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ABSTRACT: 
 
The spatial structures revealed in SAR intensity imagery provide essential information characterizing the natural variation processes 
of sea ice. This paper proposes a new method to extract the spatial structures of sea ice based on two spatial stochastic models. One 
is a multi-Gamma model, which characterizes continuous variations corresponding to ice-free area or the background. The other is a 
Poisson line mosaic model, which characterizes the regional variations of sea ice with different types. The linear combination of the 
two models builds the mixture model to represent spatial structures of sea ice within SAR intensity imagery. To estimate different 
sea ice parameters, such as its concentration, scale etc. We define two kinds of geostatistic metrics, theoretical first- and second-
order variograms. Their experimental alternatives can be calculated from the SAR intensity imagery directly, then the parameters of 
the mixture model are estimated through fitting the theoretical variograms to the experimental ones, and by comparing the estimated 
parameters to the egg code, it is verified that the estimated parameters can indicate sea ice structure information showing in the egg 
code. The proposed method is applied to simulated images and Radarsat-1 images. The results of the experiments show that the 
proposed method can estimate the sea ice concentration and floe size accurately and stably within SAR testing images. 
 

                                                                    
*  Corresponding author 
 

1. INTRODUCTION 

    Sea ice plays a very important role on hydrology, 
atmospheric thermal cycle, ocean currents and ecosystem in 
high latitudes, especially the Polar Regions (Zhu et al., 2012; 
Emilio et al., 2010). Sea ice limits shipping in high latitudes and 
requires special attentions when planning and running offshore 
activities in the Arctic Ocean and its peripheral seas 
(Johannessen et al., 2007). Consequently, timely obtaining the 
information of sea ice in a wide range is becoming more and 
more urgent for many governments and organizations. With the 
development of aerospace and aviation technology, remote 
sensing has proved to be a powerful tool for monitoring sea ice. 
Compared with the optical remote sensing, synthetic aperture 
radar (SAR) systems have been shown to be very useful due to 
its capability of acquiring data under all weather condition, 
during day and night, and are widely applied to marine , forestry, 
environment, agriculture fields (Kerman, 1999).  
    Estimating parameters of sea ice such as its concentration, 
size, age from SAR imagery is always a difficult task. Currently, 
many methods have been proposed to extract sea ice 
information. Nystuen and Garcia (1992) used both texture and 
standard statistics to classify sea ice types, where both of them 
are derived from a grey-level co-occurrence metrics (GLCM). 
In their experiments, they found that in some special ice zone, 
because of the movement of sea ice, a kind of new ice, called 
“odden” and multiyear ice, are of a SAR backscatter property 
and difficult to be distinguished. Soh and Tsatsoulis (1999) used 
GLCM to quantitatively evaluate textural parameters and 
determined the optimal parameters and representations for 
mapping sea ice texture. They investigated the quantization, 
displacement and orientation factors of GLCM on SAR sea ice 
imagery. They concluded that matrices with a range of 
displacement values are more adequately representative of a 

texture than a single χ 2-optimal matrix. Because of the 
movement of ocean currents and winds, different types of sea 
ice may have the same backscatter and vice verse. These 
phenomena will lead to incorrect classification of sea ice. Some 
researchers (Clausi & Deng, 2004; Ochilov & Clausi, 2012) 
investigated operational segmentation and classification 
methods by comparing three kinds of texture feature extraction 
methods and four types of segmentation models. After that, 
different extraction methods are combined with different 
segmentation models to do experiments. The gamma mixture 
model followed by a MRF label model is able to demarcate ice 
from open water region. All above studies used the traditional 
statistical metrics and considered the autocorrelation of sea ice 
only. Although the ice age is derived only from texture structure, 
it is not so accurate, and there is so much unknown information 
about sea ice. This paper considers both the autocorrelation of 
sea ice and the correlation between sea ice and the open water. 
Spatial statistical metrics are used to estimate the basic 
parameters of sea ice, such as total concentration and floe size 
of sea ice. 
    According to the properties of SAR imagery and sea ice 
spatial structure, we build two stochastic models, one is multi-
Gamma model and the other is Poisson mosaic model. Then two 
kinds of geostatistic metrics are used to measure the spatial 
structure of sea ice. Theoretical variograms are built based on 
the two stochastic models, and the experimental variograms are 
calculated from the images. Then fit the theoretical variograms 
to the experimental variograms and the parameters are estimated 
in the theoretical variograms. 
    The rest of the paper is organized as follows. Section 2 
describes the spatial stochastic models used to model the spatial 
structures. In Section 3, the proposed method is validated on 
simulated images and then applied to the actual RADARSAT-1 
images of the Ungava Bay of Canada. The paper concludes with 
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a summary of findings and suggestions for future enhancements 
in Section 4. 

2. MODELS AND VARIOGRAMS 

2.1 Random function and variogram 

From spatial statistics point of view, the spatial structure and 
variability revealed in SAR data can be modeled by a 
regionalized variable z(x), which is simply considered as the 
realization of a random function Z(x) constructed at all points x 
of a given region D ⊂ R2, while Z={Z(x) : x ∈ D ⊂ R2} defines 
a random field on D. 

The SAR data have been translated into general datum for 
analyzing. A stationarity condition should be set up first. Let 
Z(x) be the second-order stationarity random function, then it is 
of the following properties, 

E Z(x)⎡⎣ ⎤⎦=m

Cov Z(x),Z(x+h)⎡⎣ ⎤⎦=C(h)
                   (1) 

where m is the expectation value of Z(x) and C(h) is the 
covariance function for all pairs of pixels x and x+h. When h = 
0,  

Cov Z x( ),Z x+h( )⎡
⎣

⎤
⎦

=Cov Z x( ),Z x( )⎡
⎣

⎤
⎦

=Var Z x( )⎡
⎣

⎤
⎦=C 0( )

                      (2) 

he covariance function divided by the variance is called the 
correlation function 

( ) ( )
( )0C
C hh =ρ                                 (3) 

Under second-order stationarity assumption, the second-order 
variogram γ2(h) of Z(x), which describes the variability between 
the intensity values of two pixels separated with h, is 

γ2 (h) =
1
2
Var Z(x+h)− Z(x)⎡⎣ ⎤⎦             (4) 

From Eqs. (1) and (2) (Schabenberger & Gotway, 2005), 
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In isotropic stochastic processes, the covariance is a function 
of the Euclidian distance h=||h|| only, that is, C(h) = C(h). σ2 is 
the variance of Z(x). As a result, Eq. (5) can be simplified as 
follows, 

)()( 2
2 hCh −=σγ                      (6) 

Fig.1 shows the relationship between C(h) and γ2(h). R is the 
largest distance between two relative positions; Sill is the 
limitation value of γ2(h), its equal to C(0). When h exceeds the 
range, C(h) tends to zero and γ2(h) is stabilized. It means that 
data separated by a distance larger than the R are uncorrelated. 
The R is an important parameter related to the spatial scale of 
the data (Feng, 2008). It can be used to reflect the floe size of 
sea ice, so how to estimate R from data (images) accurately is a 
significant part of this method. 

For a given random function Z(x), under second-order 
stationarity assumption and in isotropic stochastic processes, its 

first-order variogram γ1(h) is defined as follow (Chiles & 
Delfiner, 1999) 

γ1(h) =
1
2
E Z(x+h)− Z(x)⎡
⎣

⎤
⎦                 (7) 

where γ1(h) is seen as first-order moment. When h approaches 
its range R, the value of γ1(h) tends to be constant. The first- and 
second-order variograms will both be used to characterize the 
spatial structures and their validities and accuracies will be 
compared in the following sections. 
2.2 Stochastic models 

In order to characterize the sea ice spatial structures, SAR 
intensity images are considered as a combination of two 
stochastic second-order stationary models. According to the 
SAR data properties (Keith et al. 2006) and the distribution 
properties of sea ice, we build multi-Gamma model Zg(x) and 
Poisson mosaic model Zm(x). The former one is used to 
characterize continuous variations corresponding to the 
background of sea ice, the other is a tessellation model in which 
the image domain is randomly separated into non-overlapping 
cells to simulate the real sea ice areas. (Chilès & Delfiner, 1999).  
 
2.2.1    Bivariate Gamma model Zg(x):     A random function 
Zg(x) is said to be a bivariate Gamma random function if the 
vector Z = (Zg(x), Zg(x + h)) for x, x + h ∈ D is distributed 
according to a bivariate Gamma distribution. The bivariate 
Gamma distribution on R2 has been defined in several forms. 
Most of them exploit various properties of the univariate 
Gamma distribution to construct bivariate families (Kotz et al., 
2000). 

In this paper, bivariate Gamma distribution of random vector 
Z = (Zg(x), Zg(x + h)) in R2 is defined by its moment generating 
function or Laplace transform, which is defined with an affine 
polynomial (Bernardoff, 2006). We use an affine polynomial 

21
2

211)( θρθββθβθ +++=θp                (8) 
where the parameters satisfy the conditions: β > 0 and 1 > ρ > 

0. Then the moment of the generating function of Z can be 
defined as 
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1 2( ) ( )
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From the defined generating function, it is obvious that Zg(x) 
is a distribution according to a univariate Gamma distribution 

Fig.1 Diagram of C(h) and γ2(h). h represents the 
distance between two positions. C(h) is the covariance 

function and γ2(h) is the second-order variogram.  
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with shape parameter α and scale parameter β, that is, Zg(x) ∼ 
G(x; α, β) (Zhang et al., 2010). Its probability density function 
can be expressed as follows 

p(Zg (x);α,β) =
Zg (x)

α−1

Γ(α)βα
exp −

Zg (x)
β

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

        

(10) 

where Γ(α) is the Gamma function. 
The moment of the bivariate Gamma distribution can be 

obtained by differentiating Eq. (10). The mean and variance can 
be obtained as 
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In isotropic stochastic processes, the covariance Cov (Zg(x), 
Zg(x+h)) of the bivariate Gamma function can be expressed as 
an exponential form 

2
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In this paper, an exponential family of covariance function is 
chosen for the bivariate Gamma model. The second-order 
variogram of Zg(x), denoted γ2,g(h), is thus an exponential 
variogram defined by (Garrigues et al., 2007) 
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where rg is the R of the variogram, it will be used to indicate the 
global texture structure of water in the real sea ice SAR images. 
αβ 2 is the sill of the variogram. 

Let X and Y be Gamma random variables with shape 
parameter α1 and α2, scale parameter β1 and β2, respectively. A 
random variable Z = X − Y has the following distribution 
function (Zhang, 1983). 
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For a stationary Gamma function Zg(x), the difference Zg(x) − 
Zg(x + h) is a random variable with mean and variance equal to 
zero and 2γg(h). After the calculation of the distribution function 
of Zg(x) − Zg(x + h) with Eq. (14), the expectation of |Zg(x) − 
Zg(x + h)| can be figured out. Furthermore, from Eq. (7) γ1,g(h) 
can be obtained (Sheldon, 2004). According to different values 
of α, γ1,g(h) have different expressions. Taking α = 2 
(corresponding to 2-look SAR imagery) as an example, γ1,g(h) 
can be expressed as follows  

)(2
8
3)( ,2,1 hh gg γγ =                     (15) 

 
2.2.2    Mosaic model Zm(x):    A mosaic model on a domain D 
can be defined by partitioning the domain D into a tessellation 
and assigning each cell of the tessellation a value independently 
drawn from a distribution. Poisson mosaic model is built based 
on the Poisson line tessellation, in which the image domain is 

partitioned by Poisson lines (see Fig. 2 (b)). Each line can be 
characterized by two parameters: its distance to the origin, 
denoted d with d > 0, and a random orientation θ with [0, 2π] 
(Kotz et al., 2000) (see Fig. 2 (a)). 
 

The combination of Poisson random lines and independent 
Gamma random variables within each cell defines our mosaic 
random function Zm(x). Lantuéjoul (2002) shows that the 
covariance function Cm(h) of the mosaic model has an 
exponential form 

Cov Zm(x+h),Zm(x)⎡⎣ ⎤⎦=Cm(h) =αβ
2 exp −

3h
rm

⎛

⎝
⎜⎜
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The second-order variogram of the mosaic model, denoted 
γ2,m(h), is thus an exponential function 
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where rm is the R of γ2,m(h), it can be used to estimate the 
average size of sea ice floe in the real sea ice SAR images. For 
α = 2 the first-order variogram of mosaic model is defined as 
follows (more details will be discussed in Subsection 2.3.2) 

)(
4
3)( ,2,1 hh mm γγ =                       (18) 

2.3 Mixture model 

To characterize different spatial scale we make a linear 
combination of Zm(x) and Zg(x), 

)(1)()( 2 xxx gmc ZZZ ωω −+=          (19) 

where σ2 is the variance of Zc(x), ω is the weighting factor, it 
will be used to indicate the total concentration of sea ice. 

Based on Eq. (17), the theoretical first- and second-order 
variogram of the mixture model will be calculated as follows. 

 
2.3.1 Second-order variogram:    Since Zc(x) is a weighted 
sum of the independent random functions Zm(x) and Zg(x), its 
second-order variogram γ2,c(h) is also the weighted sum of the 
second-order variograms γ2,g(h) and γ2,m(h) 

(
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Fig.2 Plane linear expression (a), Poisson Division (b) 
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According to Eqs. (13) and (17), we can write Eq. (20) as 
follow 
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2.3.2 First-order variogram:   As described above, the 
tessellation process of Poisson lines partitions the domain into 
non-overlapping cells within the image. The cell values are 
realizations of independent Gamma random variables. Two 
pixels x and x + h separated by a distance ||h|| belong to the 
same cell, denoted event A. Its probability is related to the 
covariance function of Zm(x) and thus to the second-order 
variogram of Zm(x) (Garrigues et al., 2007) 
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Conditioning on the event A and A , the theoretical first-
order variogram can be decomposed as follow, 

γ1(h) = 0.5P(A)E | Z(x+h)− Z(x) | A⎡
⎣

⎤
⎦

+0.5P(A)E | Z(x+h)− Z(x) | A⎡
⎣

⎤
⎦

     (24) 

where the first expectation value can be calculated from Eq. (19) 

E | Z(x+h)− Z(x) | A⎡
⎣

⎤
⎦

= E σ ω(Zm(x+h)− Zm(x))⎡
⎣

+ 1−ω 2 (Zg (x+h)− Zg (x)) A
⎤
⎦⎥

         
(25) 

In the case of event A, the locations x and x + h are in the 
same cell. As a result, Zm(x + h) - Zm(x) = 0, Eq. (25) reduce as 
follows, 

 
E | Z(x+h)− Z(x) | A⎡
⎣

⎤
⎦

=σωE Zg (x+h)− Zg (x)⎡
⎣

⎤
⎦

             (26) 

from Eq. (14) the expectation value of |Zg(x) - Zg(x + h)| can be 
figured out. 

By the same token, the second one will be 
E | Z(x+h)− Z(x) | A⎡
⎣

⎤
⎦

= E σ |ω(Zm(x+h)− Zm(x))⎡⎣

+ 1−ω 2 (Zg (x+h)− Zg (x)) | A
⎤
⎦⎥

         
(27) 

In the case of the event A , the pixels x and x + h do not 
belong to the same cell. Zm(x + h), Zm(x), Zg(x) and Zg(x + h) 
are independent random variables with the same Gamma 
distribution. Using Eq. (14) the probability density function of 
the difference Zg(x + h) - Zg(x), as same as Zm(x + h) - Zm(x), 

can be figured out. ω and ( )21 ω−  are weight values of the 
two random variables, then the probability density functions of 

ωZ and ( )Z21 ω− can be derived. Let ωZ + ( )Z21 ω− be 

a new random variable Zc, Eq. (27) becomes σE[Zc]. Using the 
probability density function of Z, the expectation of Zc can be 
calculated. Through β the E[Zc] can be represented as a function 
of γ2, g(h). Here also gives the expression of γ1(h) when α = 2 as 
an example. 
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 (28) 

From Eq. (28), for the multi-Gamma and mosaic models, the 
first- and second-order variograms are related quadratically and 
linearly, respectively. 

3. EXPERIMENT AND RESULTS 

3.1 Parameter estimation by least-squares criterion 

In this paper, least-squares criterion is employed to estimate 
the mixture model parameters, including first- and second-order 
variograms, by fitting theoretical variograms to experimental 
ones (Schabenberger & Gotway, 2005). Let H = [h1, ..., hn] and 
Θ  = (α, β, ω, rg, rm). In real SAR images, α is a constant equal 
to the number of looks of SAR sensors. These parameters are 
used to characterize the spatial structure in a SAR intensity 
image. Theoretical variogram family γ(H, Θ) can be calculated 
from Eqs. (20) and (24).  

Let { }HH ∈= hhh :)(ˆ),(ˆ)(ˆ 21 γγγ be the 
experimental variogram family, where the first- and second-
order experimental variograms are computed according to 
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where N(h) is the number of the pairs of pixels separated by the 
distance h. For fitting γ(H, Θ) to )(ˆ Hγ , assume  

)(),()(ˆ HεΘHH +=γγ           (30) 
where ε(H) is the n × 1 error vector with zero mean and 
variance-covariance matrix V(Θ) = Var[ε(H)]. 

By weighted least squares, the parameter vector Θ  can be 
estimated so as to minimize the weighted sum of squares 
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3.2 Comparison of theoretical variograms with different 
values of parameters 

To test the feasibility of the mixture model, we compare the 
theoretical variograms with different values of parameters. 

First is for the second-order variogram (Eq. (21)). We set σ2 = 
1, ω2 from 0 to 1 with interval 0.125, that is, ω0

2 = 0, ω1
2 = 

0.125, ..., ω8
2 = 1. Then we set three examples: (a) rg = rm = 30 

pixels. (b) rg = 10 pixels, rm = 50 pixels. (c) rg = 50 pixels, rm = 
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10 pixels. When ω0
2 = 0 and ω8

2 = 1 the mixture model reduces 
to single mosaic model and single multi-Gamma model, 
respectively (not shown). Fig. 3 displays the comparison results. 

In (a) it can be seen that the theoretical second-order variograms 
are close to each other all range of h, it is difficult to distinguish 
them. In (b) and (c), the theoretical second-order variograms for 
Z5 to Z7 can be distinguished when 3 pixels < h < 30 pixels, out 
of the range they are difficult to be discriminated. Z1 to Z4 are 
hard to be discriminated in all range of h.  
    We do the same comparison for the first-order variogram (Eq. 
(28)). The given parameters’ values are the same as the second-
order variogram comparison. Fig. 4 is the comparison results. 
The first-order variogram of Z7 is very different from the other 
six ones, so it is not shown in the figure. From the figure we can 
find that the three results are similar. When 3 < h < 20 (pixel), 
the first-order variogram for Z1 to Z3 can be distinguished. Z2 
and Z6 are mixed with each other and Z3 to Z5 are mixed with 
each other. After h = 20 pixels, Z2 and Z6 can be discriminated, 
but Z3 to Z5 are still difficult to discriminated. 

    Through the comparison above we can know that when rg ≠ 
rm and the weight of Poisson mosaic model is more than 50%, 
the mixture model with different values of ω2 can be 
discriminated by the second-order variogram. When the weight 
of Poisson mosaic model is less than 50%, the mixture model 
with different values of ω2 can be discriminated by the first-
order variogram. 
3.3 Experiment on simulated images 

To prove the correctness and accuracy of the first- and 
second-order variograms, the experiment is performed on 
simulated images first. 

Two basic simulated images are generated from multi-
Gamma model and Poisson mosaic model, respectively. Then 
combine them with different weight parameters ωi

2, i = 1, ..., 7, 
to generate mixture simulated images. 

Fig. 5 shows the two basic simulated images of Poisson 
mosaic model (Fig. 5 (a)) and multi-Gamma model (Fig. 5 (b)). 

Fig. 6 shows simulated images, Fig. 6 (a) - (g) are 
corresponding to ω7

2 = 0.875 to ω1
2 = 0.125, respectively. 

Fig. 7 shows the results of the estimation of the first- and 
second-order variograms from simulated images. For ω7

2 = 
0.875 to ω1

2 = 0.125, the theoretical variograms fits well the 
experimental variograms with accuracy over 90%. Because of 
the randomness of Gamma model, when h exceeds the R the 
values of variograms still have some fluctuations. When the 
weight of Gamma model is over 80%, the fluctuations become 
obvious.  

Table 1 lists the results of estimated parameter ω2 of mixture 
model Z(x). The values of ω2 are the real weights of the two 
models, and the values of ωest

2 are the estimated weights. From 
the results, we can find that from Z1(x) to Z3(x) the estimation 

results from first-order variogram are more accurate than the 
second-order variogram’s. But from Z5(x) to Z7(x) the second-
order variogram has better estimation results.  
Table 1. Parameter (ωest

2) of the mixture model Z(x) estimated 
from each simulated images. 

3.4 Experiment on real sea ice images 

The proposed algorithm is tested by using SAR intensity 
images to identify sea ice structures. Fig. 8 shows the 2-looks 
Radarsat-1 intensity images, HH polarization and 30 m spatial 
resolution which is acquired on 12 May 2008 and 26 May 2008 
from Hudson Bay, Canada. To validate the rationality of the 

random 
function Z1 Z2 Z3 Z4 Z5 Z6 Z7 
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0.3
6 

0.5
0 0.64 0.7
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5 

first-order-
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0.11

7 
0.2
7 

0.3
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0.4
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3 
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3 

second-
order-ωest

2 
0.16

4 
0.2
1 

0.2
8 

0.5
2 0.67 0.7

8 
0.90

4 

(b) Multi-Gamma model (a) Poisson mosaic model 

Fig.5 Simulated images of two models 

Fig.3 Experimental second-order variograms computed over images 
simulated from the random functions Zi(x), i=1,..., 7.  

 (a) rg = rm = 30 pixels 
 

 (c) rg = 50 pixels, rm = 10 pixels 
 

 (b) rg = 10 pixels, rm = 50 pixels 
 

Fig.4 Experimental first-order variograms computed over 
images simulated from the random functions Zi(x), i=1,..., 7.  

 

 (c) rg = 50 pixels, rm = 10 pixels 
 

 (b) rg = 10 pixels, rm = 50 pixels 
 

 (a) rg = rm = 30 pixels 
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models, we select parts of the two images which are West 
longitudes from 61° to 65° and North latitudes from 58° to 60°. 
The egg codes corresponding to the testing images are 
downloaded from Canadian Ice Service’s website, which 
provide the information of the sea ice, such as total 

concentration, stage of development, form of ice and so on 

(b) (a) 

(f) 

(c) (d) 

(e) (g) 

Fig.6 Simulated images from different mixture models 

Fig.8 RADARSAT-1 SAR image of part of Hudson Bay for 
(a) May 12 and (b) May 26. Images are superposed with 

borderlines of ice chart polygons taken from Canadian Ice 
Service for the same day. Letters in the polygons denote the 
regions investigated further with the corresponding egg code 

given to the right of each image. 

(a)                                

(b)                               

Fig. 9 Polygons cut out from Fig. 8. The white squares of each 
polygons refer to the samples in Fig. 10 

(a) X 
. 

(b) W 
 

(c) H (d) HH 
 

Fig. 10 Samples of different polygons in Fig. 9  
(c) H (d) HH 

(a) X (b)W 
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(Environment Canada 2008). Experiments will be performed for 
entire polygons, namely X, W, H, HH (Fig. 9), and square-
shaped sub-regions of them (Fig. 10). 

  We choose some polygons which have more representatives 
for different types of sea ice to do the experiments. Fig. 9 is the 

(a1) (b1) (a2) 

(b2) (c2) (c1) 

(d1) (d2) (e1) 

(f1) (e2) (f2) 

(g1) (g2) 

Fig.7 Result of the estimations of the first-order and second-order variograms from the simulated images. From (a) to (g) are corresponding to Z1(x) to 
Z7(x). From (a1) to (g1) are first-order variograms and from (a2) to (g2) are second-order variograms. 
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polygons of sea ice cut from Fig. 8. Their shapes are irregular 
and the spatial correlations of them are complicated.  
According to the information given in the egg code we can 
know that even  
in one type of sea ice, such as X, there are two or three types of 
sea ice with different floe size. So in each polygon a square area 
is selected as a sample used for further experiments. Fig. 10  
shows those samples with 100×100 pixels from corresponding 
polygons in Fig. 9. The samples have regular shape and in their 
areas the concentrations of sea ice are homogeneous. 

Figs. 11 and 12 display the experimental first- and second-
order variograms computed over the polygon images and 
sample images along with the first- and second-order 
variograms computed with the estimated parameters of the 
mixture model.  

Tables 2 and 3 list the information (floe size and total 
concentration) of sea ice derived from egg code and the 
estimated parameters of the mixture model. The ωest

2 of the 
mixture model is the proportion of the Poisson mosaic structure, 
which corresponds to the total concentration in the egg code. 
The R of the mosaic model rm is related to the mean size of the 
sea ice, which corresponds to the floe size in the egg code. The 
R of the multi-Gamma model rg is related to the global texture 
structure of the sea. Comparing the estimated results with the 
information derived from egg code we can find that the 
parameters in the mixture model can be used to indicate some 
sea ice parameters. 

 
 

 

        Table 2. Parameter estimation results of polygons in Fig. 9 

 

 

 

 

 

 

 

types of 
sea ice 

rg (pixel) rm (pixel) 
first-
order 

second-
order 

first-
order 

second-
order 

H 123.2 134.6 6.8 7.5 
HH 113.6 65 1.8 2.6 
W 95.3 24 2.8 1.7 
X 98.4 111.5 4.2 1.6 

floe size(m) 
ωest

2 total 
concentr

ation 
first-
order 

second-
order 

100-500 0.93 0.93 0.9 
strips and patches 0.25 0.21 0.2 
strips and patches 0.27 0.33 0.3 

20-100 0.87 0.91 0.9 

Fig. 11 Result of the estimation of the first-order and second-order variograms from polygons (Fig. 9) 
 

(a1) (b1) (a2) 

(d1) (d2) 

(c1) (b2) (c2) 
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Table 3. Parameter estimation results of polygons in Fig. 9 
 
 
 
 
 
 
 
 

 
 

4. DISCUSSION AND CONCLUSION 

    This paper provides a new method to characterize the 
spatial structures of sea ice in SAR intensity imagery. The sea 
ice spatial structures are modeled as a weighted linear 
combination of two stochastic models: a Poisson line mosaic 
model and a multi-Gamma model. Then two kinds of 
geostatistic metrics are defined to describe the image spatial 
structures. By the experiment, we first compared the theoretical 
variograms with different values of parameters and found that 
each of the two different variograms have their own advantages 
in discriminating different spatial structures. Then the proposed 
method was applied to the simulated images and 
RARDARSAT-1 images. Through comparing the parameters 
estimated from the mixture model with the sea ice information 
obtaining from egg code, we found that two parameters 
(concentration and floe size) of sea ice can be retrieved from the 
mixture model. 

Several notes can be remarked from this research. How to 
estimate other information in the egg code, such as stage of 
development, is another significant parameter of sea ice. The 
Voronoi mosaic model is another tessellation model, maybe its 
way of dividing is more suitable for describing sea ice structures. 
It will be used to replace Poisson mosaic model in the further 
study. In the real SAR images, the polygon images are irregular 
and the sea ice structures are not homogenous, the isotropy 
assumption is difficult to be satisfied. So the experimental 
variograms calculated from polygons are not as accurate as the 

types of 
sea ice 

rg (pixel) rm (pixel) 
first-
order 

second-
order 

first-
order 

second-
order 

H 75.1 86.5 5.6 6.3 
HH 75.6 65.5 3.1 4.3 
W 33.2 24.3 3.5 1.7 
X 87 95.7 2.6 1.1 

floe 
size(m) 

ωest
2 total 

concentr
ation 

first-
order 

second-
order 

100-500 0.93 0.95 0.9 
strips and 
patches 0.21 0.23 0.2 

strips and 
patches 0.33 0.28 0.3 

20-100 0.88 0.83 0.9 

(c1) (b2) (c2) 

(d1) (d2) 

Fig. 12 Result of the estimation of the first-order and second-order variograms from samples (Fig. 10) 
 

(a2) 
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samples’. We should build new models under anisotropy 
assumption and research them. With the development of the 
data of remote sensing, the spatial resolution will be higher and 
higher. The Gamma distribution for modeling the intensity of 
SAR image is not applicable. Instead of Gamma distribution, 
some elaborate statistic distributions, for example: K 
distribution (Keith et al. 2006), are needed for the purpose.  
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