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ABSTRACT:

Due to the widespread application of geographic information systems (GIS) and GPS technology and the increasingly mature infras-
tructure for data collection, sharing, and integration, more and more research domains have gained access to high-quality geographic
data and created new ways to incorporate spatial information and analysis in various studies. There is an urgent need for effective and
efficient methods to extract unknown and unexpected information, e.g., co-location patterns, from spatial datasets of high dimension-
ality and complexity. A co-location pattern is defined as a subset of spatial items whose instances are often located together in spatial
proximity. Current co-location mining algorithms are unable to quantify the spatial proximity of a co-location pattern. We propose
a co-location pattern miner aiming to discover co-location patterns in a multidimensional spatial data by measuring the cohesion of a
pattern. We present a model to measure the cohesion in an attempt to improve the efficiency of existing methods. The usefulness of our
method is demonstrated by applying them on the publicly available spatial data of the city of Antwerp in Belgium. The experimental

results show that our method is more efficient than existing methods.

1. INTRODUCTION

With the boom in the availability of spatial data, spatial data min-
ing, i.e., discovering interesting and previously unknown but po-
tentially useful patterns from large spatial datasets, has become a
popular field. A co-location pattern represents a subset of spatial
items that frequently appear together in spatial proximity. Spatial
co-location patterns may yield important insights for many ap-
plications, including city planning, mobile commerce, earth sci-
ence, biology, transportation, etc. For example, location based
service providers are very eager to know what services are re-
quested frequently together and located in spatial proximity. This
information can help them improve the effectiveness of their loca-
tion based recommendation system where users request a service
in a nearby location and enable the use of pre-fetching to speed
up service delivery. Therefore, spatial co-location pattern mining
is one of the most crucial spatial data mining tasks.

Figure 1 shows a 2-dimensional structure consisting of four dif-
ferent items, a, b, ¢, and d. Each item is represented by a distinct
shape. The subscript indexes next to the items are only used to
identify individual instances of each item, to avoid having to ex-
plicitly refer to their coordinates.

A typical approach for mining co-location patterns is proposed
by Shekhar and Huang (Shekhar and Huang, 2001, Huang et al.,
2004). This method first identifies co-location patterns of size 1
and 2. In our example, given a neighbourhood distance threshold
of 100, the approach identifies the neighbourhood relationship of
all point pairs, as depicted by solid lines in Figure 2. A clique
represents an instance of a set of items located in the same neigh-
bourhood. For example, in Figure 2, {a2, b3, ds} is an instance
of itemset {a, b, d}, but {az, b3, ds} is not. Next, the approach
generates candidates of size n + 1 (n > 2) and tests the preva-
lence of each candidate to identify co-location patterns of size
n + 1. For each candidate of size n + 1, the method first joins
the instances of two of its subset co-location patterns of size n
that share the first n — 1 items to identify its instances. The pro-
posed algorithm then computes the prevalence of the candidate

*Corresponding author

500 |- R,
a
+ 1
d, cm
400 +
d
d; 4 ¢, .
300 - n A2
dyg +
ds + d,
200 |- +
ab; %€
Qe +
100 [~ .
c _Ie] d
+ 2 3 9
ds + d
1 1 1 1 I 1 1
0 100 200 300 400 500 600 700

Figure 1. An example of a 2-dimensional structure.

based on the identified instances. If the prevalence of the candi-
date is not lower than a user-defined prevalence threshold, it is
identified as a co-location pattern. The prevalence prev(P) of
a pattern P is defined as prev(P) = min{pr(t;, P),t; € P},
where pr(t;, P) is the participation ratio of an item ¢; in pattern
P, which is defined as

r(ts, P) = # instances of ¢; in any instance of P
prite, ) = # instances of ¢;

For example, as shown in Figure 2, pr(a,{a,d}) = 2 = 1,
which reflects the fact that 100% of instances of a (i.e., a1 and
a2) participate in some instances of pattern {a, d} (i.e., {a1,d1},
{a2,ds} and {a2,ds}). The prevalence of pattern {a,b,c} is
0.5, because pr(a,{a,b,c}) = 1, pr(b,{a,b,c}) = %, and
pr(c,{a,b,c}) =0.5.

A number of more efficient co-location mining algorithms (Zhang
et al., 2004, Yoo and Shekhar, 2006, Xiao et al., 2008) using the
same prevalence measure have been proposed afterwards. How-
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Figure 2. The neighbourhood relationship.

ever, it has been shown that a prevalence threshold based mining
approach may fail to find true patterns and may even report mean-
ingless patterns (Barua and Sander, 2014). The prevalence mea-
sure value of a set of items can be low, if one participating item
has a high participation ratio, but other participating items have
low participating ratios due to their large number of occurrences.
Overall, the minimum participation value of such patterns will be
low and they will be ignored by the existing co-location mining
approaches.

Furthermore, the method proposed by Barua and Sander (Barua
and Sander, 2014), as well the prevalence based methods (Shekhar
and Huang, 2001, Huang et al., 2004, Zhang et al., 2004, Yoo and
Shekhar, 2006, Xiao et al., 2008) search for meaningful patterns
for a given proximity neighbourhood. Neighbourhood informa-
tion is given in the form a neighbourhood threshold which is the
maximum distance between instances of any two participating
items of a pattern. Therefore, there are actually two user-defined
thresholds, i.e., a prevalence threshold and a neighbourhood thre-
shold. As a result, a random pattern can attain a high prevalence
value, when a large neighbourhood threshold is used by the ex-
isting algorithms and be reported as prevalent. A random pattern
may also have a high prevalence value with a smaller neighbour-
hood threshold if the participating items are abundant.

The rest of the paper is organised as follows. Section 2 provides
an overview of the existing related work. We formally describe
the problem setting for finding co-location patterns in Section 3.
In Section 4, we present our algorithm for generating co-location
patterns. Section 5 demonstrates the effectiveness of our algo-
rithm applied on the open data of Antwerp and we end the paper
with a summary of our conclusions in Section 6.

2. RELATED WORK

Co-location pattern mining approaches are mainly based on spa-
tial relationship such as “close to” proposed by Koperski and
Han (Koperski and Han, 1995). Morimoto proposed a method
to find groups of various service types originating from nearby
locations and reported a group if its frequency of occurrences is
above a given threshold (Morimoto, 2001). The basic definitions
of co-location pattern mining and the general framework was first
proposed by Shekhar and Huang (Shekhar and Huang, 2001).
The paper proposes a prevalence measure with an anti-monotonic
property, which helps to build an Apriori (Agrawal and Srikant,
1994) based approach to mine prevalent co-location patterns in a
reduced search space. This was later extended through the usage

of a multi-resolution pruning technique to prune non-prevalent
co-locations at a reduced computational cost (Huang et al., 2004).
A faster method for the same problem setting was proposed by
Zhang et al. (Zhang et al., 2004), while the problem of mining
co-location patterns with rare spatial items has been studied by
Huang et al. (Huang et al., 2006).

The above methods (Shekhar and Huang, 2001, Huang et al.,
2004, Zhang et al., 2004, Huang et al., 2006) have used spatial
join approaches to identify patterns whose items are close to each
other. A join operation, however, is expensive to compute when
searching for patterns. The space required to store all pattern in-
stances is large, and the instance search cost before joining will
also increase significantly. To further improve the runtime, Yoo et
al. proposed a new join-less approach where a neighbourhood re-
lationship is materialized from a clique type neighbourhood and
a star type neighbourhood, respectively (Yoo and Shekhar, 2006).
Xiao et al. proposed a density based approach to improve the run-
time (Xiao et al., 2008). From a dense region, the method counts
the number of instances of a candidate co-location. Assuming all
the remaining instances are in co-locations, the method then es-
timates an upper bound of the prevalence value and if it is below
the threshold the candidate co-location is pruned.

However, all the above mentioned methods use a prevalence thre-
shold and look for prevalent patterns based on a user-defined
neighbourhood threshold. Therefore, if thresholds are not se-
lected properly, meaningless co-location patterns could be re-
ported, or meaningful co-location patterns could be missed when
the prevalence threshold is too high. Barua and Sanders proposed
a statistical approach to mine true patterns without using a preva-
lence measure threshold but this method, too, uses a given neigh-
bourhood threshold (Barua and Sander, 2014).

Afterwards, Zhou et al. proposed a cohesion based co-location
pattern miner (Zhou et al., 2015). They measured the spatial
proximity of a pattern by defining the cohesive radius of a pat-
tern. The cohesive radius measures the average size of the spatial
areas in which the minimal occurrences of the pattern are located.
The main benefit of this method is that it allows us to quantify the
spatial proximity of a pattern, requiring the user to specify only
a cohesive radius threshold. However, the process of computing
the cohesive radius is time consuming. In this paper, we propose
a new model to improve the efficiency.

3. PROBLEM SETTING

We try to improve the work on mining spatially cohesive itemsets
in the spatial data of a city (Zhou et al., 2015), so we begin by
adapting some of the necessary definitions from that paper to our
setting. We consider an n-dimensional structure S as a set of
points where a point v is a pair (¢, ¢) consisting of an item ¢ € I,
and an n-dimensional coordinate ¢ € R", where I is the set of all
possible items in S and n > 1. As can be seen in Figure 1, an
item ¢ may occur many times at different positions in a structure
S. Thus there may be many points containing ¢ in S and we
denote such points as Vi, e.g., Vo, = {a1,a2}. We denote the
frequency of item ¢ as F're(t) = |V%|. We denote the structure by
S = {v1,...,u}, where |S| = [ is the number of points in the
structure, i.e., the size of the structure.

Our goal is to investigate patterns of items occurring spatially in
close proximity. To do this, we will define co-location patterns in
terms of cohesion making it possible to find itemsets consisting
of items that, on average, appear close to each other.
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3.1 Cohesive Distance

Given a set of points V' = wv1,...,vq, let MiniBall(V') de-
note the ball with the smallest radius that contains V', namely the
smallest enclosing ball. Zhou et al. considered the points V' in
n-dimensional space cohesive if the radius of MiniBall(V') is
small enough (Zhou et al., 2015). However, we find that the pro-
cess of finding the smallest enclosing ball costs too much time.
Therefore, we propose a new way to measure the cohesion of
an itemset X in a given structure S. As we know, the diameter
is the longest possible chord of any circle. Consequently, if the
radius of MiniBall(V') is small enough, then half of the maxi-
mum distance between any two points of V' will be small enough
too. Let MaxD(V') denote the maximum distance between any
two points of V. We think the points V' in n-dimensional space
cohesive if MaxD(V) is small enough.

Given an itemset X = {¢1,...,%m }, assume that each item ¢;
occurs n; times in structure S. From a point v; = (¢;,¢;), we
can find a smallest MaxD(V'), where V' contains point v; and
all other items of X, and we denote this smallest MazD (V') as
dy; (X). Then, we can measure the cohesion of an itemset X in
a given structure S by computing the average value of d,; (X)s.
We call this computed average the cohesive distance of X in S.

In order to find all d,,; (X)s, we need to check each occurrence

of an item in X. In other words, for an item ¢;, we need to check

n; times. To do this, for each occurrence of ¢; (i.e., v;) we need

to examine each possible combination (i.e., each of the possible

combinations of occurrences of all other items in X) in order to

find d,; (X). Repeating this for every item in X, requires finding
m

m [] n: combinations, which is computationally expensive. As
i=1

a result, we propose a method to approximate this process.

Intuitively, points that occur near to each other are more likely
to produce the smallest MaxD(V') than those far apart. There-
fore, rather than looking at all possible combinations, we limit
our search to a selection of points. We propose an algorithm (as
described in Algorithm 1) to first find a cohesive combination
Cy(X) containing a point v = (t;, ¢) (c is the n-dimensional co-
ordinate of the point and ¢ € {1,...,m}) and occurrences of all
other items of X nearest to v.

Algorithm 1: Finding a cohesive combination

Input :itemset X = {t1,...
1<i<m

Output: a cohesive combination C., (X)

Cy(X) = 0;

,tm }, point v = (¢;, ¢) with

2forj=1,...,mdo

w

-

L Cy(X) = Cy(X)Uargmin D(w, v)

wEth

return C, (X);
/I D(w, v) is the Euclidean distance between w and v

Lemma 1. Given itemset X = {t1,...,tm}, and a point v =
(tiyc), with1 < i < m, MaxD(C,(X)) found by Algorithm 1,
can never be more than twice as large as d.,(X).

Proof. Given a data point v, Algorithm 1 will get a combination
Cy(X) enclosing v and the occurrences of all other items in X
closest to v. Since we know that there exists a combination V'
with MazD(V) = d,(X), we can conclude that, for any item
t; in X, the maximal distance from v to the nearest occurrence of
t; cannot be larger than d,, (X). It follows that MaxD(C\, (X))
is at most 2 X dy,(X). O

Based on Lemma 1, we approximate the process of computing
the cohesive distance of X as follows:

1. selectitem ¢1 from X = {t1,...,tm } (items are sorted by fre-
quency in descending order since this computes a more accurate
average (Zhou et al., 2015)), and for each point v; € V;,, j =
1,2,...,|Vi, |, we find Cy; (X) as described in Algorithm 1 and
get MaxzD(Cy; (X)).

2. we denote the cohesive distance of X in a structure S as

D s . MaxD(Cvj(X))
D(X) = = o : (1)

There are only |V, | combinations to find in a structure .S, much
fewer than if we tried to check all combinations for each occur-
rence of ¢; in S, resulting in a considerable reduction in time
complexity.

However, this procedure inevitably results in approximation er-
rors. For example, as illustrated in Figure 3, assume we are evalu-
ating itemset abc, and we picked item a as the first item. We look
for the nearest b and the nearest ¢, and find b1 and ¢y, which are
closer to a1 than b2 and c2, respectively, resulting in the dashed
line whose length is MaxzD(a1bici). However, the smallest
MazD(V), where V contains a, b and ¢, is much smaller, and
is depicted using a solid line, i.e., da, (abc) = length of aica.
In practice, such cases are rarely encountered. Therefore, this
approximate method is capable of producing reasonably accurate
results.

Figure 3. An example of an approximation error.
3.2 Co-location Pattern

Given a maximum cohesive distance threshold max_dis, X is a
co-location pattern or a cohesive itemset if D(X) < max_dis. In
this case, we say that X is cohesive. Note that the smaller the
distance D(X) the higher the cohesion of X. A single item will
always be cohesive since the cohesive distance of a singleton is
always equal to 0.

The constraint of this approximate method gives a guarantee that
when the first item from a co-location pattern is encountered, the
remainder of the set is likely to be found nearby.

4. COLOCATION PATTERN MINING ALGORITHM

In this section we present an algorithm for mining co-location
patterns in a single structure containing a number of multidimen-
sional points.

4.1 Search For Itemsets

Figure 4 shows the process of enumerating the frequent item-
sets, given that the items {a, b, ¢, d} are sorted, e.g., by ascend-
ing or descending frequency. Our method enumerates itemsets in
a depth-first manner, i.e., we will process itemsets {ab, ac, ad},
followed by {abc, abd, abed}, and finally acd, before moving on
to itemsets whose first item is not a.
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Figure 4. Depth-first search.
4.2 Pruning

The cohesive distance of an itemset is not a monotonic measure.
In other words, it is possible for the cohesive distance of a smaller
itemset to be greater than the cohesive radius of one of its super-
sets. For example, D(bc) may turn out to be larger than D(abc)
as we are computing the maximum distances around different
data points. As shown in Figure 5, D(bc) > D(abc) since the
average of MaxD(bic1) and MaxzD(baci) is much larger than
MaxzD(a1bics2).

9] b, a ¢

Figure 5. An example resulting in a larger itemset having a
smaller cohesive distance.

As a result, we are unable to use the standard itemset mining
pruning techniques that rely on the quality measure (typically fre-
quency) being anti-monotonic. However, we here present alterna-
tive pruning techniques that are applicable in our method, which
allow us to develop an efficient algorithm for the cohesion based
co-location pattern mining task.

Although the cohesive distance of an itemset is not monotonic,
we can still use its properties for pruning certain candidates from
the search space. Our pruning method is based on the following
lemma:

Lemma 2. Assume itemset X is a subset of itemset Y, and all
the items of X and'Y are sorted by the same order. If they share
the same first item, then D(X) < D(Y).

Proof. Denote the first item in X and Y with ¢. Given an occur-
rence v; of ¢, our method finds a cohesive combination C, (X)
for itemset X . Clearly, MaxD(Cy,(Y)) cannot be smaller than
MaxD(Cy, (X)) if we insist that C,, (Y') also contains the near-
est occurrences of all items in Y \ X. Our method finds such
combinations C,, (Y") for each occurrence of ¢, and then com-
putes the average value of MaxD(Cy,(Y)). Given that X and
Y share the first item ¢, the number of such combinations will
be the same for X and Y, and each MaxzD(C,,(Y)) will be at

o

“w

N & B

® N A T R W N e

least as large as the corresponding MaxzD(Cy, (X)). Therefore,
D(Y') will be at least as large as D(X). O

Therefore, we can prune itemsets which are not cohesive when
we generate itemsets in the depth-first way as shown in Figure 4.

4.3 Algorithm

After choosing the way of enumerating the itemsets and the prun-
ing method, we design the algorithm to generate all co-location
patterns. Our algorithm generates all co-location patterns in two
steps. In the first step, we use the depth-first search method to
generate candidate itemsets. In the second step, we determine
which of the itemsets are actually spatially cohesive and utilise
the observations above to prune the itemsets that cannot be cohe-
sive.

Let n-itemset denote an itemset of size n. Let Fj, denote the
set of n-itemsets and T’ be the set of cohesive n-itemsets. Al-
gorithms 2 and 3 show the process of generating all co-location
patterns. Frequency constraints min_fre and max._fre can be used
to filter out items which are not interesting, due to being either too
frequent or not frequent enough. For example, in our city dataset
(see Section 5 for details), there are trash cans on every corner,
and patterns including trash cans are therefore of little value to the
user. Optional parameters, min_size and max_size, can be used to
limit the output only to co-location patterns with a size bigger
than or equal to min_size and smaller than or equal to max_size.

Algorithm 2: GENERATINGCOLOCATIONPATTERNS. An algo-
rithm for generating all co-location patterns in a structure.

Input : structure S, frequency constraints min_fre, max_fre,
maximum cohesive distance threshold max_dis, pattern
size constraints min_size, max_size.

Output: all co-location patterns 7'

Fy = {t|t € I,min_fre < Fre(t) < max_fre};

if 1 > min_size then
L 11 = Fy;

sort(Fy);

Depth-First-Search(F1);

T= U Ti;

return 7’;

Algorithm 3: Depth-First-Search(Q)

Input : a set of itemsets () sharing all but the last item
foreach «; in Q do
F;=0;
foreach «; in Q, with j > i do
X = a; + last_item(a;);
if | X| < max_size and D(X) < max_dis then
Fi = Fz U {X},
if | X'| > min_size then
| Tix) = Tix U{X )

B Depth-First-Search(F;);

In Algorithm 2, lines 1-3 count the frequency of all the items to
determine the cohesive 1-itemsets. Line 4 sorts the items in F by
descending frequency. Line 5 calls Algorithm 3 to get cohesive
n-itemsets (max_size > n > 2). Finally, we get the complete set
of co-location patterns 1" (lines 6-7).

In Algorithm 3, given any two n-itemsets «; and «; that share
the same first n — 1 items, we generate a candidate itemset X
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of length n 4 1 by adding the last item in o, to o (line 4). In
lines 5-6, we prune the candidates that cannot be cohesive by the
properties. Then in lines 7-8, we store the cohesive itemsets into
Tn.

5. EXPERIMENTS

We compared our pattern miner, called CoDis, with the method
proposed by Huang et al. (Huang et al., 2004) (which we call
LW-prev since the method mines prevalent patterns by a “level-
wise” approach) and the /-descend method proposed by Zhou et
al. (Zhou et al., 2015). We implemented the methods in Java and
all experiments were performed on a 2.90GHz Ubuntu machine
with 2GB memory.

All the presented methods use some sort of a distance threshold
dt, i.e., the maximum cohesive distance threshold max_dis for our
method CoDis, the neighbourhood threshold nt for LW-prev, and
the maximum cohesive radius threshold max_rad for I-descend.
In all experiments, we keep dt = nt = max_rad = %A” t
make a fair comparison.

The city dataset we used is one 2-dimensional structure obtained
from the open data of the city of Antwerp in Belgium!. We first
downloaded the datasets containing coordinates of different in-
frastructure objects with locations, e.g., schools, kindergartens,
city offices, playgrounds, cultural institutions, public toilets, re-
cycling centres, trash cans, waste recycling bins, glass recycling
bins, hospitals, and so on. We expanded the dataset by adding
some data about the city neighbourhoods® from 2009, i.e., aver-
age age, percentage of immigrant population and average income
per person, all of which are numeric attributes. Therefore, we
first discretised such numbers into different levels based on the
information given on the website and used the coordinate of the
centroid of a neighbourhood as its location. Table 1 shows a few
examples of the items generated in this way. Finally, we merged
the datasets together, and thus obtained a 2-dimensional structure
containing 6424 points carrying 33 different items.

Attribute Item Example | Meaning
average age age42-45 the average age in the
neighbourhood is be-
tween 42 and 45
percentage immigrant10- | the percentage of immi-
of immigrant | 20 grant population in the
population neighbourhood is be-
tween 10% and 20%
average income | incomelSk- the average annual in-
per person 30k come (in euros) per per-
son in the neighbour-
hood is between 15k
and 30k

Table 1. Examples of items generated from the demographic data.

5.1 Analysis of Discovered Patterns

The most cohesive itemsets turned out to be singletons, which
was to be expected, since singletons always have a cohesive ra-
dius equal to 0. To obtain more meaningful results, we decided
to look only for itemsets of size 2 or higher. Therefore, for all
methods, min_size was set to 2 and max_size unlimited. We fur-
ther found that most of the cohesive itemsets contained trash cans,

Ihttp://opendata.antwerpen.be/
2http://www.antwerpen.buurtmonitor.be/

glass recycling bins or recycling bins, which was not surprising,
as there were 3750 trash cans, 551 glass recycling bins and 344
recycling bins in the dataset, making their frequencies a lot larger
than that of any other item. As a result, we disregarded these
items by setting max_fre to 340. We set min_fre to 5 to prevent
items that hardly ever occur from becoming part of a pattern.

We first ran CoDis with max_dis = 600 metres, discovering the
20 patterns shown in Table 2 in 0.122 seconds. D means the
cohesive radius of the discovered co-location pattern and | V4, | is
the frequency of the first item of the pattern. Concrete examples
of interesting patterns included the fact that the higher the average
age, the higher the average income (patterns 3,6,7 and 18) in a
neighbourhood, or that given a kindergarten, there is likely to be
a playground nearby (pattern 1). From patterns 2 and 12, we can
see that immigrants are likely to be young people. Compare to
the patterns mined by /-descend with max_rad = 300 metres, we
find that CoDis gets the same patterns.

NO. | Co-location pattern D [V, |
1 kindergarten, playground 335.82 | 206
2 immigrant10-20, age42-45 419.09 60

3 income< 15k, age<36 432.71 104
4 kindergarten, renewal area 452.52 | 206
5 playground, dog walking area 471.51 | 184
6 income15k-30k, age42-45 496.49 | 110
7 incomel5k-30k, age39-42 504.40 | 110
8 playground, public toilet 51835 | 184
9 income< 15k, dog walking area | 519.81 104
10 public toilet, income15k-30k 521.64 | 121
11 renewal area, playground 528.58 | 191
12 immigrant33-50, age36-39 529.20 53

13 kindergarten, public toilet 541.12 | 206
14 playground, income15k-30k 54473 | 184
15 kindergarten, income15k-30k 553.58 | 206
16 school, age39-42 573.54 82

17 kindergarten, income < 15k 574.60 | 206
18 income< 15k, age36-39 586.34 | 104
19 kindergarten, dog walking area | 586.74 | 206
20 school, age42-45 596.80 82

Table 2. Co-location patterns found by CoDis.
5.2 Impact of Distance Threshold on Runtime

Figure 6 shows the runtimes of the methods with various distance
thresholds where other parameters are kept the same as before.
We ran LW-prev with the prevalence threshold set to 0.1. The re-
sults show that, as the distance threshold increases, the runtimes
of all methods increase. This is because a larger distance thre-
shold will increase the number of candidate patterns that need
to be processed. We find that the runtime of LW-preyv increases
too fast while the runtimes of other methods are acceptable. It
can be noted that LW-prev runs out of memory when the distance
threshold is 800 since the process of identifying prevalent co-
location patterns needs more memory than the computations re-
quired by our algorithms. CoDis appears to be the most scalable
method, and the runtime of CoDis is almost half of the runtime
of I-descend.

5.3 Impact of Structure Size on Runtime

Figure 7 shows the runtimes of the methods with respect to dif-
ferent number of points (varying from 10% to 100% of the whole
structure). In this experiment we use the whole structure without
setting min_fre and max_fre for the items. We set min_size to 2,
max_size unlimited, and the distance threshold to 500 metres for
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Figure 7. Impact of the structure size on the runtime.

all methods. We ran LW-prev with the prevalence threshold set
to 0.1. We repeated the experiment ten times, using ten different
random permutations of the data points. The reported runtimes
are therefore averages of the ten different runs. For all methods,
the runtime grows with increasing number of points. The LW-
prev method seems to be prohibitive, while CoDis is the fastest.
Comparing the resulting patterns, we find that CoDis performs
comparably in terms of accuracy while achieving much quicker
runtimes.

6. CONCLUSION

The abundance of spatial data provides exciting opportunities for
new research directions but also demands caution in using these
data. Handling the very large volume and understanding complex
structure in spatial data are two major challenges for spatial data
mining, which demand both efficient computational algorithms
to mine large datasets for interesting patterns.

In this paper, we have presented a method CoDis to efficiently
mine co-location patterns in multidimensional spatial data. We
applied the method to find spatially cohesive patterns from the
spatial data of a city and the resulting patterns demonstrated the
efficiency and intuitiveness of the proposed method. Through
experimental evaluation, we confirmed that CoDis improve the
efficiency of /-descend by avoiding to find the smallest enclosing

ball of points. CoDis gives a guarantee that when the first item
from a co-location pattern is encountered, the remainder of the
set will be found nearby.
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