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ABSTRACT: 

 

Current characterization of the Land Surface Temperature (LST) at city scale insufficiently supports efficient mitigations and 

adaptations of the Surface Urban Heat Island (SUHI) at local scale. This research intends to delineate the LST variation at local scale 

where mitigations and adaptations are more feasible. At the local scale, the research helps to identify the local SUHI (LSUHI) at 

different levels. The concept complies with the planning and design conventions that urban problems are treated with respect to 

hierarchies or priorities. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. The 

continuous and smooth latent LST is first recovered from the raw images. The Multi-Scale Shape Index (MSSI) is then applied to the 

latent LST to extract morphological indicators. The local scale variation of the LST is quantified by the indicators such that the 

LSUHI can be identified morphologically. The results are promising. It can potentially be extended to investigate the temporal 

dynamics of the LST and LSUHI. This research serves to the application of remote sensing, pattern analysis, urban microclimate 

study, and urban planning at least at 2 levels: (1) it extends the understanding of the SUHI to the local scale, and (2) the 

characterization at local scale facilitates problem identification and support mitigations and adaptations more efficiently. 
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1. INTRODUCTION 

The global temperature continues rising while cities may 

possess higher warming rates than natural land covers (Stone et 

al., 2012a). The phenomenon of higher temperature in urban 

areas is known as the Urban Heat Island (UHI) (Manley, 1958). 

The magnitude of the UHI can be up to 12℃ under calm and 

clear weather condition (Landsberg, 1981; Oke, 1981; Oke, 

1982). The increase may partially due to land surface cover 

change (Kalnay and Cai, 2003). The temperature behaviour at 

the lower level of the atmosphere in the Urban Canopy Layer 

(UCL) is substantially influenced by land use and land cover 

change (Oke, 1976). 

 

1.1 The LST 

The LST became the primary concern because it governs the 

energy balance at the lowest layer of the atmosphere in the 

urban areas and controls the air temperature within the UCL 

(Voogt and Oke, 2003). When the temperature study boils 

down to investigate the LST within the UCL, UHI accordingly 

became the Surface Urban Heat Island (SUHI). Satellite images 

are often applied in the studies of the LST (Voogt and Oke, 

2003). These studies fall into three categories: (1) patterns and 

causes of the LST (Hale et al., 2008; Rajasekar and Weng, 

2009), (2) the relationship between the LST and air 

temperature (Schwarz et al., 2012), and (3) the energy balance 

regime of land surface (Anderson et al., 2008; Holzman et al., 

2014; Zhan and Kustas, 2001). With the development and 

sophistication of the LST characterization, most studies were 

carried out in the first category. Further understanding of the 

phenomenon at local scale is impeded by limited parameters 

(Oke, 1982; Schwarz et al., 2012; Weng, 2009). The 

investigations are largely influenced by the conventional 

“urban-rural” dichotomy at the city scale (Stewart and Oke, 

2009; Stewart, 2011). A milestone is the characterization of the 

city scale SUHI of Houston, Texas, USA by applying the 

unimodal Gaussian surface to the fitting of the Advanced Very 

High Resolution Radiometer (AVHRR) image data (Streutker, 

2002). An extension of the methodology is employing the non-

parametric kernel method to model the LST and SUHI patterns 

in Indianapolis, Indiana, USA (Rajasekar and Weng, 2009).     

 

1.2 The Mitigation and Adaptation Inefficiency 

While researches continue to delineate the pattern of the LST 

by trying varies models, planning and design professionals can 

nevertheless benefit enough from such city scale studies. 

Failure of the applying the research findings to the planning 

domain is prominent in 2 ways. These are strategic 

misalignment and the corresponding negative consequences. 

Firstly, most cities are reported to be without any from of 

regulation for temperature mitigation in terms of land surface 

management (Betsill and Rabe, 2009; Wheeler, 2008). Even at 

the local level, some climate action plans only insufficiently 

addressed the problem by considering the greenhouse gas 

emission control (Stone et al., 2012b). Secondly, tragic socio-

economic consequences of the urban heat events have only 

become realized and addressed lately. Over 15,000 people in 

France were killed during the summer Excessive Heat Event 

(EHE) in 2003 (Valleron and Boumendil, 2004), Arizona led 

the deaths due to heat exposure in the United States from 1993 

to 2002 (Control and Prevention, 2005), these numbers are 

expected to increase in the near future (Kalkstein et al., 2009). 
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1.3 This Research 

As the major discrepancy lies between the scope of temperature 

research and the level of mitigations are practically conducted, 

this research intends to investigate the LST pattern at the local 

scale. Through the process, more parameters are derived to 

characterize the LST pattern. The research claims that the LST 

as one of the geographic phenomenon, the spatial and 

morphological information should explicitly be included. The 

research first presents how morphological parameters can be 

derived through applying the Multi-Scale Shape Index, and the 

robust of the algorithm. The research then uses the parameters 

as indicators to identify the Local Surface Urban Heat Island 

(LSUHI). 

Specifically, MODerate-resolution Imaging Spectroradiometer 

(MODIS) data is used to obtain the latent LST pattern at the 

beginning. The research then applies the Multi-Scale Shape 

Index to the latent LST patterns. The deformations are analyzed 

at their optimal scales. The LSUHIs meet some particular 

criteria are finally extracted. The techniques are discussed in 

the following section. 

  

2. METHODOLOGY 

2.1 Study Area and Data 

Wuhan, China is selected for case study. The city is located in 

central China. It is the fifth most populous city of the nation. 

Wuhan is characterized by its heterogeneity of land cover. The 

water bodies scatter within and around the urban area highlight 

the diversity of land composition. The extent of the study area 

is 45×36km, which covers the entire downtown Wuhan and 

reaches into the rural surroundings. The upper-left and lower-

right coordinates are “30°43′53″N, 114°4′49″E” and 

“30°24′0″N, 114°32′34″E”, respectively. This coverage is 

sufficient to exhibit the land composition of the city (Figure. 

1(a)). 

 

Figure 1: Study Area and its latent LST. (a) The study area represented by false colour image. SWIR2, NIR, and Green bands of 

Landsat ETM+ are combined to highlight the land surface heterogeneity of built environment, vegetation and water bodies. (b) The 

latent LST at 1330h, July 27th, 2012 extracted by using Gaussian Process model. 

 

The MODIS/Aqua (MYD11A1) V5 Daily L3 Global 1km Grid 

product is used to represent the LST pattern at particular time 

point. The MYD11A1 data is acquired at 0130h and 1330h 

local time. As the SUHI magnitude peaks at afternoon, the data 

at 1330h is used. The accuracy of the LST data is better than 

1K (0.5K in most cases). The LST is converted to Celsius 

degrees in this research. The details of the product validation 

have been discussed and can be found at (Wan et al., 2004): 

http://landval.gsfc.nasa.gov/ProductStatus.php?ProductID=MO

D11. 

Before analyzing the morphology of the LST, the Gaussian 

Process (GP) model (Rasmussen, 2006) is used to extract the 

smooth and continuous latent pattern of the LST as shown in 

Figure 1(b). The reason is that: (1) it removes noises and fills 

the missing pixels as curvature calculation can be sensitive to 

noises, 2) it recovers the latent LST as a continuous surface by 

populating the resolution by a factor of 2 where analysis of 

curvatures and shapes can be applied. 

  

2.2 The Morphological Indicators 

The Multi-Scale Shape Index (MSSI) (Bonde et al., 2013) is an 

extension of Koenderink’s Shape Index (SI) (Koenderink and 

van Doorn, 1992) that evaluates shapes at the optimal scale. It 

thus contains 2 steps: 1) scale selection, and 2) the SI 

evaluation. 

Evaluating the SI at a uniform level is unfavourable. The local 

variations of the latent LST are with different sizes and can be 

overlapped (as shown in Fig. 1(b)). The SI of each pixel should 

be calculated at its appropriate scale. The scale selection adopts 

the scale space (Lindeberg, 1998; Lowe, 1999) by projecting 

the LST pattern ( )f s  to scale space through (Bonde et al., 

2013) 

 

( ( ), ) ( )* ( , ) ( ) ( , )

0

s
S f s f s k s u f u k s u du      , (1)  

  

where ( , )k    is the Gaussian kernel with different smoothing 

magnitude   centred at each location u  on the surface s . The 

characteristic scale of a point on the surface should best 
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manifest the local feature at that point. As the smoothing shifts 

the original point, the characteristic scale can be found in terms 

of the kernel size that produces the maximum normalized 

distance d  travelled by a point in the scale space. Since the 

distance travelled is along the kernel magnitude, the shifted 

distance by the kernel on an image surface is simply the 

difference between the original value and the smoothed value. 

The normalized distance is thus represented as 

 
2

( , )( , ) S f fD f
d



 


  . (2)  

  

The optimal scale *  can be identified by the maxima of d  

through ( ( , )/ ) 0D f     . Intuitively, the zero derivative means 

that the local feature at the optimal scale should remain stable 

as scale changes. 

Then the MSSI is the SI evaluated at each point on a surface at 

the optimal scale. The SI of a point on a surface is a function of 

the principle curvatures at the point represented as (Koenderink 

and van Doorn, 1992) 

 

2 2 1arctan
2 1

SI
 

  





, [ 1,1]SI  , (3)  

  

where 1  and 2  ( 1 2  ) are the principle curvatures. The 

principle curvatures can be easily evaluated from a noiseless 

continuous latent LST surface through eigenvalues of the 

Hessian matrix. The SI measures how a point varies relative to 

its surroundings as shown in Figure 2. The deformations are 

encoded within the interval [-1, 1]. The value indicates the 

extent of the deformation along principle curvatures. Typical 

shapes such as cup, rut, saddle, ridge, and cap can be measured 

along the interval. It thus captures both the geometry and 

magnitude. 

 

Figure 2: The surface morphology in the range of Shape Index. 

 

Besides, the MSSI alone does not capture the complete 

information of the latent morphology. Objects with same shape 

yet different sizes can not be distinguished only by using the 

MSSI, thus the curvedness is also recommended. The 

curvedness is calculated at the optimal scale *  based upon the 

principle curvatures through (Koenderink and van Doorn, 1992) 

 

2 2
1 2

2
curvedness

 
 . (4)  

  

Thus the MSSI, curvedness or scale provide a complete profile 

of the underlying shape. 

 

3. RESULTS 

3.1 The Illustration of the MSSI 

To illustrate how the MSSI operates on smooth and continuous 

surface data to extract the morphological parameters at multiple 

scale, the MSSI is first applied to a simple surface containing 2 

randomly generated unit Gaussians (Figure 3(c)), the first unit 

Gaussian is with larger standard deviation (Figure 3(a)) while 

the second (Figure 3(b)) with smaller one. 

 

Figure 3: Simple surface containing 2 unit Gaussians. The 2 Gaussians are shown in (a) and (b), respectively. The simple surface as 

the combination is in (c). 

 

For comparison, the SI and the MSSI are both applied to this 

artificially generated sample surface. Figure 4(a) shows the SI 

of the surface at uniform scale. Essentially, the pixels from both 

unit Gaussians should be with positive SI. However, while the 

caps of the Gaussians are correctly characterized as positive SI, 

the overlapped part between them is improperly evaluated as 
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rut, the SIs of these pixels are negative. In contrast, positive 

MSSIs are assigned to all the pixels from both of the unit 

Gaussians as in Figure 4(b). Specifically, the pixels at the 

overlapped part are evaluated with even larger MSSIs, because 

the pixels are assumed to be from the cap of a very large 

convex feature. This is intuitive if one took the mixture of 

Gaussians as one large bump distant away. If the MSSI of each 

pixel is normalized by its scale *  in Equation (2), the 

recovered SI in Figure 4(c) is comparable with the original SI. 

The comparison is shown in Figure 4(d). There are 3 evident 

features worth noting in Figure 4(d). (1) The pixels on the 

convex Gaussians are evaluated as positive SIs and scatter to 

the upper-right part of the graph. Pixels of the overlapped part 

of the Gaussians are evaluated as cup shaped. (2) The 

normalized MSSI underestimates the concave shapes produced 

by the overlapped Gaussians. And (3) the normalized MSSI 

also underestimates the cap of the Gaussian with larger 

standard deviation. This is prominent by comparing Figure 4(a) 

and Figure 4(c). Thus for the mixture of convex Gaussians, the 

scatter plot spreads divergently towards the upper right of the 

graph. Essentially, the overall RMSE obtained from the 

comparison is 0.02, which is considered to be acceptable in this 

study. 

 

Figure 4: The SI and the MSSI. (a) The SI applied directly on the sample surface at a uniform scale. (b) The MSSI of the surface. (c) 

The recovered SI from the MSSI by scale normalization. And (d) the SI and scale normalized MSSI comparison. 

 

3.2 The Morphology of the Latent LST 

When applied to the study of LST variation, Figure 5 exhibit 

that the MSSI is capable of capturing the morphological 

features of the latent LST pattern. The smooth and continuous 

latent LST pattern is shown in Figure 5(a). The SI of the LST is 

first obtained and shown in Figure 5(b). While the variation at 

each pixel location is recorded at a uniform scale, some details 

are unfavourably captured. A reference place is highlighted in 

Figure 5(a), which should intuitively be characterized as an 

large convex shaped feature. Its corresponding SI and MSSI are 

highlighted in Figure 5(b) and 5(c). Notice how the MSSI 

characterizes the LST in this area holistically, while the SI 

unnecessarily breaks the LST pattern of the area into smaller 

pieces. Following the manner of Figure 4, the MSSI is 

recovered by scale normalization. The recovered MSSI is plot 

against the SI in Figure 5(d). The pattern in the scatter plot is 

consistent with the one in Figure 4(d). The pixels on convex 

shaped features are clustered towards the upper right of the 

graph, while distributed divergently due to the scale of the 

underlying LST pattern. The pixels on concave shaped features 

make the scatter plot centrosymmetric. Thus the scatter plot 

differentiates the convex and concave shapes to some extent. 

The overall RMSE is 0.06. 
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Figure 5: The application of the MSSI to the latent LST at 1330h of July 27th, 2012. (a) The latent LST. (b) The SI of the latent LST 

at uniform scale. (c) The MSSI of the latent LST surface. And (d) the scale normalized MSSI and the original SI comparison. 

 

While the MSSI reveals the morphological characteristics in 

terms of shape and scale, the curvedness is obtained at the same 

time through Equation (4). It is necessary to examine how these 

parameters are related to on another. Figure (6) plots the MSSI, 

curvedness and scale together. The scale is indicated by the 

relative size of bubble as the second dimension of the graph. 

Temperature is also shown by the colour as the forth dimension. 

At least 4 properties appear to be evident. (1) Pixels with 

globally high temperature are more likely to be on local convex 

features. Few pixels with globally high temperature are of 

concave shapes, these pixels are assumed to be in urban areas, 

where the temperature is high yet the surrounding pixels can be 

even higher. (2) The curvedness is inversely proportional to the 

scale as large scale features are estimated to be with weak 

curvedness. (3) The MSSI values are reasonably clustered 

around ±0.5, meaning that most pixels are located around local 

cups and caps, and few pixels are local extrema or saddle 

shaped. (4) Those pixels located along the river with globally 

lowest temperature (with dark blue colour) are characterized as 

on local ruts, indicating that the river is properly evaluated as 

local rut. 
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Figure 6: The relationships among the MSSI, curvedness, scale, and temperature. 

 

3.3 The LSUHI 

While the MSSI, curvedness, scale and temperature can 

provide the profile of the latent LST pattern, it is necessary to 

show how these parameters can be applied to facilitate 

mitigation and adaptation of the planning domain. A triplet of 

criteria is formed to select those places potentially with greatest 

concern. The LST patterns of these places resemble SUHI at 

local scale, and can be referred as LSUHI. The triplet of criteria 

contains temperature threshold, the MSSI, and the 

curvedness/scale. As the curvedness and scale inversely 

proportional to one another, they can be used interchangeably. 

Figure 7 gives the results where the triplet is applied to the 

latent LST at 1330h, July 27th, 2012. The parameters of the 

criteria in the triplet are set as: temperature threshold>35℃, the 

MSSI>0.5, curvedness>0.05. It means that only the LSUHI 

with at least 35℃, and shaped at least as a ridge with 

curvedness greater that 0.05 are considered. For illustration, the 

LSUHI selection is first shown in 1D as in Figure 7(b). A row 

of latent LST is randomly selected as highlighted in Figure 7(a). 

There are 6 potential LSUHI along the 1D sample as numbered 

in Figure 7(b), where the 6th LSUHI is knocked out by the 

temperature threshold. When the other two criteria in Figure 

7(c) are considered, the 3rd LSUHI is eliminated by the 

curvedness. As it is a ridge shaped LSUHI, it is convex only 

along one direction producing a relatively weak curvedness. 

This is evident in Figure 7(a). What worth noting in Figure 7(d) 

is that only part of the 2nd, 4th, and 5th LSUHIs are selected. The 

flat parts of the LSUHIs are estimated with larger scale and 

weaker curvedness, and thus are rejected by the criteria. Figure 

7(e) further shows the distribution of the selected LSUHIs in 

2D. These selected LSUHIs are superimposed on the original 

latent LST data in Figure 7(f). 

 

Figure 7: The LSUHIs meet the selection criteria. (a) Location of the column pixels for 1D illustration. (b) The profiles of the 1D 

LST as well as the temperature threshold. (c) The MSSI and the curvedness of the 1D LST. (d) The selections of LSUHIs in 1D. (e) 

The selections in 2D. And (f) Selections superimposed on the original latent LST. 

 

4. DISCUSSION & CONCLUSION 

This research extends the conventional investigation of SUHI 

to the local scale. The research explicitly claims that the spatial 

features of the LST should be included in the study of LST 

pattern. The morphological indicators are generated through 

the application of the MSSI. The accuracy of this 

characterization show promising results. When the MSSI, 

curvedness and scale are applied to the real LST data, the 

LSUHI can be selected in terms of specific criteria. The triplet 

of the criteria can be used as a tool to facilitate LST pattern 

analysis at local scale where planning and design professionals 

can identify the problems in a more precise manner. The 
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mitigation and adaptation of the temperature problem might 

also be more feasible at local scale. 
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