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ABSTRACT: 
 
This paper describes an automated method of constructing a hierarchical road network given a single dataset, without the presence of 
thematic attributes. The method is based on a pattern graph which maintains nodes and paths as junctions and through-traffic roads. 
The hierarchy is formed incrementally in a top-down fashion for highways, ramps, and major roads directly connected to ramps; and 
bottom-up for the rest of major and minor roads. Through reasoning and analysis, ramps are identified as unique characteristics for 
recognizing and assembling high speed roads. The method makes distinctions on the types of ramps by articulating their connection 
patterns with highways. Major and minor roads will be identified by both quantitative and qualitative analysis of spatial properties and 
by discovering neighbourhood patterns revealed in the data. The result of the method would enrich data description and support 
comprehensive queries on sorted exit or entry points on highways and their related roads. The enrichment on road network data is 
important to a high successful rate of feature matching for road networks and to geospatial data integration. 
 
 

1. INTRODUCTION 

1.1 Road Network Data and the Lack of Thematic 
Attributes 

 
Roads connect cities, towns, and rural areas, serving 
transportation needs between settlements and events. Depending 
on traffic services a road is designated to provide, and 
geographic extents the road covers, a road network as a whole 
manifests a strong hierarchical nature, with sparsely distributed 
high speed roads sitting at the top level and densely clustered 
local streets forming the bottom of the hierarchy. In the 
information era, road network data is deemed to be one of the 
most sought-after necessities in urban planning and 
development, and routing applications for emergency response, 
goods delivery, and field work dispatch. With the increasing 
availability of data sources and demands for web-based traffic 
services, road network data equipped with the very nature of 
hierarchy to support advanced analysis and queries would be of 
great value.  
 
In GIS (Geographic Information Systems) communities, road 
network datasets are commonly available from well-known 
sources, such as government agencies or private data providers. 
They will be presented at varying quality statuses, with or 
without being classified as highways, ramps, major roads, or 
local streets. When received as linear features with attributes for 
sub-classifications of road types, the completeness, accuracy, 
and consistence of these attributes are often unwarranted. More 
often, however, a given dataset would have no road type 
attribution in its features. Furthermore, a network dataset is 
usually populated with piecemeal road segments in need of 
assembly to be recognized as connected roads. For this kind of 
raw data containing only geometry, it becomes quite puzzling to 
know what features belong to a single road. The difficulty will 
certainly be aggravated when roads are in irregular shapes. 
Without an integrated hierarchical network structure comprised 
of complete and connected roads, the raw network data are far 
from suitable for comprehensive and meaningful network 
analysis, navigating simulations, planning, and management.  
 

Obtaining thematic attributes for the classification of roads and 
preserving them in a database are costly and time consuming. On 
the other hand, given a set of lines depicting roads, it can be 
naturally perceived with observations, that which lines are 
connected to form highways, how highways are transmitted to 
and from major roads, or how clusters of minor roads can be 
accessed through major roads and highways. One of the 
questions to ask is: is it possible to know all these automatically? 
 
1.2 Related Research on Road Network and Patterns 
 
Road networks are conventionally represented through 
Euclidean planar graphs in which a graph G of a network is 
composed of E and N, as G(E, N). The component E is a set of 
unordered edges representing road segments and the component 
N a set of terminal vertices, embedded in the Euclidean plane 
depicting places. As roads meet at places, edges intersect at 
nodes. This graph of mapping roads to edges and intersections to 
nodes is “primal” in that there exists coherence between the 
dimensions of geographic and graph entities (Porta et al 2006). 
Alternatively, an opposite representation takes graph edges for 
places and nodes for roads. This results in a “dual” of the primal 
graph (Porta et al 2004).  Due to the simplicity of storing graphs 
in graph-theoretic data structures and its excellent properties in 
modelling neighborhood connections, graphs are widely used for 
network design and analysis, such as computing minimum 
spanning trees, optimized routes for travelling salesperson, 
clustering groups with maximum spacing, etc. 
 
Over the past 15 years, GIS researchers have been attempting to 
grasp urban street patterns and structures through automation. A 
great deal of efforts have been put in developing methods to 
improve the suitability of raw road network data in graph based 
network analysis and pattern recognition. These methods require 
fragmented road segments be combined to form more or less 
continuous roads so that they can fit to graph structures. This is 
commonly approached by generating “strokes”, extending road 
from one feature geometry to another following the principle of 
“good continuation” (Thomson and Richardson 1999). The 
difficulties of choosing, among multiple candidates, an 
appropriate edge at “fork-like” junctions have been noted and 
handled (Heinzle et al. 2005, 2007). With the graphs on strokes 
and nodes, algorithms have been developed for automatically 
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detecting grid, star, and ring patterns presented in road networks 
(Heinzle et al. 2005, 2006, 2007). The topological structures of 
urban networks have been studied through quantitative measures 
on the connectivity of graphs against closeness, betweeness, and 
centralities of streets (Jiang and Claramunt 2004). Based on the 
measures, the hierarchical nature of road networks has been 
revealed statistically by the 1/20/80 principle, i.e. 80% of shorter 
streets are less connected while 20% of longer streets are well 
connected. Furthermore, out of the 20% well connected roads, 
only 1% of top streets form a backbone of the street network, 
which carry more than 20% of traffic flow (Jiang 2007, 2009).  
 
The existing research has affirmed the common practices of 
modelling and exploring properties of road networks based on 
graphs. Their findings have contributed to cognitive perceptions 
of urban structures and have especially proliferated cartographic 
generalization of maps through typification of street patterns and 
selections of streets by measured importance for hierarchical 
views. There is a lack, however, of a systematic analysis on the 
intrinsic properties of hierarchical road networks. The intrinsic 
properties would provide operational knowledge on how 
highways descend to or ascend from major and minor roads via 
hierarchical links and hence support informed conduit for traffic 
services.  
 
1.3  The Objectives of the Paper 
 
The purpose of this paper is to introduce an analytical method 
that automatically identifies and distinguishes junction types to 
form a road network in three level hierarchies. The method uses 
a single dataset of linear features without dependency on 
thematic attributes. This work is initially prompted by the 
ongoing research and development on conflating and integrating 
geospatial data from different sources. In that project, the 
conflation of linear feature datasets follows the result of a feature 
matching technique, which is based on geometric patterns 
automatically identified from the given datasets (Yang et al. 
2014). The conflation project has produced a set of 
geoprocessing tools within ArcGIS, a commercial GIS software 
product developed and marketed by Esri. These tools are used 
for transferring attributes, rubber-sheeting geometries, edge 
matching between map sheets, and detecting feature changes 
(Lee et al. 2014). They are also experimented in workflows for 
implementing multi-resolution geodatabases (Baella et al. 2014). 

 
Section 2 of the paper overviews the ongoing research and 
development on identifying and representing feature level 
geometric patterns. The need for extending the basic pattern 
graph, to support modelling and storing of complex patterns in 
the same graph structure, is highlighted. It is followed by the 
description of the meticulous analysis and procedures towards 
identifying and generating the three level hierarchy of a road 
network, in Section 3. Prototyping of the proposed method and 
algorithms, initially focused on highway and ramps, is briefly 
discussed in Section 4, where preliminary testing results are 
presented. The paper will be terminated with summaries and 
forward-looking works.  
 
 

2. GROUPING FEATURES BY PATTERNS 

2.1 Basic Pattern Graphs 

Geographic linear features depicting highways, roads, or streets 
can appear in various shapes and complexities. A major road 
spanning adjacent city-blocks may be formed with a series of 
small road features, which would prevail through a number of 
junctions. A cul-de-sac represented by a lollipop shape may be 
digitized as a single feature or a few small features. It has long 
been acknowledged that while attempting to piece together linear 
features to form a more complete road, the “good continuation” 

principle alone is insufficient. A more comprehensive 
understanding of the shapes or structures of candidate features, 
and especially, putting them in perspectives of what larger 
shapes they could contribute to form, can help determine 
whether piecemeal features should and how they can be 
connected. This point can be illustrated using the example below 
(Figure 1). 
 
The diagram shows a dual line structure connected in the middle 
of a road with “fork like” joints at both ends of the connection. It 
would be inappropriate to include only one side of the dual lines 
in a stroke, no matter which side of the dual is selected by a 
good continuation measure. On the other hand, the stroke should 
not be stopped at the joints and be broken into two, as the dual 
lines temporarily split the head-to-head traffic along a same 
road. This raises the need for representing roads consisting of 
not only strokes but also “punctuates”, meaningful structures 
that involve multiple lines. In reality, it is not uncommon for 
roads to be connected with multi-lane carriageways, 
roundabouts, or other details (Heinzle et al. 2007). 
 

 
 

Figure 1. A dual line structure connecting road 
 

In order to overcome the limit in constructing strokes only by 
geometric continuation, Yang et al. (2014) devised a pattern 
graph whose path components are built up through compositing 
obvious patterns from atomic ones. Both atomic and composite 
pattern structures are formed and stored in the pattern graphs by 
capturing and comparing characteristics of feature shapes to 
preset pattern filters. The pattern filters are based on measures of 
the metric, geometric, and topological properties. The pattern 
graph facilitates the navigating along paths and neighbors 
through the node components (Figure 2). With the basic pattern 
graph, the dual lines in Figure 1 would simply be identified with 
the more continuous side in stroke and an ID reference to the 
other side of the path stored in the path structure.  
 

 
 

Figure 2. Path-node structures in pattern graphs (Yang et al. 
2014) 
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With the pattern recognition filters, small features can be 
connected by logical reasons, without necessarily satisfying the 
continuous conditions. For example, as shown in Figure 3, there 
are four paths, a straight line {7, 8, 9, 10}, a circular lollipop {5, 
6}, an L-shape {3, 4}, and a rectangular lollipop {1, 2}. These 
patterns are formed by the functional purpose to help understand 
the meaning of data. For example, the pattern group in Figure 3 
suggests a part of a residential community. 
 

 
 

Figure 3. Pattern paths connected by function 
 
It should be pointed out that while the pattern graph upholds a 
relatively more descriptive mapping of real world on top of a 
raw dataset, it is still based on the assumption that all paths are 
composed of simply connected features. This is evident in the 
organization of paths as they consist of homogeneous sequential 
lists of feature IDs, linking to original feature geometries. 
Without proper extension, it would be awkward for the graph to 
accommodate more complicated “punctuates” in paths. 
 
2.2 Extended Pattern Graphs 

Prior to discussing of the extension, additional needs having 
been giving rise to from real world are worth investigation. For 
example, in a layered GIS world, urban road networks may be 
represented explicitly where road centerlines are captured in a 
single layer. They may also be represented implicitly through 
parcel boundaries, or combined where both centerlines and 
parcel boundaries are presented (Figure 4). While it is likely that 
the combined representation of road centerlines and parcel 
boundaries is the result of merging two single layered datasets, 
the practice indicates a need for the pattern graph to be capable 
of recognizing and modeling same phenomenon with different 
expressions.  
 

 
 

Figure 4. Road networks expressed differently 
Data Sources: City of Bangor and Los Angeles County, USA 

 
Figure 4.b illustrates a complex “roundabout” pattern consisting 
of circular sections formed by dual lines. It is desirable for the 
pattern graph to recognize and model this pattern and its 
associated paths from the dataset of Figure 4.b. Similarly for the 
dataset pictured in Figure 4.c, the same roundabout pattern 
should be detected. Furthermore, it is important to be able to say 
that there are two coincident roundabout patterns in the dataset 
of Figure 4.c, one is from dual boundary paths and the other 
from centerline paths. Without the pattern structure to group 
features, sometimes disconnected, it would be difficult to 
understand relationships between individual features and to 
match correspondent features from different datasets. 
 

The method of grouping related but not necessarily connected 
features to form pattern structures relies on spatial reasoning 
techniques, which are centered at analyzing relationships among 
neighboring objects. Both quantitative and qualitative analysis, 
inductive and deductive processes must be considered to reach a 
scientifically sound conclusion about a hypothesis. For example, 
without knowing that a linear dataset fits an urban configuration, 
an analyst would not immediately start the process of finding the 
roundabout pattern in the data. After analyzing individual 
features for atomic and composite patterns and having found a 
full circle which is isolated (disconnected) among other 
surrounding circular paths, a probing process could start 
reasoning whether the circle and the surrounding circular paths 
could together appear to be a cased roundabout pattern. 
 
The search and reasoning process can be shown in Figure 5. In 
the proximity of the full circle, c, there are other features some 
of which are identified as circular paths. By comparing the 
centers and radiuses of the circular paths, only three of them, f, 
g, and h, are kept for further consideration. The neighbors of 
both nodes of each circular path are examined to find parallel 
paths incident to a pair of nodes, respectively. As illustrated in 
the diagram, parallel paths, p1, p2, incident to nodes n1, n2 are 
found. Similarly, parallel path pairs, p3, p4, and p5, p6, are 
identified. At this moment, it is relatively safe to declare that a 
roundabout out of boundary lines can be formed. In real data, it’s 
possible that a circular path may not be directly connected to one 
side of a parallel path pair. Instead, a short circular arc of 
opposite curvatures may exist in between as a smooth transitive 
corner. The existence of these transitive arcs makes more sense 
to the roundabout as required by design to suit smooth traffic 
flows.  

 

 
 

Figure 5. Spatial reasoning for a roundabout structure 
 
The above example suggests disconnected circular paths need to 
be structured together to form the cased roundabout, consisting 
of a closed circle and a number of co-centric paths. The 
extension to the basic pattern graph should possess the 
mechanism to support both homogeneous and inhomogeneous 
paths in the same graph such that seamless navigation across the 
entire pattern graph is guaranteed.  
 
The proposed extension is to add an interpretation about the 
members, feature IDs, of a path. In the extended graph, the cased 
roundabout pattern shown in Figure 5 is a path component 
whose unique ID is the addition of its pathID in the graph and 
the upper bound value of original feature IDs (Figure 6). 
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Figure 6. Extended graph paths 
 

Figure 6 illustrates the effect of the extension, in comparison 
with what are shown in Figure 5. The paths in Figure 5, p3, p4, 
p5, and p6, and their composing feature ID lists are exemplified 
in Figure 6. Before the introduction of the CasedRoundabout 
pattern and the extension of the pattern graph, it is difficult to 
understand the relationships between the cased road sections 
formed by dual paths p3, p4 and p5, p6. With the extension, the 
recognized CasedRoundabout pattern is a path component in the 
same graph, which could serve as the connector for a merge of 
the dual paths. Note that the merged dual strokes p3, p4 contain 
a punctuate, the CasedRoundabout pattern, whose detail can be 
retrieved from the PathID, after the deduction of the Upper 
Bound FID, N2.  
 
 

3. IDENTIFYING HIERARCHICAL ROAD 
NETWORKS 

3.1 Three Levels of Roads 
 
Among many road types, highways, major roads, and local 
streets, leveled by traffic speeds, are commonly perceived 
structures for ground transportation. Ramps are a special type of 
road between highways and major roads, through which smooth 
traffic movement is facilitated. Due to the transition nature, 
ramps will not be treated as a level themselves but be the same 
as highways in the hierarchy. 
 
3.2 Highways and Ramps 

3.2.1 Characteristics of Highways and Ramps 
 
In identifying road hierarchical patterns from road network data, 
it is of primary useful to firstly recognize highway-ramp 
structures and then expand the structure to lower levels. A few 
observations can be made about the highway and ramp data. 
These characteristics will be used to guide spatial reasoning 
processes. 
 
Characteristics of highways: 

• Have restricted access (entry or exit) through ramps; 
• Have divided and near parallel lines in opposite 

directions; 
• There should have no other cross intersections of 

highways, roads, or ramps at the same elevation level; 
• Connected lines are usually smooth and long. 

  
Characteristics of ramps: 

• Serve as links between highways, major roads, and 
service stations; 

• Highway and ramp meeting at a junction must form a 
shallow angle; 

• Ramps are tends to be shorter.  
 
3.2.2 Strategies for Highway and Ramp Identification 
 
There is a practical decision to make in the designing of 
algorithms aimed at identifying and establishing highway-ramp 
structures from a line network graph: primarily looking for 

highways and finding associated ramps as a side result, or the 
other way around. Based on the experiments, the late approach is 
adopted, i.e., primarily looking for ramps in which section of 
highways or major roads incident to their end nodes will be 
identified and pieced together considering connection 
constraints. This is because, without the knowledge of ramps, 
identifying highway sections and piecing them together as a 
completed whole is opt to erroneous results, for wrong paths 
with better continuity parameters could be pieced together.  
 
Real world ramp data may come in various shapes and 
configurations. While it is true that quite a lot of them are in the 
form of circular paths, it is not uncommon for them to be in 
other shapes. This observation renders some efficiency 
consideration for the process of finding ramp candidates from 
paths. Excluding large number of unlikely paths with quick 
decisions would contribute to faster performance of the process. 
As a matter of fact, considering the shapes of paths, the only 
restriction that could lead to rejecting a candidate from further 
computing is that it should never have sharp turns along the path.  
 
Incident paths at both end nodes of a ramp candidate will then be 
examined. The turn angles on both ends, formed by the tangent 
extension of the candidate ramp and other incident paths will be 
used to determine whether the candidate is rejected for being 
without a single shallow angle on both ends, or accepted for 
being a ramp and the node types of Exit or Entry. The process of 
the determination is elaborated with the diagrams and 
description below. For the sake of continence, it is assumed that 
the maximum angle, β, at which a ramp can be created for exit 
traffic is known, and that it is the same as that for entry traffic. 
Another assumption is, it can be known that the road network is 
located in North America or other regions of the world. In US, 
highways are normally entered and exited from right side of the 
travel direction. 
 
As shown in Figure 7, the incident paths from the nodes F and T 
of the ramp candidate, R, are found to be (path1, path2, R), 
(path3, path4, R), respectively. With regard to node F, the 
tangent extension of R can be computed and its turning angle to 
path1 is negative and the value is smaller than β. At the moment, 
it can be said that R is a ramp and its F node is of Entry type. A 
last analysis will be applied to determine whether path1 and 
path2 have the same path ID. If they belong to a same path 
which has already been identified as a highway, R will be 
attached to the highway with the Entry point properly inserted or 
appended to the existing junction list. If the IDs of path1 and 
path2 are not equal but their continuity can be ensured, the two 
paths will then be merged into one path, say H1. The traffic flow 
is directed from path1 to path2. At this time, a search for a 
parallel path to H1 can be performed to determine the type of 
H1. If a parallel can be found, H1 will be labeled as a divided 
highway with a dual reference to the parallel. Otherwise, the 
road type of H1 will be left undetermined at the time. Either 
case, the ramp R will be recorded in H1 with the F node type. 
Similarly, the Exit type of the T node of R can be determined 
and its associated road, H2, is directed from path3 to path4. 
After both ends are processed and the node types of F and T are 
known, the undetermined road type at one end can be updated to 
major road if a highway is determined from the other end. The 
description about ramp R can now be enriched with junction 
types and associated highway or major road.  

 

 CasedRoundabout ID = N2 + PathID 
 Upper Bound FID = N2 

Before merge: 
p3{f1, f2}, p4{f4, f5} 
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Figure 7. Node type determination 
 
It is not difficult to see that after all qualified ramp are identified, 
the top level of the road network, highways and ramps, will be 
identified and topologically connected. Furthermore, the 
transition of any highways with other highways and major roads 
is also established.  
 
The general method described above covers a most common and 
ideal scenario. There are many other highway-ramp-road 
relations. Real world road data with bizarre geometries and 
digitizing errors will also require additional considerations and 
reasoning to make proper identification of ramps, to highlight 
data errors, or to derive new knowledge about the transportation 
data. Some of the cases are illustrated in Figure 8, with the 
additional explanations about the highway-ramp identification 
process below. 
 

1. If no turning angle smaller than β can be found with 
any other incident roads at either end node, as shown 
in Figure 8.a, the candidate R is immediately rejected 
for further processing. 

2. Features near the data boundary may be chopped so 
nodes become pseudo (connect to exactly 2 paths). As 
is shown in Figure 8.b, the extension from path1 need 
to be made at F to help determining the end type of a 
ramp candidate. 

3. When a turning angle of the ramp with any incident 
path is greater than β, the node in question is a 
RampStop junction, and the incident paths will all be 
labeled as major road. Figure 8.c illustrates this case 
where node T is of the RampStop type, and paths 5, 6 
and 3 (merged from path3 and 4) will be labeled as 
major road.  

4. If a ramp candidate is tangent to a path from which a 
parallel path can also be found. There is, however, 
additional incident path with a turning angle larger 
than β (Figure 8.d). It is likely that the additional short 
path between the parallels is a restricted cross for 
highway services.  

5. Considering the case in Figure 8.e, similar to Figure 
8.d, with a difference that the additional path crosses 
the parallels. It is likely that the intersection is caused 
by digitizing error. The crossing path may be an 
overpass or underpass.  

6. If a ramp is tangent to a path in one end and has one 
adjacent path which is routed back to the same tangent 
path. The node connecting the two ramp candidates 
may be the location of a service station (Figure 8.f). 
 

 
 

Figure 8. Other node types 
 
3.2.3 The Algorithms 

The pseudo code below shows the procedural steps for the 
algorithm described above. 
 
Algorithm 1: Finding Ramps and Highways 
 
Given: A linear dataset. 
Output: A road network graph with highways and ramps 
identified. 
 

Step 1. Build a line network graph, LN, for the given linear 
dataset, this includes piecing together line segments 
and recognizing pattern structures; 

Step 2. For each smooth path, named path I, in LN, that has 
not been identified as a road component, call 
GetConnectRoads which returns 
a. the ramp type; 
b. road path ID connecting with the from node; and 
c. road path ID connecting with  the to node. 

Step 3. If returned ramp type is either RampEntry | 
RampExit, RampEntry | RampStop, RampExit | 
RampStop, RampEntry | RampTerminal, or RampExit 
| RampTerminal, label path I as Ramp and record the 
returned roads (IDs) with the ramp. 

Step 4. Repeat 2 and 3 until all paths in LN processed.  
 
 
Algorithm 2: Get Connected Roads 
 
Given: A path ID. 
Output: path IDs at the both ends of the given path. 
 
Step 1, Get the path data from the path ID; 
Step 2. Call DetermineRampEndType for the F end, which 

returns 
a. ramp end type (RampEntry, RampExit, RampStop, or 

RampTerminal); 
b. path ID connected to the ramp end. 

Step 3. If the ramp end type is RampEntry or RampExit, search 
for the path which is parallel to the tangent path returned 
from the previous step. If such a parallel path is found, 
perform Step 4. Otherwise, perform Step 5. 

Step 4. Extend both the tangent path and the parallel path, which 
returns two lists of feature IDs composing the two paths. 
The orientation of the tangent path is in accordance to the 
ramp end type, and the orientation of the parallel path is 
opposite. At the same time, the duality of the parallels is 
recorded by cross-referencing. In the process of extending 
highway paths, merging to existing highway paths may be 
done during which housekeeping is needed to update 
references in all connected highways and ramps. 

Step5. Repeat steps 2 to 3 for the T end. 
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Algorithm 3. Determine Ramp End Type 
 
Given: an end node of a path and the path ID. 
Output:  ramp end type and the connected path ID 
 
Step 1, Find all paths incident to the end node, excluding the 

given path; 
Step 2. Compute the end type based on the principle and 

reasoning described in 3.2; 
Step 3. Report the ramp end type and the connected path if any. 
 
3.3  Major and Minor Roads 

3.3.1 Characteristics of Major and Minor Roads 

Unlike highways, which can be distinguished by their 
connection to ramps, the separation of major and minor roads are 
more subtle especially when major roads are not directly 
connected to ramps. The junctions of both types of roads fall in 
the same kind of intersection style of “T”, “+”, “X”, or “Y” 
shapes. Nevertheless, different characteristics of major and 
minor roads can still be observed from experience, which could 
be used for making a distinction of the two groups in automated 
procedures. 
 
Characteristics of major roads: 

• Connect to highways through ramps; 
• Tend to be longer; 
• Prevail through a number of junctions with varying 

distances in between; 
• Span more than one clusters of shorter roads; and 
• Surround clustered communities with other major 

roads. 
 
Characteristics of minor roads: 

• Branch from major roads, like the vertical bars in “T” 
junctions; 

• Tend to be shorter; 
• Be neighbor to other similar roads in a patterned 

cluster; 
• Surrounded by either space or roads; and 
• Usually connect to major roads by a small number of 

in-out roads. 
 
3.3.2 Quantitative Classification 

It can be seen that most of the characteristics are of quantitative 
nature such as lengths of roads, number of junctions, distances 
between neighbors, and spacing distances for clusters. Distinct 
numerical ranges are needed to classify roads into correspondent 
categories. It is proposed in this paper to apply the 1/20/80 
principle findings (Jiang 2007, 2009) in determining these 
threshold values. For example, after highways, ramps, and some 
of the major roads are labeled through the process described in 
the previous sections, the remaining unidentified paths can be 
sorted in descending order of path lengths. The top 20% of the 
roads by the length measure could be tentatively classified as 
major roads, and the rest 80% as minor roads. This principle can 
also be applied to other quantitative measures such as the 
number of junctions. It is also of interesting to experiment the 
result of combining the two measures into one, for instance, by 
sorting the roads in order of their length values multiplying their 
respective number of junctions. 
 
Another method, proposed by Marshall (2016), applies the 
“cardinality” property associated with individual roads to 
determine hierarchical levels of roads. The cardinality of a road 
equals one more than the highest cardinality values that yield to 
it. If a road does not have any roads yielding to it, it has a 
cardinality of 1. The cardinalities, therefore, can be computed 

progressively from shortest roads up, increasing the cardinality 
of the superior road it joints to, if the cardinality of the superior 
road equals to that of the road in concern. The cardinality 
concept is relatively new and its practical usefulness needs to be 
assessed. 
 
3.3.3 Qualitative Determination 

Whenever possible, if the level of a road can be determined 
qualitatively through spatial reasoning, the decision should take 
higher precedence.  It is therefore important to develop 
qualitative measures through analyzing neighborhood and 
topological patterns. 
 
Minor roads serve local communities and they lead to 
households. In urban cores, minor road meshes often form grid 
patterns, while in modern suburb areas, they tend to be in regular 
or irregular clusters of rectangular or curved patterns with traffic 
terminated to dangling roads or cul-de-sacs. It is interesting to 
note the evolution of road patterns with usage and design style 
changes (Figure 9). 
 

 
 

Figure 9. Evolution of street patterns (Southworth and Ben-
Joseph 1997) 

 
Algorithms for discovering some of the crossroad patterns have 
been published in literature. For example, Heinzle et al. (2007) 
discussed “ladder” and “comb” pattern structures and entailed an 
algorithm for recognizing “grid” patterns (Figure 10). 
 

 
 
Figure 10. Local road patterns (adapted from Heinzle et al. 2007) 
 
The general approach in discovering local road patterns is, 
keeping a target pattern in perspective, starting from a most 
characteristic feature and expanding searches from immediate 
neighbors out for candidates that satisfy set conditions. For 
instance, to target a ladder pattern, there most exist a series of 
similar straight lines, ladder steps, connected to a common line, 
a ladder bar, with T-intersects. When the ladder steps are 
stopped by differently connected straight lines, the search is led 
to find the other ladder bar at the opposite side of the known bar. 
It is possible that the search ends up with the target pattern, or 
different patterns, as shown in (Figure 11). 
 

 
 

Figure 11. Resultant patterns started from ladder search 
 
 

   Ladder Comb   Culs-de-sac 

A ladder structure A comb structure A grid structure 
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4. EXPERIMENT AND PRELIMINARY RESULTS 

The initial experiment has been focused on implementing the 
algorithms for recognizing and assembling highways and 
connected major roads through identifying ramps. The proof of 
the concept was done using small data snips that contain ramps 
and highways. The experiment did not require preprocessing of 
data with errors such as having gaps in highways; nodes of 
ramps do not intersect at highway vertices, etc. Additional 
processing has been added to address some of the issues. Minor 
changes have also been made in orders that certain processes are 
executed. After perfect results was achieved with the snips, 
whole test datasets were processed, which produced expected 
satisfying results. 
 
Figure 12 illustrates identified ramps (red), highways (yellow), 
and some of the major roads (purple). The major roads are 
connected to ramps or crossing highways and ramp. The faint 
gray lines, most of them local streets, are also processed but 
failed to be accepted as ramps, highways, or major roads, by the 
ramp based identification method. Their identification will be 
further researched and experimented by incorporating the 
discussion in 3.3. 
 
It can be observed from Figure 12 that when highways are 
present as distinctive features in a dataset, the proposed method 
based on ramp analysis can capture the structures that match 
perception. The method would have not achieved such results 
without the presence of highways, as one can image. The 
quantitative and neighborhood pattern analysis methods would 
play an essential role in that case. The importance measures, 
however, must be further investigated as the count of path 
elements based on the pattern graphs is expectedly much smaller 
compared with the methods that are not equipped with pattern 
recognition techniques.  
 

 
 

Figure 12. Experiment result of road network structures 
Data source: City of Bangor, Maine, USA 

 
As was discussed in 3.2 that the spatial reasoning embedded in 
the proposed method is able to discover data errors or to derive 
new knowledge, the result in Figure 13 would support the point. 
 

 
 

Figure 13. Knowledge discovery through spatial reasoning 
Data source: HERE 

 
In Figure 13, one type of data errors is: missing intersections of 
some ramps with highways. Because of this error, the expected 
node-incident paths relations will be missing in the graph. To 
avoid incorrect computing, neighbors of dangling nodes are 
searched and analyzed. In the presence of divided highways 
among the neighbors, the ramp-highway relation will be 
determined as if an intersection exists. 
 
Another type of data errors is: the addition of intersections of 
highways with roads nearly vertical to them. This error can be 
discovered as divided highways are found and extended, or 
when major roads are identified by intersecting with highways. 
The reasoning to avoid this error will be based on strong 
confidence on the identification of divided highways and the 
assumption that no roads should be intersecting with highways at 
near right angles. It can be further derived that the existence of 
roads by a highway might suggest some thin barriers, like walls, 
exist between the highway and residence communities; or the 
highway is elevated.  
 

5. SUMMARY AND FUTURE WORK 

A method of constructing hierarchical urban road network is 
proposed in this paper. When presented in network data, ramps 
are firstly identified as a crucial component to recognize and 
assemble highways and sometimes major roads. The paper 
discussed characteristics of ramps and three levels of roads and 
how these characteristics can be considered in designing 
algorithms for their identification. Prototyping implementation 
of the algorithms and the results obtained from running the 
prototype demonstrated expected proof of the concept. The 
method is robust to possible data errors and can be helpful in 
knowledge discovery, in addition to the targeted objectives. 
 
There are a few more things need to be done to complete the 
investigation on the method: 
 
Firstly the implementation of the algorithms should be tested on 
a wide selection of road data. The assumption of exiting and 
entering highways from right side in the US needs to be 
safeguarded by handling exceptions that are left-sided.  
 
Secondly, identifying major roads and local streets based on 
neighborhood patterns needs to be followed up, given the 
skeleton of the network structure already identified. The 1/20/80 
principle used in determining numerical ranges for classifying 
major and minor roads candidates needs to be further 
investigated for proper application based on the pattern graph. 
The correspondence between the results of quantitative 
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classification and that of induced from spatial reasoning and 
analysis on patterns is worth being looked at. This could include 
the comparison between applying length and junctions and the 
“cardinality” property for the numerical domains. 
 
Thirdly, the method should also consider the persistence of the 
discovery with geospatial databases such that the output could 
support intelligent queries and advanced analysis and 
simulations with enriched network data.  
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