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ABSTRACT: 
 
The complex process of fully automatically establishing seamlines for the fast production of high-quality mosaics with high-amount 
of high-resolution multi-spectral images is detailed and improved in this paper. The algorithm is analyzed and a quasi-linear runtime 
in the number of considered pixels is proven for all situations. For typical situations the storage is even essentially smaller from a 
complexity theoretical perspective. Improvements from algorithm practical perspective are specified, too. The influence of different 
methods for the determination of seamlines based on gradients is investigated in detail for three Sentinel-2 products. The studied 
techniques cover well-known ones normally based on a single band. But also more sophisticated techniques based on multiple bands 
or even taking additional external geo-information data are taken into account. Based on the results a larger area covered by 
Image2006 orthorectified products with data of the Resourcesat-1 mission is regarded. The feasibility of applying advanced 
subordinated methods for improving the mosaic such as radiometric harmonization is examined. This also illustrates the robustness 
of the improved seamline determination approaches. 
 
 

1. INTRODUCTION 

1.1 Mosaicking of High-Resolution Multi-Spectral Images 

For analysis of larger areas it is often necessary to synthetically 
combine multiple small area products to one single product 
covering a large spatial extent. This is necessary, e.g., because 
of a small swath or a high cloud coverage. The joining of data is 
relevant to optical and radar as well as to spaceborne and 
airborne acquisitions. Beside Earth observation the merging is 
also a relevant discipline, e.g., in planetary sciences. And 
mosaicking applies to data of all spectral and spatial 
resolutions. Even combining products from different missions 
and instruments is accounted for in remote sensing 
(Szeliski 2006). 
In this paper we focus on high-resolution multi-spectral Earth 
observation imagery that is orthorectified. And all considered 
products share similar characteristics, namely spatial resolutions 
in the order of 10 m and spectral divisions in the order of 10 
bands in the visible, near and short-wave infrared. Here, 
experiments were performed using data from Sentinel-2/MSI 
and Resourcesat-1/LISS III. 
A correction of the co-registration error between products is not 
considered, here. It is assumed that the co-registration error 
between the products is in the order of lower than one pixel. 
However, the combination of images still has to account for 
several challenges, e.g., inhomogeneous radiometry such as 
illumination conditions, different content such as changed 
agriculture or forestry, and undesired objects such as clouds in 
the images (Bignalet-Cazalet et al. 2012). 
Two major strategies for combining data are typically 
distinguished. Namely, each pixel of the mosaic represents the 
pixel value of either one of the overlapping input images – 
called best-pixel approach – or a combination of the pixels of 
the overlapping input images – called mixed-pixel approach. 
Many algorithms, e.g., for classification of land cover and land 
usage (Cihlar 2000), rely on the physical measurement of each 

pixel. And therefore, we focus on the best-pixel approach in the 
following. 
The selection of the unique pixel is either performed for each 
pixel independently or considering regions of connected pixels. 
Numerous algorithms consider neighboring pixels, where the 
same acquisition conditions are favorable. And therefore, we 
focus on considering regions of connected pixels. In this 
situation it is desirable to minimize the number of changes 
between regions of the different images involved. The lengths 
of the lines between regions are of minor importance. 
Hence, taking two or more overlapping images into account, the 
challenge is to determine a seamline or seamlines between these 
images (Yu et al. 2012). There exist several methods to 
determine seamlines. Due to the high number of products to be 
considered, especially for European or even global coverages, 
we focus on fully automatic algorithms. We even focus on 
algorithms with quasi-linear runtime complexity in the number 
of pixels that serve as input and output. Therefore, popular 
graph-based algorithms for seamline determination are not 
considered as they need at least cubic runtime complexity since 
they optimize a maximum flow (Fernandez et al. 1998). 
A popular quasi-linear (or also called log-linear) runtime 
algorithm realizing high-quality mosaics is the morphological 
image compositing/mosaicking by Soille (2006). It was 
established for similar types of products. We consider further 
improvements of the most critical step of the heuristic, namely 
the robust determination of seamlines. Such investigations are 
not in the focus of publications so far concerning morphological 
image compositing/mosaicking. This is also true for the in more 
detail considered runtime and storage complexity. 
 
1.2 Sentinel-2 and Image2006 Products 

We perform a small area detailed analysis covered by three 
Sentinel-2 Level 1C products (Baillarin et al. 2012) of the 
region of Madrid, Spain. A large area experimental 
investigation, covered by 109 orthorectified products of France 
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derived in Image2006 project based on data of the mission 
Resourcesat-1, is performed (Müller et al. 2012). Data of the 
missions SPOT-4/-5 are not taken into account. Table 1 gives 
on overview of the major characteristics of the orthorectified 
products. The Sentinel-2 data were acquired in 2015, whereas 
the Image2006 data were acquired in 2006 ± 1 year. 
 

Mission Sentinel-2 Image2006 
Provider ESA/EU ESA 
Satellite Sentinel-2A Resourcesat-1 
Orbit SSO, 10:30 SSO, 10:30 
Instrument MSI LISS III 
Spectral Resolutions 
and Ranges 

blue, green, red, 
near infrared; 
vegetation red 
edge (4 bands), 

shortwave 
infrared 

(2 bands); 
aerosol, water-
vapor, cirrus 

green, red, 
near infrared, 

shortwave 
infrared 

Spatial Resolutions 
and Swaths 

10 m; 20 m; 60 m 
at 290 km 

20 m (resampled 
from 23.5 m) 

at 141 km 
Geolocation 
Accuracies 

Abs.: 20 m (3σ), 
Rel.: 0.3 px (2σ) 

Abs.: 13 m (1σ), 
Rel.: 0.5 px (1σ) 

Table 1. Missions overview. 

 
It has to be remarked that the number of overlaps equals 1,232 
for the 109 considered products of Image2006. 
An overview of the considered Sentinel-2 products is given in 
Figure 1. Figure 2 illustrates the footprints of the considered 
Image2006 products. 
 

   
 

   
Figure 1. Chronologically sorted true color quicklooks of three 

Sentinel-2 products of Madrid, Spain, and their footprints. 

 
1.3 Structure of the Paper 

After this introduction in section 1, we illustrate the complete 
process of morphological image mosaicking considered in 
section 2 with an overview and details on the processing steps 

as well as their runtime and storage usages. The most critical 
step in the process is the generation of the gradient image for 
seamline determination which is analyzed in detail in section 3. 
This takes different approaches into account and illustrates their 
behaviors for a small area in detail. In section 4 a larger area is 
considered. This takes broader effects especially concerning the 
radiometric harmonization into account. We finish with a 
conclusion in section 5. 
 

Figure 2. Footprints with degree of overlap of 109 Image2006 
products (based on Resourcesat-1) of France. 

 
2. PROCESS OF MORPHOLOGICAL IMAGE 

MOSAICKING 

2.1 Overview 

For the considerations of runtime and storage complexities we 
state them with respect to the number of pixels and with respect 
to the input image and output mosaic – and considering 
additionally the number of images for investigations of storage. 
We refer to Wegener (2005) for definitions of notations and 
complexities. (Roughly speaking a = O(b) can be read as a is at 
most of the same order as b.) 
Let us assume that a mosaic of m pixels shall be generated 
based on k input images with the same map projection and 
spatial (and spectral) resolution of n pixels in total.  
Based on a marker mosaic the mosaic is produced by pixel-
based insertion of the pixel of the indexed input image to the 
mosaic. In the marker mosaic for each pixel of the mosaic the 
index of the contributing input image is contained (each index 
of 0,1,…,k is stored with O(log k) bits). Thus, the mosaic is 
produced in linear runtime O(m) and the marker mosaic needs 
storage O(m log k). The mosaic itself needs storage O(m). 
Therefore, we only investigate the generation of the marker 
mosaic in the following. 
In case that different spatial resolutions apply for different 
spectral bands of a product, the marker mosaic is established on 
the either  

• worst spatial resolution which guarantees that each 
spectral profile represents a physical measurement or 

• best spatial resolution, where the pixel for worse 
spatial resolution is chosen based on a majority vote 
of the underlying best spatial resolution pixels which 
guarantees that a high-quality seamline is determined 
for the best spatial resolution. 

The steps of the process of morphological image mosaicking 
are as follows, as illustrated in Figure 3, and as detailed in the 
next subsections and section [an overview of the steps is given 
in square brackets]. 
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Figure 3. Illustration of the process of morphological image 

mosaicking. 

 
1. Initializing. [Set up major data structures.] 
2. Identifying Overlaps. [Set feasible contributions of 

each input image to the marker mosaic. E.g., Figure 
4.a.] 

3. Determining Markers including Determination of 
Gradients for Seamlines. [Assume indices for all 
pixels in the marker mosaic with a lower degree of 
overlap than considered degree of overlap are already 
set fixed. Set indices for edge pixels in the marker 
mosaic with the considered degree of overlap to a 
lower degree of overlap. The indices are taken from 
the pixels of lower degree of overlap. E.g., Figure 4.b 
and 4.c.] 

4. Growing Markers including the Determination of 
Gradients for Seamlines. [Flood the indices of edge 
pixels in the marker mosaic to its neighbors of the 
same overlap with a marker-based watershed 
transformation based on a gradient image as elevation 
model. The indices are taken from the neighbor 
pixels. E.g., Figure 4.c and 4.d.] 

The resulting process of setting the markers is exemplarily 
illustrated in Figure 4 based on the three Sentinel-2 products of 
Madrid, Spain. 
We will observe, that the runtime to generate the marker mosaic 
is bounded by O(m log m + n). Assuming reasonably that m = 
O(n) the runtime is bounded by O(n log n), namely it is a quasi-
linear (or also called log-linear) runtime algorithm. The storage 
is bounded by O(m·(k + log m) + n). Or it is O(m·(k + log m)) 
by not taking the storage for input into account. And with the 
assumption k is small – e.g., k = O(log n) – the storage is 
bounded by O(m log n). 

  

 
Figure 4. Degree of overlap, where degree 0:white, 1:green, 
2:blue, and 3:orange in a. Illustrating the determination and 

growing markers with degree of overlap 1 in b., 2 in c., 3 in d. 

 
However, by using hash tables (Knuth (1998) and marked with 
[Hash Table] in the following subsections) the storage is 
potentially reduced. E.g., if the number of non-empty overlaps 
of input images is O(log n) and the size of a largest overlap in 
pixel is O(m/log n), the storage is bounded by O(m log log n + 
n). This is even needed to store the marker mosaic. And the 
runtime remains O(n log n). 
Furthermore, it is easy to modify the algorithm such that the 
insertion and removal of an image to the mosaic (not changing 
its size) can be realized in quasi-linear runtime with respect to 
the number of pixels of the input image. Also the masking of 
undesirable regions, e.g., cloudy or hazy regions, can be 
realized by assigning the pixels as background. 
 
2.2 Initializing 

The marker mosaic shall be initialized with zero for each pixel 
in runtime O(m). This is based on the metadata of the input 
images containing their geographical coverage or based on a 
defined area of interest. Each pixel of the marker mosaic shall 
additionally contain a bit-string of length k and a state {0;1}. 
The data structure needs storage O(mk). After the processing 
step of identifying overlaps the bit-string shall indicate all 
indices of input images which cover the corresponding pixel. 
The state indicates if the corresponding pixel was already 
considered in the processing steps of determining (state changes 
to 1) and growing (state changes to 0) markers. The data 
structure shall be initialized with zeros for the bit-string and 
with zero for the state for each pixel in runtime O(m). 
Let us discuss the following improvements to this basic 
concept. 

• [Hash Table] The sets of indices of input images 
overlapping a pixel can be handled in a hash table. 
Thus, the marker mosaic points to the corresponding 
set instead of handling the bit-string. All pixels of the 
marker mosaic are initialized with the empty set. The 
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number s of considered sets is at most min{2k;m;n+1} 
since  

o 2k is the maximal number of different 
overlaps of k input images and 

o at most all m or n pixel of the marker 
mosaic or input images, respectively, have 
different overlaps (extra: empty overlap). 

But typically s is much smaller. Thus, a hash table of 
size O(sk) = O(min{2k;m;n}∙k) is required and, 
instead of storage O(k) for the bit-string, storage 
O(log s) = O(min{k;log m;log n}) for a pointer to the 
set in the hash table. 

• In order to practically increase especially the parallel 
computation performance the mosaic can be tiled in 
smaller portions. 

 
2.3 Identifying Overlaps 

To identify overlaps with information of the input images which 
overlap, we perform the following for each pixel (not being 
background or not being considered anyhow) of each input 
image (in arbitrary order). Let i be the index of the input image. 
Set the i-th position of the bit-string from zero to one in runtime 
O(1). And set the pixel of the marker mosaic to i. Finally, we 
have identified all overlaps and all pixels of the marker mosaic 
are set. The step of identifying overlaps is performed in runtime 
O(n) in total. 

• [Hash Table] If the pixel of the marker mosaic points 
to set S, it shall point to set S ᴗ {i}. Due to the 
properties for look-ups and insertions in hash tables, 
this is performed in runtime O(1) in average for each 
pixel and in runtime O(n) in total. 

• The step of identifying overlaps can be parallelized 
input image- and pixel-based. 
 

2.4 Determining Markers 

To determine markers we perform the following for each degree 
d of overlap (in increasing order) for each pixel of the marker 
mosaic (in arbitrary order). We consider the 4- and 8-
neighborhood, but the method is directly to adapt to other 
definitions of neighborhood. If the degree of overlap for the 
pixel equals d, set the state of the pixel to 1. For each pixel 
which state was changed,  

• from the multiset of indices of neighbor pixels 
remove all indices i, 

o where i = 0, namely are background or not 
being considered anyhow, 

o where the bit-string of the pixel does not 
contain i, namely the pixel is not allowed to 
be set to i, (e.g., two overlaps with degree 
one hit together) and 

o where the bit-string of the neighbor pixel 
represents a set of size at least d, namely the 
method is independent to the order of pixels 
considered (e.g., set during the processing 
step of identifying overlaps to guarantee 
that indices of pixels with degree of overlap 
lower than d are surely set), 

and let v be the maximum of all remaining indices in 
the multiset that represent the maximum occurrences 
or, if the multiset is empty, let v be 0, where pixels 
with v ≠ 0 are called marker pixels, 

• if v ≠ 0, 
o set the state of the pixel to 0 and its index to 

v and 

o insert a pointer to the pixel to the priority 
queue assigned with the value of the 
gradient which is determined according to 
section 3 as priority, 

• recursively set the state of all neighbors from 0 to 1, if 
the pixel and the neighbor pixel have the same bit-
string. 

This is performed in runtime O(log m) – since a pointer to the 
pixel is handled – assuming that the gradient is determined in 
O(log m) as well. All gradients considered in the next section 
are even determined in O(1). We establish a bounded capacity 
priority queue (Knuth 1998) with a constant number of 
priorities in runtime O(1). When the recursion terminates for a 
pixel, for a complete overlap all markers at edges to overlaps 
with a lower degree of overlap are contained in the priority 
queue. A complete overlap consists of all neighboring pixels 
with the same bit-string. And all states are set to 1. Perform the 
processing step of growing markers for the initialized priority 
queue. Finally, all markers are set. In general, the priority 
queues need storage O(m log m). Since the size r of complete 
overlaps in pixel is typically small, e.g., r = O(m/log m), also 
the needed storage is with O(r log m) much smaller, e.g., O(m). 
Thanks to the initialization of the marker mosaic in the 
processing step of identifying overlaps, it is sufficient to 
consider d ≥ 2. 

• In order to practically increase especially the parallel 
computation performance and taking swapping effects 
into account, the complete overlap – which is 
typically roughly rectangular – is estimated in 
dimension, the gradients are determined, as well as 
the markers are determined and grown. 

 
2.5 Growing Markers 

To grow markers we perform the following until the priority 
queue is empty. The bounded capacity priority queue shall be 
realized in a first-in-first-out manner as discussed in the next 
section. For each pixel pointed to by the priority queue, set its 
state to 0. The indices of these marker pixels are already set 
appropriately. Remove the first pointer of the lowest non-empty 
priority in runtime O(1). Let the index of the considered pixel 
be denoted by v that is pointed to. For all its neighbor pixels 
that are in state 1 and have the same bit-string as the considered 
pixel, 

• set the state of the neighbor pixel to 0 and its index to 
v and 

• insert a pointer to the pixel to the priority queue 
assigned with the value of the gradient which is 
determined according to section 3 as priority. 

This is performed in runtime O(log m) assuming that the 
gradient is determined in O(log m) as well. We observe that 
finally a marker-based watershed transformation is realized 
(Vincent et al. 1991) with the gradients as elevations. Consider 
each pixel of the marker mosaic. For at most one value of d the 
pixel is inserted and removed from the priority queue during 
determining or growing markers. This is performed in runtime 
O(log m). For each of the other values of d, which are at most k 
– 1, runtime O(1) is needed. The steps of determining and 
growing markers are performed in runtime O(m log m) in total. 

• [Hash Table] The runtime for the step of determining 
and growing markers is not (significantly) affected by 
using hash tables. 

• The step of determining and growing markers can be 
parallelized overlap-based. 
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3. DETERMINATION OF GRADIENTS FOR 
SEAMLINES 

3.1 Overview 

In this section the small area detailed analysis covered by three 
Sentinel-2 Level 1C products is carried out. 
We will first discuss that the gradient is always simply set to a 
constant value. If the priority queue is realized in a last-in-first-
out manner, a constant setting of the gradients results in a 
marker mosaic based on stacking of the input images. This is, 
e.g., prioritized according to the date, if the indices of the input 
images are set appropriately. We observe that the result is 
already obtained when stopping after the processing step of 
identifying overlaps. If the priority queue is realized in a first-
in-first-out manner, a constant setting of the gradients results in 
a marker mosaic based on Voronoi segmentation. Results for 
stacking and Voronoi segmentation are illustrated in Figure 5. 
In the next subsections gradients are considered based first on a 
single band and second on multiple bands. The consideration of 
additional external data such as geo-information products of 
streets is carried out afterwards. E.g., to cope with co-
registration errors the application of filters is taken into account. 
Finally, an optimal configuration for the determination of 
gradients for seamlines is identified and considered for a larger 
area in the next section. 
 

   
Figure 5. True color mosaic of the three Sentinel-2 products of 

Madrid, Spain, based on stacking (left) and Vornoi 
segmentation (right). 

 
3.2 Based on Single Bands 

Let us consider the situation that a gradient is computed by 
applying the Scharr operator (Jähne et al. 1999) on a single 
band image with a radiometric quantization of 8-bits. The 
effects are similar for the Sobel operator or other edge detection 
operators. This results in gradients holding gray values between 
0 and 255. The consideration of gradients based only on single 
bands results in multiple challenges. As shown in Figure 6 
contours are highly dependent on the data contrast and quality. 
E.g., gradients only based on the blue bands or the near infrared 
bands tend to be not reliably solid and constant. This is even 
true if the utilization of the near infrared band is superior to the 
blue band, here. However, the methods should reliably discover 
such contours, e.g., farmlands, streets, or rivers, but gradients 
based on single bands typically lead to unrepresentative objects. 
Let us consider that an overlap is covered by multiple input 
images. Since for each input image its own gradients are 
generated, namely multiple gradients for each pixel exist, they 
have to be aggregated to a final gradient. In order to account for 
structures common in all input images of the overlap, the pixel-
based minimum is selected as final gradient. 

       

Figure 6. NDVI quicklook of the region of the three Sentinel-2 
products of Madrid, Spain, under consideration (left) as well as 
gradient image based on blue band (middle) and near infrared 

band (right). 

 
3.3 Based on Multiple Bands 

Due to the lack of precision of single band gradients, multiple 
band gradients are considered. E.g., the maximum of the final 
gradients for each band is considered. Here, special focus is 
given to the Normalized Differenced Vegetation Index (NDVI) 
(Ogashawara et al. 2012). The NDVI is probably the widest 
recognized index and provides information how far the 
considered region contains live green vegetation or not. It is 
calculated via the ratio of a broad-band red band (0.6 µm to 
0.7 µm) and a broad-band near infrared band (0.8 µm to 
0.9 µm), namely 
      NDVI = (near infrared – red) / (near infrared + red). 
As the NDVI detects differences in vegetation, it also 
recognizes differences between farmland, streets, and rivers. 
Farmland usually grows different crops and thus also reflects 
differently for each field. However, the NDVI is typically 
between 0.2 and 1.0. Streets are usually not vegetated and thus 
the NDVI is typically below 0.2 and so do rivers typically 
featuring negative NDVI. Considering the distinct uniqueness 
of farmland, streets, and rivers in the NDVI, such information 
helps to distinguish between suitable objects to use for 
generating gradients and also seamlines as illustrated in 
Figure 7.  
 

     

Figure 7. NDVI quicklook of the region of the three Sentinel-2 
products of Madrid, Spain, under consideration (left) as well as 
gradient image based on NDVI (middle) and resulting setting of 

markers (right). 
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3.4 Based on Additional External Geo-Information Data 

As streets are dominant infrastructures dividing large 
landscapes, and as reflectivity of concrete remains quite stable 
under different illumination conditions, highlighting such areas 
in the gradient image leads to even better results (Wan et al. 
2013). During the last decade volunteered geographic 
information (VGI) is used in a broad range of applications. The 
OpenStreetMap project is probably the biggest access point for 
such public and free geo-information. It contains information, 
e.g., of streets and rivers in vector format of almost every 
country. Merging the road information from this data source 
with our existing gradient images emphasizes the already 
existing edges caused by the abrupt change between road and 
surrounding vegetation. In our experiments we found out that 
balance between image data and VGI has to be ensured. In 
regions covered by forest roads beneath the tree crowns are not 
visible in the mosaic, placing seamlines in such situations 
would be inappropriate. The same holds true for roads hidden 
by other objects, e.g., tunnels or crossed by another dominant 
entity like a river. There is no guarantee for the correctness and 
completeness of obtained data, e.g., concerning geo-location of 
streets or rivers, or data is not available at all. It is remarked 
that in the latter situation of no data a Voronoi segmentation is 
obtained. However, with this information typically straight, 
solid, and constant seamlines can be determined. 
Figure 8 shows the vectored geo-information data, the gradient 
image generated from the rasterized geo-information data, the 
resulting segmentation of the images, and the mosaic itself. 
 

     
Figure 8. Gradient image based on streets of the region of the 3 
Sentinel-2 products of Madrid, Spain, under consideration (left) 

as well as the resulting setting of markers (middle) and the 
resulting true color mosaic (right). 

 
3.5 Filters 

Typically filters are applied before the generation of the 
gradients of each image to remove noise or reduce effects due 
to co-registration errors, e.g., by the Gaussian filter. We 
discovered spikes and noise in the image of the NDVI which 
alters the gradient determination in an insufficient manner. 
Hence, we used particularly a Gaussian filter to blur the image 
of the NDVI prior to the gradient determination. 
 
3.6 Optimized Segmentation 

Seamlines determined based on gradients of images of NDVI 
may not be straight, but rather fuzzy, as illustrated in the 
previous section. To generate rather straight than fuzzy 
seamlines, one approach is to consider strengthening the 

gradient contours of streets and rivers to ultimately have solid 
and constant contours. To examine this approach, 
OpenStreetMap data is utilized. Here, the focus is on using 
streets to enhance the gradients. Rivers share similar 
characteristics with streets, but they maintain different by 
naturally changing their sizes. And since rivers tend to have 
solid and constant contours in gradients based on images of 
NDVI, enhancing them is more or less unnecessary. Depending 
on the image resolution streets are not sufficient visible, 
because they are contained in strongly mixed pixels only. 
During rasterization of the vector format data of streets the 
(expected) spatial dimensions of the street, especially the 
(expected) number of lanes depending on the type of street, 
have to be considered as illustrated in Figure 9. They typically 
have widths different to exactly one pixel. When enhancing 
gradients with rasterized vector format data of streets, it is very 
important to only use types of streets that are applicable to the 
spatial resolution of the input image. 
Figure 9 illustrates multiple approaches for optimizing gradients 
with rasterized vector format data of streets. Contours in 
gradients shall be gray values between 0 and 255 representing 
the contrast at the given position. However, typically images of 
gradients do usually not have predictable ranges of equally 
distributed gray values. They have spikes which represent 
extraordinary high or low values outlying the typical spectral 
distribution of gray values in the gradient. Streets are expected 
to have relatively solid contours, but their gray values range 
between 10% and 25% of the range. Because their spectral 
profile is not that predictable, it is rather difficult to merge 
rasterized vector data of streets with the gradients. The streets 
are mapped on the gradient considering its arithmetic average 
pixel value above zero. Most of the pixels are dark and as such 
the arithmetic average remains low. Ultimately, streets are 
removed from the gradient by considering this approach. The 
plot of the streets on the gradient considering its median pixel 
value is shown as well. The median is higher than the arithmetic 
average, because we have values representing the complete 
range of gray values. Finally, the gradient is multiplied pixel-
based with a specific value representing the (expected) 
solidness of the street type is illustrated. E.g., motorways and 
trunk roads are multiplied by two, while primary roads are 
multiplied by one. 
 
 

4. EXPERIMENTAL RESULTS 

4.1 Overview 

In this section a large area experimental investigation, covered 
by 109 orthorectified products of Image2006 which is based on 
data of the Resourcesat-1 mission, is carried out. 
The size of the products is approximately 75 gigabyte with a 
size of approximately 21.1 giga-pixel (13.3 giga-pixel in 
France). Approximately 5.1 giga-pixel contribute to the final 
mosaic as illustrated in Figure 10. 
Radiometric influences are discussed and ways to enhance the 
given results are shown. Further advice is given on data fusion 
by means of multi-source mosaics, but also considering 
volunteered geographic information for seamline detection.   
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Figure 9. Gradient image (left) and resulting true color mosaic 
(right) of the region of the three Sentinel-2 products of Madrid, 
Spain, under consideration, where the first row: NDVI, second 

row: average, third row: median, forth row: majority. 

 
4.2 Determination of Seamlines 

Concerning the seamline determination we observed even in 
case of using just a single band that the seamlines mostly tend 
to follow dominant, landscape shaping entities, e.g., rivers or 
mountain ridge lines. As brightness differences between two 
images can be easily detected within an area of the same 
material, e.g., open soil and closed forest, this behavior is 
highly appreciated. Rivers and streets can act as borders 
between images. As the occurrence of brightness differences at 
these borders is expected, the generated seamlines are almost 
invisible in the final mosaic. The generated seamlines strongly 
depend on the used spectral information for creating the 
gradient image. In our experiments we also used multiple bands 
and indices to generate the gradient image. The most promising 
results were gained by using multiple bands in the red-edge 
domain, which are known to be very sensitive to changes 
between vegetation and other material. As in Figure 10 can be 
seen, rivers often serve not just as natural barriers, but also as 
seamlines in the final mosaic. 
 

 
Figure 10. False color mosaic of the 109 Image2006 products of 

France, where major rivers are highlighted. 

 
Beside of this, especially man-made objects are often detected 
as seamlines. Such objects like streets, roof tops, and other 
urban features are already well-known for serving as entrance 
points in different relative radiometric normalization 
techniques. Schott et al. (1988) gives a comprehensive 
overview about relative radiometric normalization. In this and 
subsequent works vegetation masks are often used to exclude 
such areas from the histogram matching process. It is pointed 
out that image features with a constant reflectivity serve best for 
determining the gain/offset values to adapt images to each 
other. The reliable identification of such pseudo-invariant 
features (PIF) between corresponding image pairs is thus the 
main challenge. This inspired us to use indices which suit for 
distinguishing between urban and non-urban image features. 
Simple indices like Normalized Differenced Vegetation Index 
(NDVI) which are based on band ratios already help to extract 
more suitable seamlines. Using freely available information 
about street networks strongly extends the purely image based 
approach to a new level. In non-urban areas such information 
supports the establishment of reliable image edges. 
  
4.3 Radiometric Harmonization 

The seamline detection focuses on regions with a constant 
reflectivity. Thus, in general the edge between images should 
be almost not visible. Nevertheless, we observed conditions 
when sharp edges arise in the final image. Typical error sources 
are a large temporal offset between image acquisition dates, 
changes in phenology, and changing weather conditions, e.g., 
due to clouds and haze. In contrast to these factors the influence 
of differing sun and viewing angles on radiometric stability is 
quite low. To overcome these problems, radiometric block 
adjustment as a processing step should be added. Examples are 
given by Angelo (2007). 
 
4.4 Multi-Source Data Fusion 

We used imagery delivered from two different sensors with 
similar but not equal characteristics. The algorithm is suitable to 
merge imagery from several sensor systems. As accessibility of 
Sentinel-2 products especially with two satellites will improve 
in the future, by lowering the repetition rate large area mosaics 
with nearly constant radiometry covering large spatial extents 
can be delivered. Examples for such applications are already 
given (Roy et al. 2010). Based on our experiments we are able 
to expand our approach to a manifold range of geographic 
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regions. The multi-sensor approach ensures a scalable solution, 
the delivery of large, namely European or global, mosaics 
within a short time-frame is feasible. 
The usage of OpenStreetMap data is illustrated. We highly 
recommend the usage of this kind of information as they add 
information not influenced by varying acquisition conditions. In 
arid areas, where larger water bodies are missing, this kind of 
information can become a key element. The adding of further 
OpenStreetMap data like water bodies and railways is strongly 
recommended as no negative side effects occurred in the 
experiments carried out. 
 
 

5. CONCLUSIONS 

We analyzed an algorithm for image mosaicking of high-
resolution orthorectified products, e.g., of the Sentinel-2 
mission, based on morphological image processing which is 
especially fully automatic and highly efficient with a quasi-
linear (also called log-linear) runtime. Such a runtime is a key 
factor for the timely provision of European or global mosaics. 
The quality of the image mosaic is probably strongest 
influenced by the gradient images used for seamline estimation. 
The major improvements by taking not only a single band into 
account as typically realized, but multiple bands combined with 
additional external geo-information data such as of the vectored 
street data is illustrated and discussed based on Sentinel-2 and 
Image2006 products. 
Future work will consider the determination of gradients based, 
e.g., on land cover and land use, classification or cluster results 
that are estimated based on the images themselves – essentially 
combined with data of the OpenStreetMap project. The 
algorithm will be more strictly tailored to the specifications of 
the Sentinel-2 mission. 
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