies on the RPC models pro-
vided along with the stereo data. The direct RPC model gives
the forward projection from image space (x,y) to object space
(lat,lon,alt), while the inverse model RPC−1 gives the backward
projection from object space to the image space. Each model con-
sists of 78 coefficients. The Worldview imagery is provided with
only RPC−1 model coefficients and the direct model coefficients
have to be computed.

In this work, a tile based approach for 3D reconstruction is em-
ployed as also done in the stereo pipeline for pushbroom images
presented in De Franchis et al. (2014). There are a couple of rea-
sons for using this tile based. Firstly, due to memory requirement
of SGM algorithm only a limited size of images can be processed
at a time. Secondly, the affine approximation fits well to a smaller

image tile as compared to the whole satellite image as it is shown
in De Franchis et al. (2014) that the epipolar error increases with
the size of the image tile. Therefore, the processing is done on
image tiles of size e.g. 2000× 2000 pixels. Hence, given a satel-
lite stereo pair, one image tile is defined as the left stereo image
(IL) and the second one, the right stereo image (IR).

3.1 Relative RPC Error

There is an error associated with the image-ground transforma-
tion provided by the RPC models. This error arises due to the er-
rors in the satellite attitude and Ephemeris determination as well
as due to the limited accuracy of sensor orientation described
by the RPC models as compared to the rigorous sensor model
(Fraser and Hanley, 2005; Grodecki and Dial, 2003). In this
work, only the relative RPC error (De Franchis et al., 2014) is re-
moved so that the corresponding points between the two images
lie on the corresponding epipolar lines. This relative RPC error
can be modelled as a translation for a small image tile, while for
the whole image an affine transformation may me required. The
translation or the shift to reduce relative RPC error is estimated
as follows; First the corresponding points between the images are
found by matching SURF features (Bay et al., 2006). Then the
epipolar lines in (IR) are computed for each feature point in (IL).
The distance between the corresponding SURF point (x) and its
epipolar line (l=(l1, l2, l3)) gives the relative RPC error (Luong
and Faugeras, 1996).

d(x, l) =
xT l√
l1

2 + l2
2

(1)

Now the shift to compensate this error is estimated as the median
of the translation between the SURF points and its epipolar lines.

3.2 Rectification

This section describes the rectification procedure applied to each
corresponding image tile of the stereo images. The well known
stereo rectification algorithm given in Hartley and Zisserman (2003)
is adopted with minor adjustments. The first step is to com-
pute the affine fundamental matrix and sending the right epipole
to infinity along x-axis. The process requires computation of
corresponding points between the two stereo images. As the
RPC models of the two images are available, virtual correspond-
ing points between the two images can be computed following
the strategy of De Franchis et al. (2014). For the corresponding
points (x, x′), the affine fundamental matrix can be written in the
form (Hartley and Zisserman, 2003):

FA =

0 0 a
0 0 b
c d e

 (2)

xTFAx
′ = ax+ by + cx′ + dy′ + e = 0 (3)

As the epipolar lines are parallel in a given image tile, a simpler
solution is to compute the epipolar lines and then rotate the image
according to the mean slope of these lines. Using the RPC and
RPC−1 models, epipolar line for any pixel of IL can be drawn
in IR by choosing different altitude values. The rotation matrix
R for rotating image IR can also be computed from the affine
fundamental matrix as:

R =

[
b

norm(a,b)
a

norm(a,b)
−a

norm(a,b)
b

norm(a,b)

]
(4)
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An affine transformation is then estimated between the trans-
formed right image and the left image using virtual correspond-
ing points. The left image is then transformed using this affine
transformation. The resulting images are now rectified and any
dense matching algorithm can be applied on this rectified image
pair. When multiple images are available, the rectification pro-
cess is done for each image pair. The rectification algorithm is
summarized below.

Algorithm: Satellite Stereo Rectification

Data: IL, IR, RPCL, RPCR

1. Draw epipolar lines in IR and calculate rotation matrix R
2. Rotate IR according to R
3. Compute affine transformation (H) between RIR and IL
4. Transform IL according to H

3.3 Dense Matching

The dense stereo matching can be formulated as a minimization
of an energy function as given in Eq. 5. The first term is the data
term, while the second term enforces 2D smoothness constraint
across neighbouring pixels. The global minimum of such an en-
ergy function is NP-hard for a general stereo matching problem
(Boykov et al., 2001). However, the minimization of the energy
along 1D path can be computed efficiently using dynamic pro-
gramming. It is well known that applying such constraints along
1D paths (e.g. along the rows) paths only, leads to streaking arte-
facts. To overcome this problem, SGM computes minimum by
aggregating costs from several (typically 8 or 16) 1D paths along
different directions. SGM is actually a general purpose heuristic
to optimize such energy functions.

E(D) = Edata + Esm =
∑
p

C(p) +
∑
q∈Np

λC(q, p) (5)

The data term constitutes the pixel-wise matching cost between
the pixels of the stereo images. Several data terms like mutual
information, census and normalized cross correlation have been
evaluated in earlier studies (Hirschmüller and Scharstein, 2009;
Vogel et al., 2013). The results of these studies have shown that
census matching cost is more robust than the other evaluated date
terms. Therefore, in this work, census matching cost is used
as the data term. The Census transform (Zabih and Woodfill,
1994) encodes intensity pattern around a pixel in terms of a bi-
nary string. The Census cost between two pixels of the stereo
images is then computed as the hamming distance between the
two binary strings.

E(D) =
∑
p

C(p, Dp) +
∑
q∈Np

(P1T [|Dp −Dq| = 1])

+
∑
q∈Np

(P2T [|Dp −Dq| > 1]) (6)

The 2D smoothness term enforces similar disparity values for
neighbouring pixels (Np). Here, T is a logical operator, which
outputs 1 when the condition is satisfied and 0 otherwise. The
small disparity changes are penalized by a constant cost P1 and
the higher disparity changes are penalized by cost P2. As sug-
gested by Hirschmüller (2005) the value of P2 is adopted accord-
ing to the intensity difference between the neighbouring pixels

to allow disparity change across possible object boundaries. The
subpixel disparity is estimated by fitting a quadratic curve to the
neighbouring cost values around the minimum and then comput-
ing the maximum of a quadratic curve as done in Hirschmüller
(2005). A left right consistency check is then applied to filter out
the occluded and unreliable pixels.

3.4 Triangulation and DSM

The dense matching algorithm gives the corresponding pixels be-
tween the two rectified stereo images. The process of triangula-
tion computes the object space coordinates of each pixel. Using
the RPC models, the goal is to estimate the height of each pixel
in the left image such that the forward projection from left im-
age and then the backward projection to the right image maps to
the corresponding point of each pixel. This process is applied
iteratively, to compute the required heights for each pixel. The
resulting 3D point cloud is then median filtered using the nearest
neighbours of each 3D point. The filtered point cloud is then in-
terpolated in to a DSM using the moving planes interpolation in
software OPALS (Pfeifer et al., 2014).

3.5 Object Space Semi Global Matching (OSGM)

In the second method the SGM algorithm is applied in the object
space instead of the image space. The SGM is applied directly in
the object space, therefore, the rectification and the triangulation
steps are not required. The transformation between object space
and the image space is given by the RPC models as described pre-
viously. Firstly, the object space is defined as a 2D grid (lat,lon)
and an associated height value. Hence, the object space consists
of a voxels having a (lat,lon,alt) value. Here, the voxel space can
also be defined using UTM coordinates instead of WGS84 coor-
dinates. The grid size is chosen to be the mean GSD of the nadir
image, while the height of each voxel is chosen using a prede-
fined height value ∆Z. A smaller ∆Z will help to achieve better
height resolution, however, it also increases the memory require-
ment. Similar to the tile based approach described in previous
section, the object space is divided in to tiles of size e.g. 1km
× 1km and the OSGM is applied to each tile separately due to
limited available memory.

First, the relative RPC error is corrected using the method de-
scribed in the previous section. Now using the RPC, the center
of each voxel is back projected to original images to compute the
pixel coordinates for each voxel. The original images are then in-
terpolated at these pixel coordinates, creating an image cube for
each original image. Hence for each voxel there is a correspond-
ing pixel for each image in the image cube. The census match-
ing cost can now be computed for each pixel by computing the
hamming distance of the binary strings encoding intensity pat-
tern around the corresponding points. In contrast to the work of
Bethmann and Luhmann (2014), it is observed that Census trans-
form works well for matching in object space as depicted by the
results. The voxel with the correct height value, ideally produces
the best match and thus the lowest cost between the pixels of the
two images.

The SGM energy function given in Eq. 6 is modified to compute
height at each grid element (Bethmann and Luhmann, 2015).

E(Z) =
∑
g

C(g, Z) +
∑
q∈Np

(P1T [|Zg − Zq| = 1])

+
∑
q∈Np

(P2T [|Zg − Zq| > 1]) (7)
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Similar, to the SGM computation performed earlier. Cost from 8
paths is aggregated at each grid point and the minimum of the
aggregated cost gives the height value of the grid point. The
thresholds P1 and P2 penalizes height differences of one voxel
and more respectively.

Figure 1: Voxel space to 3D image arrays of stereo pair

Similar, to the previous section, the sub voxel height can be com-
puted by fitting a quadratic curve around the neighbours of the
minimum cost voxel at each grid point. Here, the penalty P2 is
kept constant as it the matching is now done in object space. Fur-
thermore, the left right consistency check to find occlusions is
not applicable here as there is only one cost array computed in
OSGM.

One of the main benefits of the OSGM is that multi-image match-
ing can be performed efficiently, directly in the voxel grid. One
can even define the pixel wise cost like Census for multiple im-
ages i.e. computing the hamming distance of binary strings from
multiple images. Hirschmüller (2005) has also suggested that one
can compute pixel wise cost with multiple images. However, in
satellite imagery, only three images (tri-stereo) of one scene are
typically available at maximum. In the current work, pairwise
DSMs from tri-stereo images are computed and then median fil-
tered using the height values at each grid location.

4. DATASET

The first dataset used for evaluation is the Worldview-1 stereo
imagery from Terrasa, Spain, which is available through the IS-
PRS Commission I stereo matching benchmark (d’Angelo and
Reinartz, 2011). The Nadir image has a mean GSD of 0.50 m
and it was acquired in August, 2008 (see Figure 2 ). The Li-
DAR data of the same area was acquired in 2007, with a point
density of 0.3 points/m2. The RPC provided with the stereo
images have already been block adjusted using the GCPs de-
rived from the available orthophotos and LiDAR data. There-
fore, the georeferencing information of stereo images is well in
accordance with the LiDAR data and no further transformation
is required for the registration of DSM from stereo and LiDAR
data. More details on the benchmark can be found in d’Angelo
and Reinartz (2011) and Kuschk et al. (2014). The second dataset
is the Worldview-3 stereo images of Muscat, Oman with a resolu-
tion of 0.4m. The third dataset is the Pleiades tri-stereo imagery
of Melbourne, Australia, with 0.7m resolution. The relative RPC
error in the Worldview-3 and Pleiades data is removed by esti-
mating a 2D translational component.

5. RESULTS AND DISCUSSION

The results of the DSM computed form SGM and OSGM are
shown in Figures 3 and 4. The DSM from LiDAR is shown for

Figure 2: Left: Nadir Image of the AOI Right: LiDAR DSM

SGM∗ OSGM∗ (Kuschk et al., 2014)
(m) (m) (m)

Mean Abs. Error 1.08 1.28 1.11
Median Abs. Error 0.49 0.62

Table 1: Error values from DSM differences. (* The error values
have been computed only for AOI)

Figure 3: Left: DSM from Laser scanning Middle: DSM com-
puted from SGM Right: Difference between the two DSM

Figure 4: Left: DSM from Laser scanning Middle: DSM com-
puted from object space SGM Right: Difference between the two
DSM

comparison. Table 1 shows the error values (mean absolute error)
derived from the difference of the LiDAR and stereo DSM. The
results show that similar OSGM can achieve similar accuracies as
the the SGM. The Census transform with 9×9 window was used
for computing the data term. The SGM algorithm is insensitive to
changes in the parameters and the results don’t alter significantly
by changing the penalty thresholds P1 and P2.

Here, it is important to mention that height of the trees are de-
rived very well in LiDAR data, while the robust derivation of tree
heights from satellite stereo still remains a challenge. A smaller
baseline satellite stereo configurations would probably be more
suitable for dense matching over forested area. It is suggested that
there should be a mask for vegetated areas in the ISPRS stereo
benchmark so that these areas can be filtered out when required.

The OSGM algorithm is further tested on stereo data from Worldview-
3 and tri-stereo data from Pleiades. The Figure 5 shows the DSM
generated from 40 cm Worldview-3 stereo images. As no ground
truth data is available for this scene, only qualitative analysis can
be performed. It can be seen that good quality DSM can be gen-
erated from satellite stereo images using OSGM. The Figure 6,
shows the DSM generated from tri-stereo images. From three
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Figure 5: Left: Worldview-3 Image (Muscat, Oman) Right: DSM
generated from OSGM

images three DSMs were computed using different pair combi-
nations. The fused DSM is generated by taking the median of
the three DSMs. Consequently, the reliability of the DSM is in-
creased by fusing these individual DSMs. Furthermore, pixel-
wise matching using all three Pleiades images at once was in-
vestigated, i.e. computing the hamming distance of three binary
strings, however, the current results don’t show significant im-
provement in the resulting DSM.

In OSGM, the accuracy of the matching is strongly dependent
on the relative RPC error of the two images in the same way as
the accuracy of the dense matching depends on the remaining
y-parallax of the rectified images. In (De Franchis et al., 2014)
it is shown that the epipolar error of less than 0.1 pixels can be
achieved. Therefore, it is essential that the relative RPC error
should be removed to achieve good accuracy. The RMS RPC
error in the Worldview-3 and Pleiades data after RPC correction
was less than 0.5 pixels, which resulted in a good overall quality
of the results.

One of the disadvantage of the current implementation of OSGM
is that it lacks a robustness measure similar to the left-right con-
sistency check used in dense stereo matching algorithms. Conse-
quently, the DSM generated from OSGM has more gross errors.
Another disadvantage of OSGM is that the penalty term P2 is
kept constant, while in SGM the penalty term P2 is varied with
respect to the brightness gradient to allow discontinuity in the
disparity across edges in the image. To overcome these limita-
tions, ideas like explicit occlusion detection, edge contour match-
ing and height discontinuity estimation used in volumetric multi
view approaches should be incorporated in the OSGM methodol-
ogy. Therefore, the future work is directed towards incorporating
these techniques. In a recent work (Drory et al., 2014), the re-
lation between SGM and belief propagation is derived and it is
shown that SGM is closely related to the min-sum belief prop-
agation over a union jack shaped graph. Furthermore, a novel
uncertainty measure for SGM have been proposed in (Drory et
al., 2014) and it is envisaged that future progress in SGM would
come through these insights.
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