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ABSTRACT: 

 

In this paper we describe learning of a descriptor based on the Siamese Convolutional Neural Network (CNN) architecture and 

evaluate our results on a standard patch comparison dataset. The descriptor learning architecture is composed of an input module, a 

Siamese CNN descriptor module and a cost computation module that is based on the L2 Norm. The cost function we use pulls the 

descriptors of matching patches close to each other in feature space while pushing the descriptors for non-matching pairs away from 

each other. Compared to related work, we optimize the training parameters by combining a moving average strategy for gradients 

and Nesterov's Accelerated Gradient. Experiments show that our learned descriptor reaches a good performance and achieves state-

of-art results in terms of the false positive rate at a 95% recall rate on standard benchmark datasets. 
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1. INTRODUCTION 

Feature based matching for finding pairs of homologous points 

in two different images is a fundamental problem in computer 

vision and photogrammetry, required for different tasks such as 

automatic relative orientation, image mosaicking and image 

retrieval. In general, for a feature based matching algorithm one 

needs to define a feature detector, a feature descriptor and a 

matching strategy. Each of these three modules is relatively 

independent of the others, therefore a combination of different 

detectors, descriptors and matching strategies is always possible 

and a good combination might adapt to some specific data 

configurations or applications. The key problem of image 

matching is to achieve invariance against possible photometric 

and geometric transformations between images. The list of 

photometric transformations that affects the matching 

performance comprises illumination change, different 

reflections and the use of different spectral bands in the two 

images. Geometric transformations comprise translation, 

rotation and scaling as well as affine and perspective 

transformation; besides, the matching performance may also be 

affected by occlusion caused by a viewpoint change. In most 

cases, features for matching are extracted locally in the image, 

and a feature vector (descriptor) used to represent the local 

image structure is generated from a relatively small local image 

patch centred at each feature. Consequently, it is usually suf-

ficient to design a matching strategy that is invariant to affine 

distortion, because a global perspective transformation can be 

approximated well by an affine transformation locally. Such 

distortions are likely to occur in case of large changes of the 

view points and the viewing directions.  

 

Classical descriptors, like SIFT (Lowe, 2004) and SURF (Bay 

et al., 2008) are designed manually; they are invariant to shift, 

scale and rotation, but not to affine distortions. Some authors 

(Mikolajczyk and Schmid, 2005; Moreels and Perona, 2007; 

Aanæs et al., 2012) have evaluated the performance of detectors 

and descriptors against different types of transformations in 

planar and 3D scenes, using recall and matching precision as 

the main evaluation criteria (Mikolajczyk and Schmid, 2005). 

As discussed in (Moreels and Perona, 2007), their results show 

that the performance of classical detectors and descriptors drops 

sharply when the viewpoint change becomes large, because the 

local patches vary severely in appearance, so that the tolerance 

of classical feature detectors and descriptors is exceeded. 

 

One strategy to improve the invariance of descriptors to view 

point changes is to convert the descriptor design and descriptor 

matching into a pattern classification problem. By collecting the 

patches of the same feature in different images, one can capture 

the real differences between these patches. The process of 

designing invariant feature descriptors is equal to finding a 

mapping of those patches into a proper feature space where they 

are located more closely to the descriptors of the homologous 

features. By using an appropriate machine learning model, a 

loss based on the similarity of the learned descriptors is 

designed. In this case, decreasing the loss by learning helps to 

achieve a higher level of invariance.  

 

In this paper, we present a new method for defining descriptors 

based on machine learning. It extends our previous descriptor 

learning work on Convolutional Neural Networks (CNN; Chen 

et al., 2015). As a CNN has a natural "deep" architecture, we 

expect this architecture to have a stronger modelling ability 

which can be used to produce invariance against more 

challenging transformations, which classical manually designed 

descriptors cannot cope with. By conducting the training in a 

mini-batch manner, using a moving average strategy on 

gradients and a momentum term as well as Nesterov's 

Accelerated Gradient, we optimize the training parameters and 

achieve our trained descriptor. The main contribution of this 

paper is that we first introduce this training algorithm into 

descriptor learning tasks based on Siamese CNN. 
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2. RELATED WORK 

A substantial body of classical descriptors are designed in a 

manual manner, for instance SIFT (Lowe, 2004) or SURF (Bay 

et al., 2008). More recent manually designed methods like 

DAISY (Tola et al., 2010) introduced a more complex pattern 

of pooling operations. These descriptors have been considered 

to be a standard for quite some time. However, they cannot deal 

with large viewpoint changes. This is why affine-invariant 

frameworks for feature based matching have been proposed, e.g. 

ASIFT (Morel and Yu, 2009). By using an affine view-sphere 

simulation strategy, ASIFT transforms the two original images 

to many affine versions, then features and descriptors are 

computed based on those images. Afterwards the descriptors 

from affine distorted versions of the two original images are 

matched. As each feature has many different descriptors that are 

built on simulated affine views, ASIFT can cope with affine 

distortions better than other matching algorithms that only run 

on original images. However, ASIFT is computationally 

expensive and benefits from the view-sphere simulation 

matching scheme rather than from any improvements on 

viewpoint invariance of the feature descriptor. 

 

An alternative to using hand-crafted features and strategies such 

as sampling many potential viewpoints synthetically is 

descriptor learning (Bengio et al., 2013). To test if machine 

learning approaches can achieve better results, Brown et al. 

(2011) proposed a descriptor learning framework, in which a 

descriptor is composed of four different modules:  1) Gaussian 

smoothing; 2) non-linear transformation; 3) spatial pooling or 

embedding; 4) normalization. New descriptors can be derived 

by optimizing the configuration of the second and the third 

modules. An extension of their work which allows convex 

optimization in the training process is given in (Simonyan et al., 

2012; 2014). In (Trzcinski et al., 2012; 2015), a descriptor 

learning architecture based on the combination of weak learners 

by boosting is designed, in which the weak learners rely on 

comparisons of simple features. In the training process, the 

optimal features for the weak learners are determined along with 

the optimal matching score function. The resulting descriptor 

outperforms SIFT under nearly every type of transformation on 

the benchmark data set of Mikolajczyk and Schmid (2005).  

 

Another category of descriptor learning frameworks is built on 

CNN. CNN consists of multiple convolutional layers (LeCun et 

al. 1998). Invariant feature representation learning based on a 

so-called Siamese CNN has originally been proposed in 

(Bromley et al., 1993) to extract feature representations for 

signature verification, where the signatures from one person 

may change in complex ways, which are nearly impossible to 

capture with explicit models. The term Siamese refers to the fact 

that the same CNN architecture and the same parameters are 

applied to two input data sets with complex relative distortions. 

In (Hadsell et al., 2006), the Siamese CNN architecture was 

used to learn feature representations for digit recognition; as the 

same digit written by different people varies considerably, a 

Siamese CNN architecture is used to find an invariant feature 

representation that can map the high dimensional input data into 

a more discriminative feature space where "similar" digits are 

located more closely to each other. This feature space is defined 

by the output of the final convonlutional layer of the CNN. The 

use of multiple layers (i.e., the deep architecture) is the reason 

for the strong modelling ability of CNNs. This property fits well 

with the requirements for learning descriptors that are invariant 

against various types of transformations. Consequently, CNN 

have been used to train descriptors for patch comparison.  

The first patch comparison work based on the Siamese CNN 

was presented in (Jahrer et al., 2008). Jahrer et al. (2008) used 

the Siamese CNN to train the descriptor and compare the 

patches, but the training data was generated from image warps 

and dependent on input images, which makes this method less 

practical, because it always needs a prior simulation and 

training before image matching. In (Osendorfer et al., 2013), a 

Siamese CNN is used to train a descriptor; the paper focuses on 

the comparison of four different types of loss functions. More 

recently, the Siamese architecture was used to train patch 

descriptors to cope with dynamic lighting conditions 

(Carlevaris-Bianco and Eustice, 2014), feeding patches with 

severe illumination change into a Siamese CNN; illumination 

invariance that exceeds any hand-crafted descriptors is 

achieved. In (Lin et al., 2015), images taken from aerial and 

terrestrial views are fed into a Siamese CNN network, followed 

by applying a similarity function that indicates whether the two 

images contain identical scenes. Using this model, aerial and 

terrestrial view are linked, which can be used to generate a 

relation graph. However, the descriptor is applied to the whole 

image, not to patches centred around feature points, therefore it 

can only build rough connections on the level of complete 

images, and it cannot find precise point correspondence.  

 

Our work is closely linked to the work in (Han et al., 2015; 

Zagoruyko and Komodakis, 2015; Zbontar and Lecun, 2015). 

Han et al. (2015) and Zagoruyko and Komodakis (2015) did not 

only train the descriptor, but also a classifier to determine the 

matching label, which is called the metric network (Han et al., 

2015) and decision layer (Zagoruyko and Komodakis, 2015). 

This makes their model more complicated than ours. Zbontar 

and LeCun (2015) also calculate four extra layers of the metric 

network, but apply them to wide baseline dense stereo matching 

rather than to feature based matching for orientation. They 

currently achieve the best result on the KITTI benchmark.  

 

If one trained a metric function for pairs of patches, then every 

pair of feature patches should be fed into the network with 

metric layers when this descriptor is applied in real image 

matching or large scale image retrieval. In this case, the highly 

efficient search strategies such as Best Bin First (Beis and 

Lowe, 1997) in a KD tree cannot be used and the matching 

speed is seriously influenced. This reduces the practical value of 

a learned descriptor in feature based image matching. In 

contrast to those works, we therefore train a descriptor without 

a metric function for the two patches. 

 

 

3. METHODOLOGY 

In this section the Siamese descriptor learning architecture is 

described first. Then, details of the CNN used in this 

architecture are presented. Finally, we describe the method used 

to learn the parameters of the CNN. 

     

3.1 Siamese Descriptor Learning: Architecture 

In order to learn the CNN-based descriptor, we need pairs of 

training patches of which we know whether they represent 

homologous image features or not. In this context, it is 

important that the set of positive examples (the pairs that 

correspond to homologous key points) contains transformations 

that the learned descriptor should be tolerant to. The basic idea 

of the Siamese architecture for descriptor learning is to apply 

the same type of CNN using the same set of parameters  to 

each of the patches that should be checked for correspondence 
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and determine these parameters  by optimising a loss function 

of the L2 norm of the differences of the resultant descriptors. 

That is, by adjusting the parameters so that the L2 norm is as 

discriminative as possible in separating correct from incorrect 

matches we obtain a descriptor that should be tolerant to the 

type of geometric distortions that occur between positive 

examples in the training data; refer to Figure 1 for an 

illustration of the whole architecture. In the following section, 

the parameters are explained in detail. 

 

 
Figure 1. The architecture for Siamese CNN descriptor learning 

used in this paper. Green: input patches; Red: a CNN as 

depicted in figure 3; Dl, Dr: descriptors for the right and the left 

image patch, respectively. Blue: loss function. The two CNNs 

share the learned parameters  (orange). 

 

In the training process, the following loss function based on the 

L2 norm of the differences of the CNN descriptors of training 

patch pairs is minimised: 

 

 

2

2

2
2

2
2

1

max 0,

1 max 0,

N
L

pull
i

push

l ry D D l
i i i

l ry l D D s
i i i





  
      

 
 

       
  

   (1) 

 

where  N  = number of training samples  

 i = index of a training sample 

 yi =  label for a patch pair: 1 for matching training  

         pairs, 0 for unmatched pairs. 

 Di
k = CNN descriptors for patch k, with k  {l, r} 

          indicating the left or right patch, respectively  

 || Di
l- Di

r ||2 =  L2 norm of the differences between  

                      the  descriptors of the two patches 

 lpull =  Pull radius for similar pairs  

 lpush =  Push radius for dissimilar pairs  

 ||  ||2
2 =  squared L2 norm of the parameters  

 s =  weight of the regularisation term  

 

In Eq. 1, the last term corresponds to a regularisation with 

weight s, required to decrease the risk of over-fitting. The loss 

function creates a margin between matching and non-matching 

pairs. For matching pairs, a distance larger than a “pull radius” 

lpull is penalised, whereas for non-matching pairs (the negative 

training examples), penalisation occurs for distances smaller 

than a “push radius” lpush. This type of loss function has been 

shown to be suitable for descriptor learning by Osendorfer et al. 

(2013). The two radii are parameters that have to be set by the 

user. The CNN parameters are initialised at random, so that 

initially the distances of descriptors from matching pairs cannot 

be expected to be small. The learning procedure then tries to 

find parameters  of the CNN that push the descriptors of 

unmatched pairs away from each other in feature space, while 

pulling the descriptors of matching pairs closer to each other. 

An illustration of this idea is shown in Figure 2. Before 

learning, the descriptors are distributed randomly in feature 

space, while after learning the descriptors from patches 

corresponding to homologous points lie close to each other.  

 

 
Figure 2. Descriptor learning. In the top part, each coloured dot 

represents a descriptor; identical colours indicate homologous 

patches from multi-view images. In the lower part, the radius of 

the inner concentric circle is lpull and the radius of the outer one 

is lpush. 

 

3.2 CNN Descriptor 

The concept of CNNs was proposed by (LeCun et al. 1998); it 

is a multi layer neural network. A CNN may have one or several 

stages consisting of a convolution layer, a nonlinear layer and a 

feature pooling layer each. Compared to general multi layer 

neural networks, there are two main differences:  

 

1) In the convolution layer, the neurons of the input layer are 

not fully connected to those of the next layer and weights 

are shared, so that the same weights are repeatedly used 

across the different position of the input layer. This is the 

reason for using the term "convolutional" network. The 

weight sharing strategy dramatically decreases the number 

of parameters and makes deep architectures consisting of 

larger numbers of stages trainable. 

2) The network decreases the layer size in successive stages by 

pooling layers. Therefore, the input can be compressed into 

a meaningful feature representation, which reduces the 

dimension of the original data considerably.     

 

In essence, a CNN can be seen as a nonlinear mapping function, 

transforming the input (a given image patch) to a higher-level 

but lower dimensional feature representation. 

 

In this paper, we use a CNN architecture consisting of three 

stages to learn feature descriptors (cf. figure 3). Details about 

the architecture and the learning parameters are listed in table 1. 

The input patch size is 32 by 32 pixels. The CNN contains three 

stages. The first two stages have a [convolution - nonlinear - 

pooling] structure, whereas the third one only contains a 

convolution layer. For each stage k with k  {1, 2, 3}, the  

parameters to be determined are the convolution kernel wk and 

the bias term bk, which, thus, constitute the parameters  shared 

by the two CNNs in the Siamese architecture. For brevity, it is 

also written as parameters wk and bk in the remain text. Whereas 

in the first convolution layer we train five 2D kernels of size 5 x 

5 to produce five feature maps, in the subsequent stages we 

determine the parameters of 3D kernels (25 5 x 5 x 5 kernels in 

stage 2; 125 5 x 5 x 25 kernels in stage 3). The nonlinearity is 
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Figure 3. The CNN used in this paper to learn the descriptor 

 Input Convolution 

kernels 

Nonlinear Pooling Output Learning parameters 

Stage 1 32 x 32 5 x 5 x 5 sigmoid max (2 x 2) 14 x 14 x 5 w1 , b1 

Stage 2 14 x 14 x5 25 x 5 x 5 x 5 sigmoid max (2 x 2) 5 x 5 x 25 w2 , b2 

Stage 3 5 x 5 x 25 125 x 5 x 5 x 25 ~ ~ 1 x 1 x 125 w3 , b3 

 

Table 1. Detailed architecture and learning parameters for the CNN used in this paper. The numbers indicate pixel numbers. 

based on the sigmoid function and we use max pooling (without 

overlap, i.e. stride = 2), preserving the largest value in a 2 x 2 

neighbourhood as the output. The final output of our CNN is a 

125 dimensional vector. This 125 dimensional vector is the 

learned descriptor that is used to represent the content of a local 

image patch surrounding a feature.  

 

The CNN architecture used in this paper is different from (Han 

et al., 2015; Zagoruyko and Komodakis, 2015). First, a smaller 

input window with only 32 x 32 pixels (instead of 64 x 64 

pixels, which were used in the reported work), is employed. 

When processing wide baselines images, the appearance of 

patches surrounding feature points changes more severely than 

in narrow baseline situations. By using of smaller context 

window, the proposed descriptor can potentially cope with 

larger deformations in a better way. Additionally, the sigmoid 

function is applied to achieve nonlinearity because we found it 

to perform better than the Rectified Linear Unit (ReLU). 

Finally, compared to the related work, we use a more advanced 

training algorithm (see section 3.3). 

 

3.3 Training of the Siamese CNN 

Training of the CNN is based on gradient descent to find the 

optimum of the loss function. In this context, the well-known 

back propagation algorithm (Rumelhart et al., 1986) can be 

used to determine derivatives of the loss with respect to the 

parameters. In our network, back-propagation is a little more 

complicated than usual, because the gradients are influenced by 

both subnets in the Siamese CNN. In Section 3.3.1 the online 

gradient training procedure is described, whereas Section 3.3.2 

contains details about the way in which gradients are computed.  

 

3.3.1 Mini-batch Gradient Descent: In general, after 

calculating the gradient of the loss function with respect to the 

parameters to be learned, the parameters are updated according 

to the gradient, taking into account a learning rate . In the 

literature one can find methods using all training samples to 

compute the gradients (batch training) and online methods, 

using only one training sample at a time (Bishop., 2006). The 

first variant can be very slow in the presence of many training 

samples. On the other hand, online gradient descent can be 

unstable because of sampling errors when computing the 

gradient only from one sample. As a compromise we use mini-

batch gradient descent, updating the parameters on the basis of 

gradients computed from relatively small groups of training 

samples in each iteration. Each group (mini-batch) typically 

contains hundreds or several thousands of training samples. The 

gradients used to update the parameters are average gradients 

over all samples in the group currently considered.  

 

One way of gradient descent is to consider a fixed learning rate 

 and update the parameters according to t+1 = t - ∙ g'(t), 

where g'(t) is the gradient of loss function with respect to 

parameters  and the suffix t indicates the iteration step. 

However, the selection of the learning rate is problematic: a 

small learning rate leads to a rather slow decrease of our loss 

function, whereas a large value leads to oscillations. This can be 

considered by starting the iteration with a relatively large 

learning rate 0 and decreasing the learning rate in each 

iteration according to t+1 = t ∙ decrease with 0 < decrease < 1. 

However, this has been found not to solve the problem 

completely. A better way of coping with this problem is given 

by the momentum method, which updates the parameters 

according to t+1 = t - vt+1, where the velocity vt+1 is based on 

the accumulated gradients of the previous steps: 

 

 vt+1 = β∙ vt + t∙ g'(t)     (2) 

 

where the gradient is calculated at the current position g'(t) and 

β with 0 <  < 1 is the momentum term. At the beginning of the 

iteration process, the velocity is assumed to be zero (v0 = 0). 

The top part of Figure 4 illustrates the update rule of the 

standard momentum gradient descent. The blue vector 

represents the direction to adjust the parameters. 

 

Assuming that the accumulated velocity β∙ vt will result in a 

move that reduces the value of the function to be optimized, it 

would seem to be a better choice to determine the gradients 

after applying the accumulated velocity. That is, one determines 

new parameter values by t+1/2  t - β∙ vt , and then uses the 

gradient at position t+1/2, g'(t+1/2) rather than g'(t) for the final 

update. This is Nesterov's Accelerated Gradient (NAG, 

Nesterov, 1983) method, where the velocity vt+1 is determined 

according to:  
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vt+1 = β∙ vt + t∙ g't - β∙ vt)    (3) 

 

This update rule is indicated by the lower part of Figure 4. The 

NAG method has been shown to be suitable for determining the 

parameters of deep neural networks in (Sutskever et al., 2013). 

 

 
Figure 4.  (Top) Momentum method and (Bottom) Nesterov's 

Accelerated Gradient (NAG) (Sutskever et al., 2013). 

 

An alternative to avoid oscillating behaviour of gradient descent 

is given by the rmsprop method (Hinton et al., 2016), in which 

the gradient is normalised by the average gradient magnitude. 

This leads to  

 

 
1 ( )t

t t
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         (4) 

     

Where rt is the average square gradient accumulated in the 

previous iterations:  

 

 rt = (1- γ)∙ g'(t)
2 γ∙ rt-1.    (5) 

 

In equation 5, γ with 0 < γ < 1 is a weight that modulates the 

impact of the accumulated magnitude squares relative to the 

new one. Similar to (BRML, 2013), we combine the rmsprop 

method with the NAG momentum method in order to achieve 

an improved convergence behaviour.  

 

The training data are randomly divided into a training and a 

cross validation set. The weights are initialised by random 

values; both r0 and v0 are set to 0, and the learning rate is set to 

an initial value 0. Training is carried out in epochs. In each 

epoch, the training data are randomly divided into M non-

overlapping subsets (the mini-batches), and each mini-batch is 

used to update the parameters once per epoch. In each epoch m, 

the learning rate m remains unchanged; that is, we use t = m. 

As soon as epoch m is finished, the learning rate is updated 

according to m+1 = m ∙ decrease, and a new random division of 

the training data into mini-batches is carried out, which serves 

as the basis for the next epoch. In each epoch, the parameters 

are updated M times using the following steps:  

 

1) For the current position t, apply the momentum by t+1/2 = 

t - β∙ vt and calculate the gradient g'(t+1/2). 

2) Compute rt and vt+1 according to:  

 

 rt = (1- γ)∙ g'(t+1/2)
2 γ∙ rt-1    

  
1 1 / 2

( )
t t t

t

t
v v g

r


 

 

         (6) 

3) Update the current parameters according to t+1 =t - vt+1. 

Note that the iteration counter t is incremented after processing 

each mini-batch, but it is not reset to 0 when a new epoch starts.  

 

The learning algorithm in this paper is different from standard 

gradient decent because it starts with a guess by moving the 

current parameter to a new position t+1/2 with the accumulated 

gradients and momentum, followed by a correction (gradient 

calculation) at t+1/2 and an update according to that gradient. 

We also evaluate the loss on the validation set after each 

training epoch. If the loss does not decrease for three 

subsequent epochs, we stop the training process and record the 

parameters in the current epoch as optimized parameters. A 

performance comparison of the method in our paper and other 

training methods is present in section 4.2. 

 

3.3.2 Gradient computation: The loss function is calculated 

based on the distances of the descriptors, as described by 

equation 1. The derivative of the loss with respect to the 

distance di = || Di
l - Di

r||2 is calculated by: 
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where (.) is an indicator function; it equals to 1 if the argument 

is true and 0 otherwise. The derivatives of the distance di with 

respect to the descriptors Di
l and Di
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The derivatives of Di
l and Di

r with respect to the parameters wk 

and bk with k  {1, 2, 3} are calculated by normal back 

propagation. Since both subnets contribute to the loss, the 

derivatives of the loss function with respect to each parameter 

must be summed over the two subnets: 
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4. EXPERIMENTS 

In this section we first introduce the experimental data and 

setup. After that, we compare the training algorithm described 

in this paper and to other common training methods, which is 

followed by an evaluation of our descriptor. Finally, we 

compare our method to other state-of-art descriptor learning 

techniques. 

 

4.1 Experimental Data and Setup 

Our experiments are based on the Brown dataset (Brown et al., 

2011) is used. This dataset is widely used in descriptor learning 

studies, e.g. (Trzcinski et al., 2012; 2015; Han et al., 2015; 

Zagoruyko and Komodakis, 2015). The dataset contains three 

separate subsets - Notre Dame (ND), Yosemite (Yos) and Statue 

of Liberty (Lib). All patches were extracted in the vicinity of 

Difference of Gaussian (DoG) feature points on real multi-view 
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images. Thus, real viewpoint changes are contained in those 

datasets. The original patch size is 64 x 64 pixels. The resize 

these patches to 32 x 32 pixels with anti-aliasing since the input 

of our model is designed as 32 x 32 pixels. Figure 5 gives some 

examples of the training pairs from the Notre Dame dataset 

(Brown et al., 2011). 

 

     
Figure 5. Examples for training pairs. The left three columns are 

positive (matching) training pairs and the right three columns 

are negative (non-matching) training pairs. 

 

The hyper-parameters for training were chosen empirically. In 

detail, we trained in 30 epochs and 450 mini-batches are used 

for training. Other parameters used here are β = 0.9, γ = 0.9, α = 

0.003, αdecrease = 0.9, lpull  = 5,  lpush = 10. Each mini-batch 

contains 500 positive and 500 negative training samples. 

 

4.2 Convergence Behaviour  

In this section we compare the convergence behaviour of our 

training method to standard gradient decent, gradient decent 

with momentum and to gradient decent with Nesterov's 

momentum. In this comparison, the same 50000 positive and 

50000 negative training samples from the Notre Dame dataset 

were used for all four training methods in 10 epochs. The 

learning rate and the momentum term were set to the values 

described in section 4.1.  The results are presented in Figure 6. 

The figure shows that the decrease of loss does not benefit too 

much from using only gradient descent or gradient descent with 

momentum; however, the training benefits distinctly from 

moving average gradients combined with the NAG (green curve 

in Figure 6), which obviously leads to a much faster decrease of 

the loss function. 
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Figure 6. Results of loss function for standard gradient descent, 

standard gradient descent with momentum, NAG and the 

method suggested in this paper. 

 

4.3 Results and evaluation 

In the set of experiments reported in this section, the descriptor 

is trained using one of the three datasets, whereas the other two 

datasets are used as for testing. This experiment was repeated 

three times, so that each dataset was used for training once. 

Each dataset contains 250,000 positive and 250,000 negative 

training pairs. The cross validation set consisted of 25,000 

matching pairs and 25,000 non-matching pairs that were 

randomly selected from the dataset. Thus, the number of patch 

pairs used for gradient descent was 450,000 in each experiment. 

The cross validation set was used to determine the loss after 

each epoch in order to evaluate the stopping criterion: When the 

loss measured did not improve for three subsequent epochs, the 

training process was stopped. 

 

To implement the whole architecture building and learning 

algorithm explained in section 3, we used the matconvnet 

software1 (Vedaldi and Lenc, 2014) to conduct the convolution, 

pooling, sigmoid and back-propagation of the basic CNN 

layers. The overall training procedure of the Siamese model is 

based on our own implementation. It runs on a 8-core 3.40Ghz 

CPU; training for one dataset takes about 11 hours. 

 

For each training dataset, the performance test is evaluated on 

the other two datasets, which is a standard evaluation rule, also 

suggested in (Brown et al., 2011). In each test dataset, all the 

positive and negative examples are used as evaluation dataset. 

The evaluation criterion is the false positive rate at 95% recall 

rate. A lower false positive rate at 95% recall rate means better 

performance. 

 

After training, the descriptors for each patch in the test datasets 

are determined using the parameters learned with the CNN. 

Then, the L2 Norm of the two descriptors of each test pair is 

computed as the similarity measure of the patch pair. A patch 

pair with an L2 Norm below a threshold h is classified to be a 

match, otherwise it is judged as a non-match. Thus, in essence, 

the learned descriptor can be considered to be a direct 

replacement of SIFT. As the true labels (match or non-match) of 

all patch pairs are known, the true positive and false positive 

rate can be calculated. By varying the threshold h a ROC curve 

is generated. The vl_roc function in the vlfeat2 software is used 

to obtain the ROC curve of the false positive rate against the 

true positive rate. 

 

Table 2 lists the results of our work, comparing them to several 

state-of-art methods. None of the methods compared in the table 

contains a decision layer, i.e., a classifier to determine the 

matching label (matched or unmatched). The list constitutes a 

comparison of current state-of-art methods for descriptor 

learning. In the method SIM (Simonyan et al., 2014), learning is 

based on a convex optimization strategy. The learning 

procedure is an extension of method BR (Brown et al., 2011), 

which is a benchmark in descriptor learning. For method TRC 

(Trzcinski et al., 2015), we chose their best performing 

descriptor variant for our comparison, which is the floating 

point version with 64 bits. In method OS (Osendorfer et al., 

2013), a descriptor learning architecture based on a Siamese 

CNN similar to our work was used, but the authors concentrated 

more on the comparison of different forms of loss functions and 

their model is trained by standard gradient descent. Finally, 

SIFT (Lowe, 2004) is used as a general baseline for the 

                                                                 
1 http://www.vlfeat.org/matconvnet/ (accessed 05 April 2016) 
2
 http://www.vlfeat.org/ (accessed 05 April 2016) 
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descriptor matching, because it is widely acknowledged as a 

good descriptor in a feature engineering manner.  

 

Among the six combinations of training and test dataset cases, 

our method and (Simonyan et al., 2014) achieve the best results 

in three cases each. For the mean error rate at 95% recall, our 

method is slightly worse but compatible with (Simonyan et al., 

2014). Our method exceeds the best descriptor variant in 

(Trzcinski et al., 2015), namely FPBoost512-{64}, in terms of 

error rate at 95% recall in all training and test data combinations 

and a performance improvement of nearly 7.1% is achieved. To 

the best of our knowledge, Osendorfer et al. (2013) published 

the best results for a method for descriptor learning based on 

Siamese CNN architecture without classifier so far; it is the 

method most similar to ours in our comparison. Compared to 

this method, we achieved a performance improvement of 3.5%. 

Compared to SIFT, our method, as well as the other machine 

learning based descriptors, shows a distinct improvement in 

terms of the error rate at 95% recall. 

 

Some of the randomly selected true positive, false positive, true 

negative and false negative patch pairs are shown in figure 7. To 

pick those patch pairs, the parameters are trained from the 

Statue of Liberty training data and the selected results are all 

from the Notre Dame dataset.  

 

True Positive Pairs 

 

True Negative Pairs 

 

False Positive Pairs 

 

False Negative Pairs 

 
 

Figure 7. Some results of test on Notre Dame dataset. 

 

 

5. CONCLUSIONS 

In this paper we describe training of a descriptor based on a 

Siamese CNN architecture. In comparison to other work based 

on Siamese CNN, we use a more advanced gradient descent 

training algorithm and take a smaller input patch size. Our work 

demonstrates that with advanced training strategies, descriptors 

based on Siamese CNN achieve state-of-art performance on the 

Brown dataset. 

When applied to real image matching or image retrieval, a 

feature descriptor needs to be matched against thousands of 

others. Therefore, as an extension of our work we will adapt the 

method by adjusting the proportion of positive and negative 

training samples that the model sees during training. Another 

extension includes applying this architecture to train descriptors 

that are able to cope with specific situations like oblique aerial 

images which contain more complex geometric transformations. 
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