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ABSTRACT:

In this paper we propose a novel workflow for the estimation of global image orientations given relative orientations between pairs
of overlapping images. Our approach is convex and independent on initial values. First, global rotations are estimated in a relaxed
semidefinite program (SDP) and refined in an iterative least squares adjustment in the tangent space of SO(3). A critical aspect is the
handling of outliers in the relative orientations. We present a novel heuristic graph based approach for filtering the relative rotations that
outperforms state-of-the-art robust rotation averaging algorithms. In a second part we make use of point-observations, tracked over a
set of overlapping images and formulate a linear homogeneous system of equations to transfer the scale information between triplets of
images, using estimated global rotations and relative translation directions. The final step consists of refining the orientation parameters
in a robust bundle adjustment. The proposed approach handles outliers in the homologous points and relative orientations in every step
of the processing chain. We demonstrate the robustness of the procedure on synthetic data. Moreover, the performance of our approach
is illustrated on real world benchmark data.

1 INTRODUCTION

Image orientation (or structure-from-motion, pose estimation)
comprises the computation of the global translation and rotation
in a single coordinate system for every element of a set
of overlapping images. Although this is a well understood
problem in photogrammetry, it gained recent interest with the
increasing amount of images available, e.g. from photo-sharing
websites (Pollefeys et al., 2004; Agarwal et al., 2009; Wu et
al., 2011). Moreover, novel global models evolved recently
thanks to increasing computational power and recent research
in optimization techniques (Martinec and Pajdla, 2007; Arie-
Nachimson et al., 2012; Sinha et al., 2012; Jiang et al., 2013;
Moulon et al., 2013; Özyesil et al., 2015). These models use
all relative orientations between pairs or triplets of images at
once (which is the reason for the term global in this context)
to often subsequently estimate global rotations and translations.
In contrast to sequential models, which start with a small set
of images, append further images and refine the solution with
intermediate bundle adjustment to reduce drift, global models
often do not suffer from the arbitrary selection of the initial
set and the order in which images are appended. However,
while achieving impressive results, many global approaches tend
to over-relax the problem of estimating rotations in terms of
omitting the orthonormality constraint (Martinec and Pajdla,
2007; Sinha et al., 2012; Jiang et al., 2013; Moulon et al., 2013)
or suffer from degeneracy for collinear camera composition
(Govindu, 2001; Arie-Nachimson et al., 2012).

In this paper we present a novel convex global image orientation
approach that primarily focuses on the accuracy of the parameters
to be estimated (Fig. 1). The main contribution of this
paper is twofold: First, we propose a novel combination of a
robust, convex and maximum likelihood estimation of global
rotations considering covariance information propagated from
homologous points. Second, we extend the linear translation
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Figure 1. Workflow of our image orientation model.

estimation algorithm of Cui et al. (2015) and add a simple outlier
detection strategy using local spatial intersection.

We evaluate the performance of the proposed approach with
respect to its robustness using synthetic data. Further experiments
on benchmark data demonstrate the value of our work regarding
its accuracy for the derived orientations compared to existing
approaches.
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2 RELATED WORK

Research in the field of global image orientation is currently very
active. Often, the problem is visualized by a graph in which
the vertices represent the unknown global orientations that are
connected by an edge if a relative orientation has been estimated.
In recent years many works were published that, while pursuing
different algorithms, address the problem by estimating rotations
and translations separately (Martinec and Pajdla, 2007; Arie-
Nachimson et al., 2012; Sinha et al., 2012; Jiang et al., 2013;
Moulon et al., 2013; Arrigoni et al., 2015). In the following we
first review related work on estimating rotations followed by an
overview of existing work towards translation estimation.

Rotation estimation: One of the first publications compris-
ing the estimation of global rotations from relative estimates is
the fundamental work of Govindu (2001) in which rotations rep-
resented as quaternions are estimated in a least squares sense
without applying a unit or sign constraint. A few years later, in-
spired by developments in group theory (e.g. (Kanatani, 1990)),
Govindu (2004) proposed a novel model that iteratively and jointly
estimates rotations and translations in their respective Lie alge-
bra. Martinec and Pajdla (2007) propose a least squares estima-
tion of rotations in which the orthonormality is enforced by a
subsequent mapping to the nearest member of SO(3) using the
Frobenius norm. It is also noted that an unconstrained optimiza-
tion using quaternions as in Govindu (2001) should not be used
in practice because the optimal solution can be far from a valid
quaternion regarding the unit-norm constraint. In Fredriksson
and Olsson (2012), who propose a SDP (i.e. the dual problem)
to provide a lower bound for the optimal rotations, it is shown
that the local linear solution from Govindu (2001) including a
single norm constraint for all quaternions in most cases leads to
the global optimal solution. The work of Arie-Nachimson et al.
(2012) extends the linear model of Martinec and Pajdla (2007)
and proposes a spectral method that is more robust and can be
cast into a SDP that comprises an orthogonality constraint.

In our model we go one step further and extend the SDP by
a convex constraint that requires the resulting rotation matrices
to be in the convex hull of SO(3), yielding a compatible
linear matrix inequality constraint. Subsequently, we refine
the rotations in an iterative least squares estimation similar to
Govindu (2004), but including covariance information for the
relative rotations as prior. Although rotations are estimated
iteratively, the algorithm is efficient and has the advantage that it
is in SO(3), respectively so(3), hence no subsequent adaptation
of rotations is needed.

For enhancing robustness Hartley et al. (2011, 2013) proposed an
iterative implementation of the Weiszfeld algorithm (Weiszfeld
and Plastria, 2009) that minimizes the L1 norm in sequential
graph optimization. Chatterjee and Govindu (2013) present a
two-step procedure, first comprising a L1-norm averaging and
then a M-estimation. Similar to the model presented in this work
Enqvist et al. (2011) try to find outliers using cycle errors in the
view graph starting from a most reliant minimum spanning tree
(MST) and then adding further edges step by step. While the
approach is not limited by a cycle length as in Zach et al. (2010)
several search heuristics have to be applied to cover the case the
initial MST is affected by outliers.

Our approach is similar to Zach et al. (2010); Enqvist et al. (2011)
but is based on a breadth-search propagation through the view
graph.

Translation estimation: Recent related work in the field
of translation estimation with known rotations can be roughly

divided into two categories: First, there are quasiconvex
L∞-norm optimizations solving a second-order-cone program
(Hartley and Schaffalitzky, 2004; Ke and Kanade, 2007; Martinec
and Pajdla, 2007; Kahl and Hartley, 2008; Olsson and Kahl,
2010) in which translations and object points are estimated
simultaneously. These approaches allow a globally optimal
solution at the price of high outlier sensitivity and computational
inefficiency for large problems. Second, models were suggested
comprising the relative translation direction that treat orientations
and structure separately (Govindu, 2001, 2004; Jiang et al., 2013;
Moulon et al., 2013; Özyesil and Singer, 2015; Cui et al., 2015).
Our model belongs to the second category.

Linear models founded on pairwise relative translation directions
(Govindu, 2001; Arie-Nachimson et al., 2012) can be solved
efficiently but easily fall victim to degeneracy for collinear
camera composition. Triplet constraint approaches (Jiang et al.,
2013; Moulon et al., 2013) exhibit stronger resistance to this
degeneracy but depend on a highly connected triplet graph. In
Jiang et al. (2013) a geometric error is minimized based on a
linear formulation of a “triangulation” of a third camera location
from two relative directions. Moulon et al. (2013) minimize the
L∞-norm of relative Euclidean distances in a linear program.
The work of Özyesil and Singer (2015) minimizes the same
objective function applying a more robust L1-norm formulated
in an iterative least squares algorithm. To be robust against
outliers in homologous points they propose a pairwise direction
estimation using averaged rotations instead of relative estimates.
In Özyesil et al. (2015) global translations are recovered from
relative directions using semidefinite programming enabling
constraints that avoid a clustering of the solution.

We adapt the model of Cui et al. (2015) using tracked point
observations to transfer the scale between images. The strength
of this model lies in the ability of processing images with weak
overlap. We extend their model by a simple outlier detection
via local spatial intersection for points that survived the robust
estimation of relative orientations.

The remainder of this paper is structured as follows: In Section 3
we describe the estimation of relative orientations. A focus lies
on a formal definition of our novel graph based outlier detection
algorithm. Section 4 is dedicated to rotation averaging. First,
our convex SDP formulation is examined followed by an insight
into our iterative refinement model. The estimation of global
translations is developed in Section 5. Our model is evaluated
in section 6 and finally conclusions are given in Section 7.

3 ESTIMATION OF RELATIVE ORIENTATIONS

Our model is founded on a set of homologous points for a set
of calibrated images. We assume this set to include outliers
which is a logical assumption considering practical applications.
Hence, besides estimating precise pairwise relative orientation
parameters, the focus lies on first providing an outlier-free set of
homologous points and subsequently on detecting inconsistencies
in the estimated relative orientations. As an initial step we
deploy a robust estimation of the essential matrix in a RANSAC
estimation (Fischler and Bolles, 1981). While many outliers are
rejected during this procedure, some may accidentally fulfill the
epipolar constraint and remain in the set of homologous points.
One idea is to use the more robust trifocal tensor for relative
orientations (Jiang et al., 2013; Moulon et al., 2013). However,
we stick to image pairs and apply a subsequent constrained
iterative least-squares adjustment of the relative orientation
parameters to detect remaining outliers in the correspondences.
We see two benefits of this approach: First, the orientations
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are refined leading to a superior overall accuracy and second,
full covariance information for every relative orientation can
be extracted which is useful for the following computations.
Of course, our approach is also applicable to pairwise relative
orientations from trifocal tensors.

3.1 Constrained Iterative Optimization

Let R0
ij ∈ SO(3) and t0

ij ∈ R3 be the relative rotation and
translation for the image pair {i, j} with (i, j) ∈ {1, . . . , n}, i 6=
j and a set of n images. We want to refine these values for every
image pair {i, j} using the nonlinear residual function

vij = mT
j RT

ij [tij ]×mi , (1)

with mi,j = K−1
i,j xi,j being the image coordinates of the

homologous points normalized with the inverse calibration
matrix K−1

i,j and [·]× mapping a vector to a skew-symmetric
matrix. While this comprises the estimation of six parameters,
only five of them are linearly independent. We propose the
following optimization model:

minimize
Rij ,tij

vTijvij (2)

subject to Rij ∈ SO(3), |tij | = 1 .

Problem (2) is solved in a Gauss-Helmert model by linearizing
Eq. (1) using R0

ij and t0
ij as initial values. The parameters

are improved iteratively until convergence. Observations are
weighted based on their variances (see Förstner et al. (2004),
p. 813) which allows for a final elimination of remaining
outliers. Lastly, we derive the covariance matrices for each
relative orientation ΣRij and Σtij .

3.2 Graph Optimization

The goal of graph optimization is the detection of defective
relative orientations. Let E denote the set of all relative
orientations, estimated as described in the previous section. Then,
we can formulate the undirected graph G = (V,E) in which V
corresponds to the set of global orientations {Ri, ti}. Every pair
of vertices in V is connected by an edge if a relative orientation
between the corresponding images has been estimated. In
general, the number of edgesm in G is higher than the number of
vertices n which induces redundancy, a prerequisite for outlier
detection. We propose a sequential graph propagation model
that uses the concatenation constraint of rotation matrices Rj =
RiRij to find defective relative orientations. In the following we
concentrate on rotations and use E and V representing a set of
relative and global rotations, respectively, with a graph structure
equivalent to G.

The first starting vertex Vi,0, without loss of generality, is the
vertex with maximum degree. Successively, global rotations are
propagated to adjacent vertices adopting a different vertex as
starting point in every sequence. In the following, the starting
point for the iteration t ∈ {1, . . . , n − 1} is the vertex whose
rotation was propagated by the maximum number of adjacent
vertices: Vi,t = Vmax |Ei,t−1|, with Ei,t−1 ⊆ Ei ⊆ E being
the set of edges used for the propagation of Vi at sequence t− 1.

If, during propagation from i to j, a vertex Vj already exhibits an
estimated rotation we calculate the angular similarity (Hartley et
al., 2013) of both proposals {Vj,t,Vi,tEij} and decide, respecting
a predefined threshold τs, whether both rotations coincide or
one estimation is affected by an outlier. In the former case
both estimations are averaged using single rotation averaging
(Hartley et al., 2013) weighted with the covariance information.

In the latter case we consult the whole set of edges Ej connected
with the respective vertex Vj and consider all already estimated
vertices to make an estimation for Vj . A new estimation is
averaged from the largest subset of compliant rotation matrices
E+
j ⊆ Ej (matrices, which lead to rotations whose differences are

smaller than τs). With differing relative rotations E−j = Ej \ E+
j ,

all members of E−j are classified as outliers if |E+
j |/|E

−
j | > τc,

with τc being another threshold. Finally, after n sequences, all
relative rotations are checked again if they support the estimation
which leads to a final classification into E+ and E−. A pseudo
code for the graph optimization is provided in Algorithm 1.

Our model is based on the assumption that there exists a
redundant number of relative rotations used to estimate global
rotations. Moreover, we argue that outliers are uniformly
distributed, i.e. it is unlikely that there will be a consistent
solution using only outliers for the estimation of a rotation. Given
these constraints, our algorithm will converge (i.e. it behaves
like a breadth-search) and we end up with a set E− ⊆ E
defining deficient relative rotations (outliers). In the following
only relative rotations in E+ are consulted.

Algorithm 1 Graph Optimization

1: initialization: Vi,0, E− = ∅
2: propagation from Vi,0
3: for every Vi,t, t ∈ {1, . . . , n− 1} do
4: for every Eij ∈ Ei do
5: propagation from Vi,t
6: if cycle closed then
7: if sim(Vj,t,Vi,tEij) ≤ τs then
8: Vj,t ← mean(Vj,t,Vi,tEij)
9: else

10: find E+
j ⊆ Ej

11: Vj,t ← mean(Vk,tEkj), ∀Ekj ∈ E+
j

12: if |E+
j |/|E

−
j | > τc then

13: E− ← {E−, E−j }
14: Vi,t+1 ← Vmax |Ei,t−1

|
15: for every {i, j} ∈ {1, . . . , n} do
16: check sim(Eij ,VTi Vj) and update {E+, E−}
17: E+ ← E \ E−

4 ROTATION AVERAGING

In the previous section we demonstrated the derivation of a
consistent set of precise relative rotations E+ including full
covariance information for each element in E+. Our goal during
rotation averaging is first to find an optimal set V∗ corresponding
to global rotations and subsequently refine it to derive a set V∗+.
First, we describe a convex relaxed SDP for the generation of
initial rotations (Sec. 4.1), followed by a demonstration of our Lie
algebraic least squares refinement referring to (Govindu, 2004)
(Sec. 4.2).

4.1 SO(3) Relaxed Optimization

Like most image orientation or structure-from-motion approaches,
e.g. (Martinec and Pajdla, 2007; Arie-Nachimson et al., 2012;
Arrigoni et al., 2015), we aim at minimizing the cost function
arising from the concatenation constraint of rotations:

minimize
{R1,...,Rn}

n∑
(i,j)=1

‖ RT
i Rj −Rij ‖F (3)

subject to R1, . . . ,Rn ∈ SO(3) ,
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with ‖ · ‖F being the Frobenius norm. The SO(3)-constraint
in (3) includes the nonlinear constraint det(R1, . . . ,Rn) =
1. We are guided by recent work on optimization on special
groups, e.g. (Horowitz et al., 2014; Saunderson et al., 2014).
These authors demonstrate that the convex hull of SO(3) can
be described as a linear matrix inequality, yielding a valid SDP-
formulation: a matrix R is inside the convex hull of SO(3), i.e.
R ∈ conv(SO(3)), if and only if

1−R11 −R22 +R33 R13 +R31

R13 +R31 1 +R11 −R22 −R33

R12 −R21 R23 −R32

R23 +R32 R12 +R21

(4)

R12 −R21 R23 +R32

R23 −R32 R12 +R21

1 +R11 +R22 +R33 R31 −R13

R31 −R13 1−R11 +R22 −R33

 � 0,

with Rrow,col denoting elements in R and [·] � 0 meaning
positive semi definiteness of a matrix.

In order to solve optimization problem (3) we define matrix
M being composed of a comprehensive pairwise multiplication
of all unknown rotations, hence if D = [R1, . . . ,Rn],
{R1, . . . ,Rn} ∈ SO(3) then M = DTD,

M =


I3×3 RT

1 R2 · · · RT
1 Rn

RT
2 R1 I3×3 · · · RT

2 Rn

...
...

. . .
...

RT
nR1 RT

nR2 · · · I3×3

 . (5)

Thus, M is a symmetric matrix composed of 3 × 3 submatrices
RT
i Rj . We refer to these submatrices using indices i and j

as row- and column-index, respectively. Our objective function
is derived as a function of those submatrices Mij of M, for
which a corresponding relative rotation Rij has been estimated.
From Eq. (6) we can derive the linear cost function f (Mij) =
−tr
(
MijR

T
ij

)
with j ≥ i, hence using the upper triangular

part of M (see Appendix Eq. (17) for a derivation of the cost
function). We derive the following SDP:

minimize
{R1,...,Rn}

n∑
(i,j,k,l)=1

f (Mkl) (6)

subject to M � 0, Mkk = I3×3

Mkl ∈ conv (SO(3)) .

In Saunderson et al. (2014) it is empirically demonstrated on
synthetic examples that this formulation often leads to rotations
being part of SO(3) and achieves superior results to O(3)-based
relaxations as used e.g. in Arie-Nachimson et al. (2012). It is
important to note that (6) is not robust against outliers; we argue
that all defective rotations have already been eliminated during
graph optimization. Using the formulation in (6) we elegantly
achieve an optimal set of absolute rotations V∗ by a singular value
decomposition (SVD) of the optimal matrix M∗ that does neither
depend on the order during propagation nor the initial starting
vertex.

4.2 Lie Algebraic Averaging

In order to further refine the estimated rotations and find a
set of improved rotations V∗+ = {R∗+1 . . .R∗+n } we perform
a Lie algebraic least squares optimization using the rotations
in V∗ as initialization and the covariance information for the
relative rotations as prior information for weighting. We follow

in spirit the algorithm of Govindu (2004) but estimate the
rotations only. Note that in principle the formulation allows
an iterative reweighting to find remaining outliers. We assume
outlier elimination has been done exhaustively during graph
optimization (Sec. 3.2) and merely augment the influence of
accurate relative rotations against weaker ones, i.e. finding a
weighted average solution. We linearize the functional model
∆Rij = RiRijR

T
j using the matrix logarithm, log(·) :

SO(3) → so(3), the first order approximation of the Baker-
Campbell-Hausdorff -formula (Gilmore, 1974): log (XY) ≈
log (X) + log (Y) ,X,Y ∈ SO(3) and initial values R∗1,...n ∈
V∗:

log (∆Rij) = log
(
R∗+i R∗Ti R∗iRijR

∗T
j R∗jR

∗+T
j

)
(7)

log (∆Rij) ≈ log
(
R∗+i R∗Ti

)
+ log

(
R∗iRijR

∗T
j

)
. . . (8)

− log
(
R∗+j R∗Tj

)
.

The Lie algebra so(3) comprises all skew-symmetric matrices
in R3×3. Let [·]−1

× : R3×3 → R3, v∆R be a [3m × 1]

vector, stacked with [log (∆Rij)]
−1
× , for all Rij ∈ E+ and let

r∗+i =
[
log
(
R∗+i R∗Ti

)]−1

× . We then establish the following
optimization problem:

minimize
{r∗+1 ,...,r∗+n }

vT∆RPv∆R . (9)

P is a [3m × 3m] weight matrix, computed from every
individual covariance matrix for each Rij in order to control
their influence on the solution {R∗+1 , . . . ,R∗+n }. Since the
objective is linearized at the initial values, the optimization
is performed iteratively until convergence taking the improved
rotations as initialization for the subsequent iteration: R∗+i =

exp
([

r∗+i
]
×

)
R∗i . Note that the functional model is not affected

by the update (the Jacobian consists of positive and negative unit
matrices), which makes this local optimization efficient.

5 TRANSLATION ESTIMATION

In this section we describe how global translation parameters are
estimated for every image in V using the normalized translation
directions t0

ij , the global rotations in V∗+ and the observations
of points that are visible in at least three overlapping images.
We follow the approach developed in Cui et al. (2015) and use a
minimal configuration of three images that share the observation
of a single point in object space for which a linear constraint is
defined. Instead of performing a L1 optimization, we combine a
simple outlier elimination and a maximum likelihood estimation
of the unknown global translations. In Sec. 5.1 we review
the construction of linear constraints from tracked observations
whereas Sec. 5.2 is dedicated to our extension, i.e. the
deployment of appropriate conditions for the observations to be
considered an inlier.

5.1 Linear Constraints from Point Tracks

In most occurrences during pose estimation there will be object
points that are observed in three or more images. For the ease of
understanding let there be one object point X which is observed
in a set of images I. The position of this point in object space can
be estimated for every possible pairwise combination of images
in I via spatial intersection, given that a relative translation
direction between the images is available. Of course, every
reconstruction is valid only in a local coordinate system spanned
by each pair of images. Without loss of generality this local
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coordinate system is located at one of the image projection center
and the scale is set according to a distance of 1 between the
two projection centers. Since global rotations for the images
are known, all local reconstructions are rotated consistently.
With the assumption that all local reconstructions must meet
the same position in object space, which we implicitly manifest
by assuming that the observations in image space represent the
same point, we can establish a constraint concerning the scale of
individual relative translation directions t0

ij .

More formally, using image i and j the point X is computed by

Xij =
1

2

(
Xi + Xj

)
(10)

Xi = ti + siji mX
i , Xj = tj + sijj mX

j ,

with ti,j being the projection centers of image i, j1, mX
i,j

being the unit-length vector from ti,j to the respective image
coordinates of point X in image i, j and siji,j being scale
factors for image i, j that define the distance from ti,j to Xi,j ,
respectively (see Fig. 2 top left). siji,j can be computed in
a linear adjustment, finding the minimal distance between two
skew rays given by mX

i,j . These rays can also be described using
the relative translation direction t0

ij . All three rays are known,
hence we can compute the rotation matrices rotating t0

ij to mX
i,j ,

i.e. mX
i = R

α
ij
i

t0
ij and mX

j = R
α
ij
j

(
−t0

ij

)
to derive the

following equation:

Xij =
1

2

(
ti + siji R

α
ij
i

t0
ij + tj + sijj R

α
ij
j

(
−t0

ij

))
. (11)

Assuming point X is also observed in image k (and a relative
orientation {R0

jk, t
0
jk} has been estimated between j and k) there

is another solution for X given by:

Xjk =
1

2

(
tj + sjkj R

α
jk
j

t0
jk + tk + sjkk R

α
jk
k

(
−t0

jk

))
.

(12)

With t0
ij = tj − ti and analogously for all relative translations

we equate Eq. (11) with (12) and derive

ti + Ci (tj − ti) + tj + Cij
j (ti − tj)

= tj + Cjk
j (tk − tj) + tk + Ck (tj − tk) (13)

⇔
(
Ci −Cij

j

)
(tj − ti) + ti + tj

=
(
Cjk
j −Ck

)
(tk − tj) + tj + tk , (14)

with
Ci = siji R

α
ij
i
, Cij

j = sijj R
α
ij
j
,

Cjk
j = sjkj R

α
jk
j
, Ck = sjkk R

α
jk
k
.

From Eq. (14) we build the linear homogeneous constraint:

ti
(
Cij
j −Ci + I3×3

)
+ tj

(
Ci −Cij

j + Cjk
j −Ck

)
. . .

+tk
(
Ck −Cjk

j − I3×3

)
= 0 . (15)

Eq. (15) relates to the pairwise combination ij and jk. For
other combinations (like {ij, ik} or {ik, jk}) the constraint has
to be adapted. If the point is measured in more than three images
a constraint can be formulated for every independent triplet of
images. However, most likely there will not be a single point
that is measured in all images in V. Thus, in order to be able

1In the local coordinate system mentioned above this would mean that
ti = [0, 0, 0]T and tj = R∗+j t0

ij

t0
ij

αi

αj
ti

tj

Xi
Xjsiji mX

i

sijj mX
j

t0
ij

t0
jktj

ti

tk

X

ti

tj tk

tl

X1 X2

Figure 2. Geometry of spatial intersection minimizing the
distance between two skew lines mX

i,j (upper left), constraint
for an image triplet and two individual spatial intersections of
X to meet at the same position (upper right) and overlapping
point tracks allow the estimation of translations which are not
connected with a single point (bottom).

to estimate an absolute translation for every image, overlapping
point tracks have to be found (see Fig. 2 bottom).

All constraints that are composed as described in Eq. (15) are
stacked into a single matrix C in order to solve the following
linear optimization problem

minimize
{t1,...,tn}

‖Ct‖ (16)

subject to ‖t‖ = 1 ,

with t being a [3n×1] vector including all unknown translations.
The norm-constraint in (16) avoids the obvious solution t =
0 and defines the scale of the solution which can be selected
arbitrarily. Problem (16) minimizes a geometric error because the
linear constraints concern the distance between the intersection
rays. The solution to (16) is computed with a SVD of C, more
precisely taking the rightmost column of V, of course excluding
zero-singular values.

5.2 Outlier Elimination from Spatial Intersection

The solution to (16) is the least squares solution of a
homogeneous linear equation system. It is sensitive to outliers
which may occur due to matching errors or errors in the relative
orientations used. Cui et al. (2015) perform a L1 optimization
which clearly improves robustness but, nevertheless, outliers
remain in the set of constraints. Since we perform an exhaustive
filtering of relative rotations for rotation averaging (see Sec.
3.2) and transfer this result to relative translations we argue that
these translations are outlier-free. Note that we already eliminate
outliers in the homologous points during the estimation of relative
orientations (see Sec. 3.1). Before translation estimation,
however, rotations have been averaged (see Sec. 4) and points
that withstood elimination in the first place are not necessarily
inliers anymore. Thus, our goal is to identify and eliminate
outliers in the homologous points before (16) is solved. A simple
idea to achieve this goal is to consider the reprojection error
of each individual local spatial intersection and exclude those
observations whose reprojection error exceeds a certain threshold
τr . The reprojection error is high if either the matching or the
relative orientation (or both) is wrong. Because we precluded
the latter to be correct, only the former option is possible. Note
that this means that we are also able to detect those false relative
orientations which would be apparent if all points for one image
pair fail our reprojection constraint. However, this did not happen
in any of our experiments.
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Although this filtering works fine in most occasions, two critical
aspects have to be taken care of. First, it may happen that one
image does not have any constraints at all. In this case the
affected image has to be deleted from V. Second, it is necessary
that all images are connected as depicted in Fig. 2 bottom, i.e.
single point tracks have to overlap in the edges of the graph.
This has to be checked after the filtering. In case parts of the
graph are not connected sufficiently, the estimation can be split
into subproblems and the individual solutions can be merged
afterwards, e.g. using structure information, provided that all
vertices are covered.

6 EXPERIMENTS

In this section we present experiments we conducted with our
model. First, we examine the robustness of our approach based
on a synthetic set of images (Sec. 6.1). Thereafter in Sec. 6.2,
we evaluate different versions of our model by means of the well-
known benchmark datasets (Strecha et al., 2008) and compare our
results to recent related works.

6.1 Robustness

In a first experiment we evaluate the robustness of our model. We
use a linear image sequence in which 50 images are simulated
along a 1-dimensional path, all pointing in the same direction.
In total 2000 object points are generated, distributed as depicted
in Fig. 3. The projections into the images are corrupted with
an artificial normally distributed noise of 0.5px. It is important
to note that the density of the resulting graph (i.e. the relation
between the existing and the maximal possible number of edges)
is approximately 0.34, because the ability to detect outliers in
the graph depends on the redundancy of relative orientations.
In this setting we compare different rates of outliers in the
relative rotations. An outlier is generated by multiplying the
estimated relative rotation with a random rotation matrix with
15◦ ≤ {ω, φ, κ} ≤ 345◦. For every investigated outlier rate, 100
individual iterations were conducted in which the set of outliers
was randomly generated based on the corresponding outlier rate.
We select τs = 5◦ and τc = 1.5.

As a state-of-the-art approach we select the L1RA and L1-
IRLS model of Chatterjee and Govindu (2013)2 and compare our
results to theirs. The evaluation of L1RA and L1-IRLS is based
on the same relative rotations we use for our model. Results
are depicted in Fig. 4, note the logarithmic scale of the y-axis.
Outlier configurations which lead to non-estimable rotations are
not considered for all compared models. Until 40% of outliers in
the relative rotations our model produces accurate results which
implies that all defective rotations are filtered out. At 45%
there is one case in which not all outliers have been removed
which affects the mean angular error significantly. However, the
mean angular error is constantly smaller than in both compared
approaches for all investigated rates of outliers and also produces
acceptable results at highest outlier rates whose angular error is
in the range of a few [◦]. The false positive rate is around 10% at
50% outliers.

6.2 Benchmark Datasets

In this section we compare different settings of our model
based on benchmark data with known ground truth (Strecha
et al., 2008). The interior orientation is taken from EXIF

2This efficient model was used to estimate global rotations by several
recent publications (Wilson and Snavely, 2014; Özyesil and Singer, 2015;
Cui et al., 2015). The source code is available online
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Figure 4. Comparison of our results (blue) with results from
Chatterjee and Govindu (2013) (green and yellow) showing the
mean angular error to the ground truth as a function of the rate of
outliers in the relative rotations.

information3. In Tab. 1 we listed the mean angular error of
our rotation estimation after graph optimization (GO), SO(3)-
relaxed SDP (SDP), least squares optimization (ls) and using
unit weights instead of covariance information (I). Again we
compared our results with the L1-IRLS model of Chatterjee and
Govindu (2013) and three further approaches from related work.
One can see that the local optimization has a strong effect on
the accuracy of the estimated rotations whereas the usage of
covariance-based weights only sometimes has a marginal positive
effect on the results, for castle-P30 there is a small negative
effect. We argue the positive effect would be visible for more
complex image sets in which the quality of the relative rotations
is more diverse. Moreover, there is no gain between GO+ls
and GO+SDP+ls except for Herz-Jesu-P25. As in the synthetic
example in Sec. 6.1 our model achieves more accurate results
than (Chatterjee and Govindu, 2013). This effect is almost
negligible for fountain-P11 and Herz-Jesu-P25, however the two
castle-datasets show a significant improvement. Probably this is
due to the higher amount of outliers in the relative orientations,
caused by repetitive structure. We also compared our results to
the rotations estimated in Jiang et al. (2013), Jiang et al. (2015)
and Arie-Nachimson et al. (2012) where our model achieves
superior results before and especially after bundle adjustment.
However, their results are taken from the respective papers
hence the shown values are based on a different set of relative
orientations.

An evaluation of the global translations is given in Tab. 2. In
all our experiments we set the maximum number of point tracks
to 30 while one track includes a minimal set of points so that

3As initial values for the principal point we used the center of the
image and the focal length from EXIF meta-information
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before bundle adjustment after bundle adjustment
GO-SDP GO-ls GO-SDP-ls GO-SDP-ls-I L1-IRLS (1) (2) GO-SDP-ls (1) (3)

fountain-P11 0.282 0.249 0.249 0.250 0.289 0.517 0.45 0.027 0.195 0.420
Herz-Jesu-P25 0.480 0.207 0.206 0.206 0.270 0.573 0.39 0.021 0.188 0.348
castle-P19 1.363 0.647 0.647 0.676 1.348 - - 0.076 - -
castle-P30 1.200 0.583 0.583 0.577 0.724 1.651 0.96 0.039 0.480 -

Table 1. Mean angular error of different versions of our model: graph optimization (GO), local least squares adjustment (ls), SO(3)-
relaxed SDP (SDP), unit weights (I). We compared our results to the robust L1-IRLS model of Chatterjee and Govindu (2013), the
global method in Jiang et al. (2013) (1), the DSE(BA3) in Jiang et al. (2015) (2) and the spectral method in Arie-Nachimson et al.
(2012) (3). Note that no results for castle-P19 are provided in (1) and (2) and additionally no results for castle-P30 in (3). The
rightmost column shows the result after bundle adjustment. All errors are given in [◦].

before bundle adjustment after bundle adjustment
TE TE-SI (1) (2) TE-SI (1) (2) (3) (4)

fountain-P11 0.038 0.035 0.053 0.072 0.007 0.014 0.011 0.007 0.027
Herz-Jesu-P25 0.109 0.083 0.106 0.061 0.013 0.064 0.056 0.026 0.052
castle-P19 4.873 0.428 - - 0.081 - - - -
castle-P30 4.688 1.312 1.158 1.620 0.044 0.235 0.200 0.1667 -

Table 2. Mean translation error of different versions of our model given in [m]: translation estimation (TE), spatial intersection outlier
elimination (SI). We compared our results to the results of the global method in Jiang et al. (2013) (1) and the DSE(BA3) in Jiang et al.
(2015) (2). The five rightmost columns show the results after bundle adjustment and an additional comparison to Cui et al. (2015) (3)
and Arie-Nachimson et al. (2012) (4).

(a) fountain-P11 (b) Herz-Jesu-P25

(c) castle-P19 (d) castle-P30

Figure 5. Visualization of the orientation results of our model
with BA on benchmark image sequences.

every image is connected. We compare two different versions of
our model, with and without using outlier elimination by spatial
intersection (SI). We set the threshold for the outlier elimination
to τr = 2px. It can be seen that an outlier elimination in the
homologous points has a positive effect especially on the more
complex datasets Herz-Jesu-P25, castle-P19 and castle-P30. The
real benefit of our outlier elimination reveals itself after bundle
adjustment in comparison with the results of Cui et al. (2015)
(3). While both models performs equally well on fountain-P11,
our model outperforms Cui et al. (2015) for Herz-Jesu-P25 and
castle-P30. A visualization of the estimated poses after bundle
adjustment can be seen in Fig. 5.

7 CONCLUSION

In this paper we presented a novel approach for a convex
estimation of global image orientations from relative orientations.
Our model is divided into three essential steps, the estimation

of a consistent set of relative orientations, the estimation of
global rotation parameters and finally the estimation of global
translations. The main contributions in this paper are a novel
heuristic approach to filter relative rotations and a robustification
of a linear estimation of global translation parameters based
on local spatial intersection. Our experiments show that the
filtering of relative rotations works well on synthetic and real
data and that our approach outperforms a state-of-the-art robust
rotation averaging algorithm. The simple way in which we
eliminate remaining outliers in the homologous points achieves
a significant benefit as we showed with real benchmark data. The
combination of a SO(3)-relaxed SDP with a subsequent local
optimization shows promising results. We think the improvement
will be more significant for larger data sets.

In the future we will focus on processing unordered datasets
from the Internet and in the course of this try to find effective
approaches to formulate criteria for the generation of an
appropriate MST in order to cover the increasing computational
effort which greatly affects the orientation quality. We will
also conduct further experiments on the benchmark data using
ground truth interior orientation to be able to show additional
comparisons to various related approaches.

APPENDIX

Relation between problem (3) and (6)
Let dRij = RT

i Rj −Rij . Then:

‖ dRij ‖F=
√

tr
(
dRijdRT

ij

)
=
√

tr
(
(RT

i Rj −Rij)
(
RT
j Ri −RT

ij

))
=
√

tr
(
2I− 2RT

i RjRT
ij

)
, (17)

because tr
(
RT
i RjR

T
ij

)
= tr

(
RijR

T
j Ri

)
.

We can extract the constant part from (17) and square it to derive
the final form as in (6): −tr

(
RT
i RjR

T
ij

)
= −tr

(
MijR

T
ij

)
.
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