
 

 

HOPC: A NOVEL SIMILARITY METRIC BASED ON GEOMETRIC STRUCTURAL 

PROPERTIES FOR MULTI-MODAL REMOTE SENSING IMAGE MATCHING 
 

 

Yuanxin YE a,b, *,  Li SHEN a,b 

 
a State-province Joint Engineering Laboratory of Spatial Information Technology for High-speed Railway Safety,  

Southwest Jiaotong University, 611756, China - (yeyuanxin, lishen)@home.swjtu.edu.cn 
b Collaborative innovation center for rail transport safety, Ministry of Education, Southwest Jiaotong University,  

611756, China - (yeyuanxin, lishen)@home.swjtu.edu.cn 

 

Commission I, WG I/2 

 

 

KEY WORDS:  Multi-modal Remote Sensing Image, Image Matching, Phase Congruency,  Similarity metric, HOPC,  

 

 

ABSTRACT: 

 

Automatic matching of multi-modal remote sensing images (e.g., optical, LiDAR, SAR and maps) remains a challenging task in 

remote sensing image analysis due to significant non-linear radiometric differences between these images. This paper addresses this 

problem and proposes a novel similarity metric for multi-modal matching using geometric structural properties of images. We first 

extend the phase congruency model with illumination and contrast invariance, and then use the extended model to build a dense 

descriptor called the Histogram of Orientated Phase Congruency (HOPC) that captures geometric structure or shape features  of 

images. Finally, HOPC is integrated as the similarity metric to detect tie-points between images by designing a fast template 

matching scheme. This novel metric aims to represent geometric structural similarities between multi-modal remote sensing datasets 

and is robust against significant non-linear radiometric changes. HOPC has been evaluated with a variety of multi-modal images 

including optical, LiDAR, SAR and map data. Experimental results show its superiority to the recent state-of-the-art similarity 

metrics (e.g., NCC, MI, etc.), and demonstrate its improved matching performance. 
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1.  INTRODUCTION 

Image matching is a prerequisite step for a variety of remote 

sensing applications including image fusion, change detection 

and image mosaic. The accuracy of image matching has a 

significant impact on these applications. Although there has 

been rapid development of automatic image matching 

techniques in the last decade, in practice these techniques often 

require the manual selection of tie-points(or correspondences) 

for multi-modal remote sensing images, especially for the 

optical-to-Synthetic Aperture Radar (SAR) or optical-to-Light 

Detection and Ranging equipment (LiDAR) images. This is 

because there can be significant geometric distortions and 

radiometric (intensity) differences between these images. 

     
                             (a)                                  (b) 

Figure 1. (a) optical image. (b) SAR image 

Current technologies enable remote sensing images to be 

directly georeferenced by applying the physical model of 

sensors and the navigation instrument's onboard satellites, 

which results in the images only having the position offsets of 

several or a couple of dozen pixels relative to any other 

precisely georeferenced imagery (Goncalves et al. 2012). This 

allows global geometric distortions such as obvious translation, 

rotation and scale differences between images to be removed by 

the direct georeferencing techniques. In view of this, the main 

difficulties remaining for multi-modal remote sensing image 

matching are non-linear radiometric differences. Figure 1 shows 

a pair of optical and SAR images. The two images have quite 

different intensity and texture patterns despite capturing the 

same scene, making tie-point detection much more difficult than 

previously. Therefore, the goal of this paper is to find a robust 

matching method that is resistant to non-linear radiometric 

differences between multi-modal remote sensing images. 

 

In general, image matching methods can be classified as feature-

based and area-based methods (Zitova and Flusser 2003). 

Feature-based methods first extract the features from images 

and then use the similarities between these features to detect tie-

points between images. Common feature-based methods include 

point-based methods (Han et al. 2014), line or edge-based 

methods (Sun et al. 2015), region-based methods (Gonçalves et 

al. 2011), and local invariant features-based methods(Sedaghat 

and Ebadi 2015). However, when these types of methods are 

applied to process multi-modal images, significant non-linear 

radiometric differences between images make it difficult to 

detect highly-repeatable shared features, degrading the 

matching performance (Suri and Reinartz 2010). 

 

Area-based methods are another type of processing method, 

which use similarity metrics to detect tie-points between images 

using a template matching scheme. Compared with feature-

based methods, area-based methods have the following 

advantages: (1) area-based methods avoid the requirement for 

the shared feature detection that usually has a low-repeatability 

between multi-modal images; (2) area-based methods can detect 
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tie-points within a small search region because most remote 

sensing images can be directly georeferenced so that there are 

only a few pixels differences between such images. Additionally, 

some current commercial software packages for remote sensing 

image processing such as ERDAS and ENVI, use area-based 

methods for their automatic image matching functional modules. 

This indicates that area-based methods may be somewhat more 

suitable for practical applications.  

Similarity metrics play a decisive role in area-based methods. 

The common similarity metrics are normalized cross correlation 

(NCC), mutual information (MI) (Cole-Rhodes et al. 2003), and 

Matching by Tone Mapping (MTM) (Hel-Or et al. 2014). 

However, these similarity metrics cannot effectively handle 

non-linear radiometric differences between images because the 

intensity information is directly used to detect tie-points. In 

contrast, geometric structural properties of images are more 

resistant to non-linear radiometric differences. Figure 1 shows 

that contour shapes and geometric structures are quite similar 

between the optical and SAR images, despite their very 

different intensity and texture characteristics. This observations 

motivate us to develop a novel similarity metric using geometric 

structural features of images to address the problem of non-

linear radiometric differences between multi-modal images in 

the framework of area-based methods.  

     

Figure 2. Comparison of phase congruency with gradient 

It should be noted that geometric structural features can be 

usually represented by gradient information, but it is sensitive to 

radiometric changes between images. In comparison, the phase 

congruency feature has been demonstrated to be more resistant 

to illumination and contrast variation (Kovesi 1999), as shown 

in Figure 2. This characteristic makes it insensitive to 

radiometric changes. However, the conventional phase 

congruency model can only obtain its magnitude that is 

insufficient for geometric structural feature description. 

Therefore, we expand the phase congruency model to build its 

orientation information. and use the magnitude and orientation 

of this model to construct a novel descriptor that captures 

geometric structure features, which is referred to as the 

Histogram of Orientated Phase Congruency (HOPC). The NCC 

between HOPC descriptors is used as the similarity metric (also 

named HOPC), and a fast template matching scheme is 

designed to achieve tie-points between images. 

The main contributions of this paper are the follows: (1) extend 

the phase congruency model to build the orientation 

representation of this model; (2) develop a novel similarity 

metric based on geometric structure properties for multi-modal 

remote sensing image matching using the magnitude and 

orientation of phase congruency, and design a fast template 

matching scheme for HOPC. The code and supplementary 

materials can be downloaded from this website1 

 

2. METHODOLOGY 

Given a reference image and a sensed image, the aim of image 

matching is to identify the tie points between the two images. In 

this section, we will present a geometric structure feature 

descriptor named HOPC and its use to define the similarity 

between two images based on the NCC of the descriptors. Our 

approach is based on the assumption that multi-modal images 

share similar geometric structural properties despite having very 

different intensities and textures. In this section, the phase 

congruency model is first extended to construct its orientation 

representation, and then a novel similarity metric based on 

geometric structural properties is developed using the extended 

phase congruency model. 

  

2.1 Extended Phase Congruency 

Many current feature detectors and descriptors are based on 

gradient information, including Sobel, Canny, SIFT, etc. These 

operators are usually sensitive to image illumination and 

contrast changes. By comparison, phase information is more 

robust to these changes. Oppenheim et al. analyzed the function 

of phase information for image processing, and found that phase 

information is even more important than amplitude information 

(Oppenheim and Lim 1981). This conclusion is clearly 

illustrated in Figure 3. We take the Fourier transforms of image 

aI  and bI , and use the phase information of aI and the 

magnitude information of bI to construct a new, synthetic 

Fourier transform which is then back-transformed to produce a 

new image cI . It can be observed that cI  mainly reflects the 

contour information of aI , which shows that the contour and 

structural features of images are mainly provided by phase 

information.  

       
                 (a)                             (b)                           (c) 

Figure 3. The importance of phase information of images. (a) 

the image aI . (b) the image bI . (c) the synthetic image 

constructed using the phase information of aI  and the 

magnitude information of bI . 

Since phase information was demonstrated to be so important 

for image perception, it is natural to use phase information for 

feature detection. Phase congruency is a feature detector based 

on the local phase information of images, which postulates that 

the features such as corners and edges are presented where the 

Fourier components are maximally in phase. Phase congruency 

can be calculated using log Gabor wavelets over multiple scales 

and orientations by following formula  
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where ( , )PC x y  is the magnitude of the phase 

congruency; ( , )x y  indicates the coordinates of the point in an 

image; ( , )oW x y  is  the weight factor for a frequency 

spread; ( , )noA x y  is the amplitude at ( , )x y at wavelet scale n  

and orientation o ; ( , )no x y  is a more sensitive phase 

deviation; T  is a noise threshold, and   is a small constant to 

avoid division by zero.  denotes that the enclosed quantity 

is equal to itself when its value is positive, and zero otherwise. 

 

       -20 -10 0 10 20  
                        (a)                                             (b) 

Figure 4. The log Gabor odd-symmetric wavelet. (a) the 3-D 

shape of this wavelet. (b) the 2-D shape of this wavelet.  

 

2.1.1 Orientation of Phase Congruency: The above 

mentioned phase congruency model is insufficient to describe 

image features such as geometric structural information because 

only magnitude information can be acquired from this model. 

Therefore, we extend the phase congruency model to achieve its 

orientation information using log Gabor odd-symmetric 

wavelets. The orientation of phase congruency, similar to 

gradient orientation, represents the most rapid direction of 

feature variation, which is crucial for feature description.  

 

   
                                (a)                                (b) 

Figure 5. The orientation of phase congruency. (a) the image. (b) 

its orientation of phase congruency. 

Figure 4 shows the log Gabor odd-symmetric wavelet. This 

wavelet is a smooth derivative filter that can compute the image 

derivative in a single direction (Moreno et al. 2009). Since log 

Gabor odd-symmetric wavelets with multiple orientations are 

used in the computation of phase congruency, we project the 

convolution results of the wavelets in the horizontal and vertical 

direction to obtain the horizontal derivative a  and the vertical 

derivative b  respectively. The orientation of phase congruency 

is defined by Eq. (2). Figure 5 illustrates the orientation of 

phase congruency, which has values ranging is from 0° to 

360°. 
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( ( )sin( ))

   arctan( , )
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                           (2) 

where   is the orientation of phase congruency and ( )noo 
 

denotes the convolution results of  odd-symmetric wavelet. 

 

2.2 Geometric structure similarity metric  

In this subsection, we will develop a feature descriptor named 

HOPC, which captures geometric structural properties by the 

magnitude and orientation of phase congruency, and we also 

build a geometric structural similarity metric on the basis of this 

descriptor. HOPC is inspired from Histograms of Oriented 

Gradient (HOG) (Dalal and Triggs 2005) that can effectively 

describe local object appearance and shape through the 

distribution of local gradient magnitudes and orientations. Our 

descriptor is based on evaluating a dense grid of well-

normalized local histograms of phase congruency orientations 

over a template window selected in an image. Figure 6 presents 

the main processing chain of the descriptor. The steps of this 

process is as follows. 

(1) The first step is to select a template window with a certain 

size in an image, and then compute the phase congruency 

magnitude and orientation for each pixel in this template 

window, in order to provide the feature information for 

HOPC.  

(2) The second step is to divide the template window into 

some overlapping blocks, where each block consists of 

m×m some small spatial regions, called "cells" containing 

n×n pixels. This process forms the fundamental 

framework of HOPC. 

(3) The third step is to accumulate a local histogram of phase 

congruency orientations over all the pixels within cells of 

each block. Each cell is first divided into a number of 

orientation bins which are used to form the orientation 

histograms, and then the histograms are weighted by 

phase congruency magnitudes using a trilinear 

interpolation method. The histograms for the cells in each 

block are normalized by the L2 norm to achieve a better 

invariance to illumination and shadowing. This process 

produces the HOPC descriptor for each block. It should 

be noted that phase congruency orientations need to be 

limited to a range between 0 and 180 ° to construct  

orientation histograms of blocks, in order to handle the 

intensity inversion between multi-modal images. 

(4) Finally, we collect the HOPC descriptors from all blocks 

within a dense overlapping grid covering the template 

window into a combined feature vector which can be used 

for the template matching. 

 

 

Feature vectors 
v={x1,…….xn}

Template window

Phase congruency 

magnitude and 

oriention

Divide the window 

into  blocks consist 

of some cells

Accumulate orientation 

histograms for cells 

and blocks

Collect HOPCs for all 

blocks over template 

window

cell

block

 

Figure 6. The main processing chain of the HOPC descriptor 

overlap 

of block 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-1-9-2016

 
11



 

 

As mentioned above, HOPC is a feature descriptor that captures 

the internal geometric layouts of images. As such, this 

descriptor can be used to match two images with different 

intensity patterns as long as they both have similar layouts or 

shapes. Figure 7 shows the HOPC descriptors computed from 

the corner and edge regions of the visible and infrared images of 

the same scene. The HOPC descriptors are quite similar despite 

the large radiometric differences between the two images. 

 

Figure 7. HOPC descriptors of the visible and infrared images 

in the corner and edge regions 

Considering the similarity of geometric structural features 

between multi-modal images, the NCC between the HOPC 

descriptors is regarded as the similarity metric (also named 

HOPC) for image matching. 

 

To illustrate HOPC's advantage in matching multi-modal 

images, it is compared to NCC, MTM and MI by the similarity 

curve. A pair of images (visible and SAR) with a high 

resolution is used in the test. There are very obviously 

significant non-linear radiometric differences between these 

images. A template window (68×68 pixels) is first selected 

from the visible image. Then, NCC, MTM, MI and HOPC are 

each calculated for x-direction translations (-10 to 10 pixels) 

within a search window of the SAR image.  

 

Figure 8 Similarity curves of NCC, MTM, MI and HOPC. 

Figure 8 shows the similarity curves of NCC, MTM, MI and 

HOPC. NCC is expected to fail to detect the tie-point, and 

MTM and MI also have some location errors caused by the 

significant radiometric differences. In contrast, HOPC not only 

correctly detects the tie-point, but also has the more 

distinguishable curve peak. This example is a preliminary 

indication that HOPC is more robust than the other similarity 

metrics to non-linear radiometric differences. More analysis on 

the performance of HOPC will be given in Section 3  

 

2.3 Fast calculation scheme for HOPC 

During the template matching process, a template window 

moves pixel by pixel within a search region or an image. For 

each template window to be matched, it is obvious that the 

HOPC descriptor needs to be calculated. Since most of the 

pixels overlap between adjacent template windows, This 

requires a lot of extra computation. To address this issue, a fast 

matching scheme is designed for the HOPC descriptor. 

 

To extract the HOPC descriptor, the template window is divided 

into overlapping block regions, and the descriptors of all the 

blocks are collected to form a final dense descriptor. Therefore, 

a block can be regarded as the fundamental element for the 

HOPC descriptor. In order to reduce the computation required 

for template matching, we define a block region as being 

centered by each pixel in a search region or an image, and 

extract the HOPC descriptor of each block (hereafter referred to 

as a block-HOPC descriptor). Each pixel will then have multi-

dimensional vectors to form the 3D descriptors for the whole 

image, which is called the block-HOPC image. The block-

HOPC descriptor is then collected at intervals of several pixels 

(such as a half block width) to generate the HOPC descriptor 

for the template window. The fast computing scheme is shown 

in Figure 9. 

Figure 9. The fast computing scheme for the HOPC descriptor. 

(a) the image. (b) the block-HOPC image. (c) the block-HOPC 

descriptors at a certain interval. (d) the final HOPC descriptor. 

This scheme can eliminate much of repetitive computation for 

adjacent template windows. For example, assume that it spends 

T  time extracting the HOPC descriptor for a template window 

with a size of n n  pixels, where each block contains m m  

pixels and the overlap between adjacent blocks is a half block 

width. If the template window slides pixel by pixel across a 

search region with a size of M M  pixels, it will spends 2M T  

time extracting the HOPC descriptors for all the template 

windows that are used for matching. In contrast, the 

computational expense of our scheme arises mainly from two 

tasks: (1)extraction of the block-HOPC descriptors for all pixels 

in the search region; (2) collection of the block-HOPC 

descriptor at intervals of a half block width for all the template 

windows that are used for matching. The computational expense 

of the latter task can almost be ignored compared to that of the 

former task because it simply assembles the block-HOPC 

descriptors at a certain sampling interval. The former task will 

spends / 2Tm n  time extracting the block-HOPC descriptor for 

a pixel because a template window contains 2 /n m  blocks. In 

total, it spends 2 / 2M Tm n  time for all the pixels in the search 

region, where the block with m  is a constant that is usually 3 

or 4 pixels. Compared with the traditional scheme which takes 

(a) (b) (c) 
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2M T  time, our scheme has a significant time advantage 

especially in a large template size. Figure 10 shows the run 

times of the two schemes with regard to increased template sizes, 

where 200 interest points are matched, the search region is 20×
20 pixels. It can be clearly observed that our scheme require 

less time than the traditional scheme, and this advantage 

becames more and more obvious when the template size 

increases. 

 

Figure 10. The run time of the traditional match scheme and our 

scheme using HOPC with increased template sizes. 

 

3. EXPERIMENT 

In this section, the matching performance of HOPC is evaluated 

with different types of multi-modal remote sensing images, and  

HOPC is compared with the three state-of-the-art similarity 

metrics—NCC, MTM and MI. 

 

3.1 Data sets 

To evaluate the effectiveness of the proposed algorithm, we 

select ten sets of multi-modal image pairs, which are divided 

into four categories: Visible-to-Infrared (Vis-to-Inf), LiDAR-to-

Visible (Lid-to-Vis), Visible-to-SAR (Vis-to-SAR), and Image-

to-Map (Img-to-Map). The test image pairs have a variety of 

low-, medium-, and high-resolution images with resolutions 

from 0.5 to 30m, and cover different terrains including urban 

and suburban areas. All of these image pairs have been 

systematically corrected by their physical models, and also re-

sampled in the same ground sample distance (GSD). Thus there 

are almost no obvious translation, rotation and scale differences 

between the reference and sensed images. However, significant 

radiometric differences are common between these images 

because they are acquired by different imaging modalities and 

from various spectra. The descriptions of the test data are listed 

in Table 1, and the characteristics of each set are described 

below. 

 

Visible-to-Infrared: Test 1 and test 2 are the visible and infrared 

images, which are a pair of high resolution images and a pair of 

medium resolution images respectively. The high resolution 

image is located in the urban area, and have rich geometric 

structural features. In contrast, the medium resolution image 

covers suburban area with relatively poor geometric structural 

features. 

 

LiDAR-to-Visible: Three pairs of LiDAR and visible data are 

selected for the experiments. Test 3 and test 4 are two pairs of 

LiDAR intensity and visible images covering the urban area 

with high buildings, and have obvious local geometric 

distortions caused by the relief displacement of the building. 

Moreover, the LiDAR intensity images have significant noise 

which increases the difficulty of matching. Test 5 includes a 

pair of LiDAR depth and visible images, and vastly differences 

can be observed from the intensity characteristics of the two 

images, which make matching the two images  quite challenging.  

 

Visible-to-SAR: Test 6 to test 8 are composed of the visible and 

SAR images. Test 6 is a pair of images located in a suburban 

area with a medium resolution, and has rich geometrical 

structural features. Test 7 and test 8 are high resolution images 

covering an urban area with high buildings, resulting in obvious 

local distortions. Additionally, there is a temporal difference of 

fourteen months between the images of test 8, so some ground 

objects have changed during this period. These differences in 

this test make it very difficult to match the two images. 

 

Image-to-Map: Test 9 and test 10 are two pairs of visible and 

map data, which has been downloaded from Google Maps. As 

both pairs of data are located in an urban area with high 

buildings, local distortions can be observed between the two 

data of each pair. Moreover, the intensity details between 

visible and map data look almost completely different. As 

shown in Figure 12, the textural information of the maps is 

much poorer than the images, and There is also some labelled 

text in the map. Therefore, it is very challenging to detect tie-

points between the two data.  

 
Category Image pair Size and GSD Data 

V
is

-t
o
-

In
f 

Test 1 
Daedalus visible 

Daedalus infrared 

512×512, 0.5m 

512×512, 0.5m 

2000/4 

2000/4 

Test 2 
TM band1(visible) 

TM band4(NIR) 

800×800, 30m 

800×800, 30m 

2005/10 

2005/10 

L
id

-V
is

 

Test 3 
LiDAR intensity 

WorldView2 visible 

600×600, 2m 

600×600, 2m 

2010/10 

2011/10 

Test 4 
LiDAR intensity 

WorldView2 visible 

621×617, 2m 

621×621, 2m 

2010/10 

2011/10 

Test 5 
LiDAR depth 

Airborne visible 

524×524, 2.5m 

524×524, 2.5m 

2012/6 

2012/6 

V
is

-t
o
-S

A
R

 Test 6 
TM band3 

TerraSAR-X 

600×600, 30m 

600×600, 30m 

2007/5 

2008/3 

Test 7 
Google Earth 

TerraSAR-X 

528×524, 3m 

534×524, 3m 

2007/11 

2007/12 

Test 8 
Google Earth 

TerraSAR-X 

628×618, 3m 

628×618, 3m 

2009/3 

2008/1 

Im
g
-t

o
-

M
ap

 Test 9 
Google Maps 

Google Maps 

700×700, 0.5m 

700×700, 0.5m 
unknown 

Test 10 
Google Maps 

Google Maps 

621×614, 1.5m 

621×614, 1.5m 
unknown 

Table 1 Descriptions of the test data 

 

3.2 Implementation details and evaluation criterion 

The block-based Harris operator (Ye and Shan 2014) is first 

used to detect the 200 evenly-distributed interest points in the 

reference image. Then NCC, MTM, MI and HOPC are applied 

to detect tie-points within the search region with a fixed size (-

10 to 10 pixels) of the sensed image using a template matching 

strategy, followed by fitting the similarity curves with quadratic 

polynomial to determine the subpixel position (Ma et al. 2010). 

The parameters of HOPC are set to 8 orientation bins, 3×3 cell 

blocks of 4×4 pixel cells and a half block width overlap 

 

The correct match rate (CMR) is chosen as the evaluation 

criterion. Where /CMR CM C , the correct match (CM) is the 

number of correctly matched point pairs in the matching results, 

and the correspondence (C) is the total number of match point 

pairs. The CM number is determined by the following strategy. 

For each image pair, 40-60 evenly distributed points were 

selected as the check points. A transformation model T  is then 

computed using the check points. The T  used for test 2 and test 

6 is the projective transform since these images are medium 

resolution images covering suburban areas. For the other test 
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image pairs covering urban areas, the cubic polynomial is 

employed because it is usually more suitable than other global 

transformation models such as projective and second-order 

polynomial models for pre-fitting non-rigid deformations 

between images (Ye and Shan 2014). The point pair with 

localization error less than Thre  is regarded as the correct 

match. The value of Thre  is set to 1.0 pixel for the medium 

resolution images that have few local distortions (test 2 and test 

6). For the high resolution images, the value of Thre is set to 

1.5 pixels for more flexibility since their rigorous geometric 

transformation relationships are usually unknown and cubic 

polynomial models can only pre-fit the geometric distortions. 

 

3.3 Matching performance 

The matching performance of HOPC is evaluated by 

comparison with NCC, MTM and MI in terms of two aspects: 

the CMR value and the computational efficiency. In the 

matching process, template windows of different sizes (from 

20×20 to 124×124 pixels) are used to detect tie-points to 

analyze the sensitivities of these similarity metrics with respect 

to changes in the template size.  

 

3.3.1 Correct Match Ratio: Figure 11(a)-(b) show the 

CMRs between the visible and infrared images (test 1 and test 

2). It can be seen that HOPC performs the best, followed by MI 

and MTM, while NCC achieves the lowest CMRs. This is 

because NCC is only invariant to linear radiometric differences 

and cannot handle complex radiometric changes between 

images. Additionally, the CMRs of HOPC are less affected by 

template sizes compared with MI, which is very sensitive to 

template size changes. The reason for this is that MI is required 

to compute the joint entropy between images, which is quite 

sensitive to the sample sizes (namely the template sizes)(Hel-Or 

et al, 2014). In addition, the HOPC's CMRs of test 2 decline 

slightly compared with test 1 in the same template sizes[Figure 

11(b)]. This is because the images of this test contain relatively 

poor geometric structural information, resulting in that HOPC 

hardly extracts the distinguished structural features from a small 

template size. However, HOPC achieves the high CMRs in the 

larger template windows (more than 52×52 pixels).  

Figure 11(c)-(e) show the CMRs between the LiDAR data and 

visible images (test 3-test 5). For test 3 and test 4, HOPC 

achieves relatively higher CMRs than the other similarity 

metrics despite significant radiometric differences and noise 

existing between the images. For test 5 where the LiDAR depth 

and visible images present very different intensity patterns, 

HOPC performs much better than the other similarity metrics 

such as MI and MTM. As shown in Figure 11(e), the CMR of 

HOPC can reach almost 100%, while that of MTM and MI only 

achieve CMR of 50% in the large template sizes. This is largely 

attributed to the fact that the geometric structural characteristics 

are very similar (Figure 12(e)) despite the large radiometric 

differences between the images. Thus HOPC, representing the 

geometric structural similarity, has an obvious advantage over 

MTM and MI.  

The CMRs between the visible and SAR images (test 6-test 8) 

are illustrated in Figure 11(f)-(h). HOPC achieves higher CMRs 

for al three tests. In addition, HOPC performs much better than 

the other similarity metrics such as MTM and MI, especially for 

test 7 and test 8 which consist of two pairs of high resolution 

images within urban areas. Figure 11(g)-(h) show that HOPC 

can respectively achieve the CMRs of 99% and 91% for test 8 

and test 9 in the large template size. In contrast, the CMRs of 

MI are only 64% and 66%, and those of MTM are 61% and 

42% in the same template sizes for the two tests, respectively. 

The reason for this is that the images of the two tests contain 

rich geometric structures and contour information such as 

buildings and roads. This demonstrates that HOPC clearly 

outperforms the other similarity metrics for multi-modal images 

that include abundant structural features.  

Test 9 and test 10 are two pairs of the visible images and the 

map data, where the map data have been rasterized. This is a 

challenging test because the two data hardly have any 

significant shared features apart from some similar boundaries 

of buildings and streets. Figure 12(i-j) shows the CMRs for the 

four similarity metrics. Similar to the previous tests, HOPC 

performs better than NCC, MTM and MI. The CMR of HOPC 

rises as the template size increases, and can respectively achieve 

the CMRs of 78% and 75% in the large template size such as 

124×124 pixels, which is an acceptable CMR for multi-modal 

image matching. 

 

Figure 12 shows the tie-points detected using HOPC with a 

template size of 100×100 pixels between the multi-modal 

images. In the enlarged subimages, it can be clearly observed  

that these tie-points are located in the correct positions precisely. 

 

It can be observed from the above experiments that HOPC 

outperforms almost all of the other similarity metrics in any 

template size for all the tests. MI achieves the second highest 

CMRs in most cases. Although the performance of MI is very 

sensitive to template sizes. In comparison, HOPC is more stable 

to changes in template sizes, can achieve a relatively 

considerable CMR even in a small template size.   
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Figure 11. The CMRs of NCC, MTM, MI and HOPC. (a) test 1. (b) test 2. (c) test 3. (d) test 4. (e) test 5. (f) test 6. (g) test 7. (h) test 

8. (i) test 9. (j) test 10.  
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Figure 12. The correct matching points of all the tests by HOPC in the template sizes of 100×100 pixels. (a) test 1. (b) test 2. (c) test 

3. (d) test 4. (e) test 5. (f) test 6. (g) test 7. (h) test 8. (i) test 9. (j) test 10. 

 

3.3.2 Computational Efficiency: As well as the CMR, the 

computational efficiency is another important indicator for 

evaluating the matching performance of similarity metrics. The 

experimental platform used is Inter Core i7-4710MQ 2.50GHz 

PC. 

 

Figure 13 shows the run times of NCC, MTM, NCC and HOPC 

with increased template sizes. It can been seen that MTM 

spends the least time among these similarity metrics. This is 

because MTM is quickly calculated over the whole search 

region, avoiding to search correspondences pixel by pixel (Hel-

Or et al. 2014). In contrast, MI is the most time-consuming 

because it needs to compute a joint histogram for every matched 

template window pair, which requires a certain amount of 

computation (Hel-Or et al. 2014). In addition, since HOPC 

needs to extract the HOPC descriptors and calculate the NCC 

between such descriptors, it takes more run time  compared with 

MTM and NCC. However, the computational efficiency of 

HOPC is still better than that of MI within the range of template 

sizes (less than 124×124 pixels) used in our experiment. This 

is beneficial for practical application because the large template 

size increases the computation of image matching, and the 

CMRs of HOPC and MI do not usually increase substantially 

when the template size is more than a certain range such as 100

×100 pixels (Figure 12). In short, MI is most time-consuming, 

followed by HOPC, NCC and MTM  

 

Figure 13. Run times of NCC, MTM, NCC and HOPC with 

increased template sizes 

Based on the above experiments, it can be concluded that 

HOPC achieves the higher CMRs than the other similarity 

metrics, followed by MI, and is also less time-consuming than 

MI within a limited range of template sizes. Although HOPC 

requires more time than NCC and MTM, its CMR is much 

(b) (a) 
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(j) 
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higher than these two similarity metrics that are both relatively 

vulnerable to non-linear radiometric differences. Therefore, 

taking the CMR and computational efficiency into 

consideration, HOPC is a more distinguished similarity metric 

for multi-modal image matching. 

 

4. CONCLUSION 

In this paper, a novel similarity metric (named HOPC) for 

multi-modal remote sensing image matching is proposed to 

address the issue of significant non-linear radiometric 

differences. First, the phase congruency model is extended to 

build its orientation representation. Then, the magnitude and 

orientation of phase congruency are used to construct HOPC, 

followed by a fast template matching scheme designed for this 

metric. HOPC aims to capture the geometric structural 

similarity between images, which can effectively handle 

complex radiometric variation. Thus this metric can robustly 

find tie-points in different modalities. HOPC has been evaluated 

against ten pairs of multi-modal images, and  compared to the 

state-of-the-art similarity metrics such as NCC, MTM, and MI. 

The experimental results demonstrate that HOPC outperforms 

the other similarity metrics, especially for the image pairs 

containing rich geometric structure features. Moreover by 

designing a fast matching scheme, HOPC have a lower run time 

than MI that achieves the second highest correct match rate in 

most experiments. However, HOPC is still more time-

consuming compared with NCC and MTM. The main reason is 

that HOPC requires a high-dimensional geometric structural 

feature descriptor to be calculated. In subsequent works, this 

issue will be resolved by reducing the dimensions of the 

descriptor using a dimension-reduction technique such as PCA. 

In addition, it is worth noting that the performance of HOPC 

may decline if the images include few structure or shape 

information because HOPC depends on geometric structural 

properties, In this case, an image enhancement approach can be 

applied to enhance shape or edge features, which may be 

helpful for image matching, A more thorough evaluation will be 

addressed in future using more multi-modal remote sensing 

images.  
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