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ABSTRACT:

Due to good scalability, systems for image-based dense surface reconstruction often employ stereo or multi-baseline stereo methods.

These types of algorithms represent the scene by a set of depth or disparity maps which eventually have to be fused to extract a

consistent, non-redundant surface representation. Generally the single depth observations across the maps possess variances in quality.

Within the fusion process not only preservation of precision and detail but also density and robustness with respect to outliers are

desirable. Being prune to outliers, in this article we propose a local median-based algorithm for the fusion of depth maps eventually

representing the scene as a set of oriented points. Paying respect to scalability, points induced by each of the available depth maps

are streamed to cubic tiles which then can be filtered in parallel. Arguing that the triangulation uncertainty is larger in the direction

of image rays we define these rays as the main filter direction. Within an additional strategy we define the surface normals as the

principle direction for median filtering/integration. The presented approach is straight-forward to implement since employing standard

oc- and kd-tree structures enhanced by nearest neighbor queries optimized for cylindrical neighborhoods. We show that the presented

method in combination with the MVS (Rothermel et al., 2012) produces surfaces comparable to the results of the Middlebury MVS

benchmark and favorably compares to an state-of-the-art algorithm employing the Fountain dataset (Strecha et al., 2008). Moreover,

we demonstrate its capability of depth map fusion for city scale reconstructions derived from large frame airborne imagery.

1. INTRODUCTION

3D surface reconstruction from large sets of overlapping imagery

has been, and still is, a vivid research topic in photogrammetry

and computer vision especially for complex 3D scenes. Driven

by advances in digital camera technology and algorithms, lim-

its of automatic image-based 3D data capture were pushed re-

garding precision, robustness, processing speed and scale. In

this work we focus on the problem of depth map fusion for a

wide range of applications, including datasets in the domain of

large scale airborne mapping. Traditionally aerial imagery is cap-

tured in nadir viewing directions enabling reconstruction of 2.5-

dimensional (2.5D) Digital Surface Models (DSM). Such DSMs

provide detailed roof structures, however reconstructed geome-

try at facades is limited. While this is sufficient for applications

aiming at LOD1 and LOD2 city representations, explicit geomet-

ric information on facade elements like doors and windows as

well as other vertical objects is frequently required. Since such

features are difficult to extract from nadir flights, oblique camera

systems operated by unmanned aerial vehicles (UAV) or aircraft

are becoming more and more important. Algorithms for depth

map fusion derived from such imagery require to properly han-

dle 3D geometry, scale well to the amount of collected data, offer

precise reconstructions at high density and guarantee adequate

run times.

A tremendous amount of research was conducted in the area of

image-based surface reconstruction in the last three decades. For

an excellent overview and probably the most popular benchmark

of multi view stereo (MVS) systems see (Seitz et al., 2006). Sev-

eral approaches represent the scene to be reconstructed in ob-

ject space from an early stage. Typical representatives include

level set methods (Pons et al., 2007) and mesh evolution algo-

rithms (Hiep et al., 2009). Patch-based algorithms like (Furukawa
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and Ponce, 2010) start with high confident surface points and

grow the surface utilizing geometric information of the points al-

ready reconstructed. Space carving (Kutulakos and Seitz, 1998)

starts with a solid and iteratively carves the volumetric entities

not being photo-consistent across the views. Scene representa-

tion based on 2.5D height fields deliver good results for the re-

construction of elevation data or DSMs, for example (Vogiatzis et

al., 2008), (Bethmann and Luhmann, 2015). For these methods,

shape priors in the course of matching can be conveniently for-

mulated due to the regular structure of raster representations. In

contrast to object space based methods, depth map based match-

ing algorithms represent the surface information by a set of 2D

distance or disparity maps. This type of matching methods is

quite popular for large scale reconstructions since naturally di-

viding the problem of reconstruction into multiple subproblems.

More precisely, geometry is reconstructed by matching one or a

limited set of neighboring views to a reference view using stereo

or multi-baseline stereo (e.g. (Okutomi and Kanade, 1993) (Mer-

rell et al., 2007), (Goesele et al., 2007), (Pollefeys et al., 1998).

These methods in general produce depth maps which hold redun-

dant surface observations. In order to extract a consistent repre-

sentation of the scene, depth maps have to be fused eventually.

The problem of depth map fusion is aggravated by the large num-

ber and complex nature of effects influencing the variances of

observations across depth maps. These are e.g. geometric prop-

erties of camera network configuration like the number of images

a point is seen in, the intersection angles of images rays, as well

as errors from stereo matching like sub-pixel locking, fronto par-

allel effects or image blur as well as errors introduced by inac-

curacies in bundle block adjustment. An early work and purely

geometric algorithm for depth map fusion was proposed by Poly-

gon Zippering (Turk and Levoy, 1994). The method generates

depthmap-wise triangle meshes by constructing two faces from

four adjacent depth estimates. After the alignment of meshes,
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Figure 1: Flow chart of the proposed fusion algorithm. Depth images Di are sequentially filtered and point-wise normals are computed.

On completion of each image, points and corresponding normals and image ids are streamed to 3D cubes regularly partitioning object

space. The single cubes are then subject to the fusion process.

redundant triangles are removed from the boundaries of single

patches and remainders are connected. In (Merrell et al., 2007)

an approach for real-time fusion of noisy depth maps was pre-

sented. Thereby, proximate depth maps are rendered into one

reference view, redundant depths are pixel-wise checked for ge-

ometric consistency and are eventually filtered using occlusion

and confidence checks. After averaging consistent depths a mesh

is constructed in image space using quadtrees and lifted to 3D

space. In contrast to the latter two local methods, global methods

extract surfaces by minimizing a global energy functional typi-

cally forcing visibility constraints or smoothness whilst possibly

representing input data to a high degree. Global methods tend to

deliver more robust results, however, this comes at the cost of less

scalability and higher computational costs. An example produc-

ing watertight surface meshes was proposed by (Kazhdan et al.,

2006), (Kazhdan and Hoppe, 2013). The algorithm operates on

oriented point sets and models the surface as an indicator function

evaluating to 1 behind the surface and 0 in front of the surface. At

the in-front / behind transition the gradient of the vector field is

maximal. Oriented points, i.e. 3D coordinates along correspond-

ing normals, are considered as samples of the indicator functions

gradient and are used to construct a gradient vector field. The in-

dicator function is given by the function minimizing the absolute

difference between vector field and the indicator functions gradi-

ent. This then can be casted as a Poisson problem, which can be

efficiently solved.

A large portion of depth map fusion methods build up on volu-

metric range integration (VRIP) (Curless and Levoy, 1996). Typ-

ically a signed distance field is computed on a (multi-level) oc-

tree structure by the projection of depth estimations from which

then a triangulation can be derived, for example using the March-

ing Cube algorithm (Lorensen and Cline, 1987). Using the same

base concept, (Zach et al., 2007) reconstruct a signed distance

field in voxel space. Then a surface is extracted by minimizing

a global energy functional based on TV-L1 regularization, claim-

ing smoothness and small differences to the zero level set. Em-

ploying the L1 norm yields favorably results in the presence of

outliers. However, depth samples across views possessing dif-

ferent scales is challenging for VRIP approaches. One example

addressing this issue is the scale space representation presented

in (Fuhrmann and Goesele, 2011). They build a multi-level oc-

tree holding vertices at different scales. Vertices are sorted to

the octree structure according to their pixel footprint. This way

a hierarchical signed distance field is generated. For iso-surface

extraction the most detailed surface representation is preferred.

Similarly, (Kuhn et al., 2014) proposed a method employing vari-

able voxel sizes defined by observation-wise precision estimates.

These precision measures are computed for each disparity based

on TV in the disparity maps. The local TV is associated with

an error class defining quality which is previously learned using

ground truth.

In this work we present a local method for depth map fusion.

Similar to (Fuhrmann and Goesele, 2011) we first assign points

to an multi-level octree structure according to the pixel footprint.

Subsequent filter operations are then carried out on points of the

locally lowest tree-levels, whereas high level points are discarded.

This way not only local surface sampling is adapted, but also most

precise samples can be identified. Moreover, for each point the

id of the reference image (Rothermel et al., 2012) and its nor-

mal is stored. The latter is derived in image space employing

an adaptive, discontinuity preserving triangulation on each depth

map based on a RQT (Pajarola, 1998). Due to the triangulating

character of MVS, precisions along image rays are expected to

be smaller than precisions perpendicular to the rays. When filter-

ing single points, we acknowledge this fact by only incorporating

points located in a cylinder oriented in direction of the largest

uncertainty, e.g the line of sight. Within a second strategy we fil-

ter along the point-wise normals. Approaches employing the L1

norm yield excellent results since outliers possess small influence

on integration process. Our method is based on the idea to further

restrict the impact of outliers by employing median filtering. The

methodology is discussed in detail in section 2. While we mainly

use close range data sets to evaluate our concept, additional re-

sults in section 3 demonstrate the feasibility of our approach for

3D reconstructions in complex urban areas from oblique aerial

images as the aspired main area of application.

2. METHODOLOGY

2.1 Pipeline Overview

In this section we discuss the single modules of the proposed fu-

sion algorithm. The flow chart of the complete workflow is de-

picted in figure 1. The input is a set of oriented depth images

Di, for which the respective camera parameters, i.e. exterior and

interior orientation are known. Therefore, the point coordinates

corresponding to a depth d(x, y) can be derived using perspec-

tive geometry. Within the first step each depth map is filtered to

remove spurious depth estimates. This filtering is based on the

number of successfully reconstructed depths in a local neighbor-

hood of each depth observation. The underling assumption is that

areas which are successfully reconstructed for large patches are

more reliable than patches possessing dimensions of a few pixels

only. Then, for each depth in each of the depth maps a normal is

computed based on an RQT triangulation adapting to local geom-

etry and noise levels. A more detailed explanation of filtering and

normal computation can be found in (Rothermel et al., 2014b).

To guarantee scalability, we divide the fusion problem into sev-

eral sub-problems. More precisely, we spatially partition object

space by regular cubes which are then processed independently.

Depth map filtering and normal computation are sequentially per-

formed on each depth image. On completion of processing an

image, object coordinates for each depth d(x, y) are computed

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-115-2016

 
116



Figure 2: Visualization for the criterion assigning points to the

octree. Circles mark the point-wise GSD, points represent the

coordinates. Points are assigned to the box they are located in

and the side lengths of the box are comparable to the GSD.

and streamed, along its normals and image ID, to its correspond-

ing cube. The points contained by each cube are then subject to

a fusion/filter algorithm. Thereby, within a first step point-wise

pixel footprints and the vector defined by the ray connecting point

and camera center are computed. Then the actual filtering is per-

formed. This involves identification of the points representing

the surface with the best precision and subsequent median filter-

ing along the point-wise lines of sight or normals (section 2.2).

Beside scalability, cube-wise processing offers the possibility of

convenient high-level parallelization.

2.2 Median-based Fusion

Motivated by the results obtained by the median-based fusion al-

gorithms for 2.5 surface representations, as for example imple-

mented in (Hirschmüller, 2008), (Rothermel et al., 2014a), we

propose a median-based fusion strategy for 3D scenes. The gen-

eral idea is to first extract the set of surface points P mapping

the object with the highest resolution. This not only recovers the

smallest sampling rates of images observing the surface, but also,

if image scale is assumed to define precision, recovers the most

accurate points. Then, each point p ∈ P is incorporated into the

process of median filtering along the vector defined by its transla-

tion to the camera center. The motivation for filtering along these

rays is based on the fact that precision along the line of sight and

perpendicular to these lines are not identical due to properties of

forward intersection which in general delivers lower accuracies

in viewing directions. The aforementioned algorithms for 2.5D

DSM integration define the main filter direction by the normal

of the predominant plane fitting the observed surface. Obviously

such a plane does not exist for 3D scenes. Therefore, within a

second approach we define the main filter direction by the point-

wise normals. Since its minor importance to the algorithmic dis-

cussion, in the following section we denote both, lines of sight

as well as normals, by n and refer to them as point-wise filter

direction (PFD).

Derivation of the Most Precise Point Set Representing the

Surface In this section we explain how we extract the point set

P representing the most precise surface samples assuming the

pixel footprint represents reconstruction quality. Therefore we

use a multi-scale octree structure into which all points of a single

tile are inserted. Point coordinates and the point-wise pixel foot-

print define the octree cell an observation is located in. Points

located on the lowest level (leaf nodes) of the octree then indicate

the most precise surface sample.

Octrees are data structures separating space by regular boxes.

Each of the cubes contains 8 daughter cubes regularly subdi-

viding its mother cube. Points to be inserted are assigned to

cubes (nodes) if certain criteria are fulfilled. For example, a

Figure 3: Left: Evaluation of the criterion describing if an octree

box contains any points inside a specified cylinder p, np, hf(p),
rf(p). Conditions are based on the coordinates c′x, c′y , c′z of box

center c′ defined w.r.t. the coordinate system Φ. Right: Median

filtering along the main filter direction np. Translations induced

by candidates q ∈ Q are given by their projection on the cylinder

axis np.

point is assigned to the smallest box fully containing a sphere

around the respective point coordinates. Hence, the octree struc-

ture implements an ordering scheme of points providing queries

for point location as well as neighborhood queries. Our imple-

mentation follows the algorithms proposed by (Gargantini, 1982),

(Press et al., 2007). For tree traversal, the link between mother

nodes and daughter nodes have to be provided. Instead of a more

conventional implementation where links between mother nodes

and daughter nodes are realized by doubly linked pointers we

prefer a implementation based on hash maps, also called Lin-

ear Octrees. The main advantage is that the usage of pointers

(each 64bit on common hardware) storing mother-daughter and

daughter-mother relationships is avoided. This reduces memory

requirements, which supports the processing of single tiles in par-

allel and therefore speed up the integration process.

To identify the point set P we sort all points t ∈ T contained in

a single tile into the octree. Let B be an octree box with the side

length s. As visualized in figure 2, a point t = [tx, ty, tz] with

the footprint f(t) is located in B if the point is inside the cell and

B is the smallest box satisfying

s > to(t) (1)

with

to(t) = α
f(t) + β

∑

t∈T
f(t)

1 + β
. (2)

To be able to extenuate the influence of single footprints to(t) is

composed of the local footprint and the average pixel footprints in

the tile or the whole data set. For large β a uniform sampling can

be derived neglecting scale variances across single observations

completely. The parameter α controls the sampling density of

the surface, therefore using a large valued α the surface is under-

sampled and for a small valued α oversampling is enforced which

might be desirable for high redundant datasets.

After sorting all points of a tile to the octree the initial point set

P is derived by identifying all leaf nodes. Per leaf node one point

is generated by averaging coordinates and main filter directions

of all contained points. Points from higher octree levels are dis-

carded. Note that within these two steps the number of points is

significantly reduced, typical by a factor of 5 to 10.

Median filtering - First Iteration The point set P comprises

points which are reconstructed possessing the smallest pixel foot-

print within a local neighborhood. However, errors resultant from
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registration and propagated from dense stereo, as well as proper-

ties of ray intersection angles are not modeled by the pixel-wise

footprints. These errors cause the extracted points P being noisy,

hence we median filter the point set P along the PFD. Thereby,

all (in most cases more than one) samples stored in the all leaf

nodes are incorporated by the filtering process. Note that this set

of leaf node points in general is much larger than P . Within a

first step for each p ∈ P a set of neighboring points is derived

from the octree. Paying respect to the lager uncertainty in main

filter direction as well as to outliers, the neighbors are defined

by the set of points Q located in a cylinder with its central axis

given by p and its PFD (np). The cylinder radius and height are

dependent of the footprint and specified by rf(p) and hf(p) re-

ceptively (see figure 3 (left)). To limit smoothing and artifacts at

tile borders we typically choose a rather small radius r = 1.4.

The tube height in our experiments is set to h = 15.

Identification the point set Q involves nearest neighbor queries

on the octree structure. Starting at the mother node, each octree

cube is checked if itself or any daughters might contain leaf node

points located in the cylinder of question. This query is checked

frequently and thus has to be designed carefully. Let B be a candi-

date octree box with the center c and the side length s. Moreover

let p, np, r, h define the cylinder (see figure3 (left)). We con-

struct a Cartesian coordinate system Φ with the origin in p and

the z-axis pointing in direction of np = [nx, ny , nz]. The axes of

the coordinate system are defined by the columns of the rotation

matrix

R =





r⊤1
r⊤2
r⊤3



 =





1 1 −nx+ny

nz

(r1 × r3)
⊤

nx ny nz



 (3)

The box center can then be transferred into the coordinates sys-

tem Φ by

c
′ = R(c− p). (4)

The octree box B may contain points located in the cylinder if

√

(c′x)2 + (c′y)2 < r +
√
3s (5)

and

c
′
z < h. (6)

The term
√
3s in equation (5) represents the radius of a sphere

enclosing B. If conditions (5) and (6) are not fulfilled traversal of

daughter nodes is terminated. If the conditions are fulfilled and

additionally the examined box B is a leaf node all points con-

tained by B are a subset of Q.

Once the set of neighbors Q is identified, all q ∈ Q are checked

to be located in the specified cylinder. This is done following

equations (4)-(6) by exchanging roles of box centers and points.

If not located in the tube, the sample is removed from Q. Ad-

ditionally for each q ∈ Q the angle between its normal nq and

np is computed. If this angle is larger than 60◦ the sample is

removed from Q and discarded for further filtering. This way

the incorporation of points not representing the same surface is

avoided. After removal of suspicious samples the actual filtering

is performed. The basic idea of the implemented median filtering

is to translate the coordinates of p along its PFD np. The trans-

lation is given by the median of translations induced by qi. More

precisely, a translation of a sample qi with respect to Φ is given

by its projection onto np

di(qi) = [qi − p]⊤np, (7)

see figure 3 (right). Then the updated coordinates p′ are com-

Figure 4: Left: Partitioning scheme of a KD-tree. Each node con-

tains one point, nodes are divided by hyperplanes gi. Direction

of planes are incremented over the dimension D of space IRn (in

this example IR2). Right: Evaluation of the criterion describing if

a KD-tree node fully contains a given cylinder. Therefore the D-

th component of the coordinates hu(D)+rf(p), hl(D)+rf(p)
have to be completely located on one side of the plane g.

puted as

p
′ = p+ np median[di(qi)]. (8)

Median Filtering - Additional Iterations The median-based

integration described before enforces the set P to converge to the

median surface. However, for noisy data sets multiple iterations

might further improve the final surface. We found two additional

iterations are a good trade-off between processing time and im-

proved surface quality. Recall that within the first iteration all

points contained in all leaf nodes of the octree were considered

for integration. To speed up further iterations we restrict filtering

on points p ∈ P solely. As before, P has to be sorted to a 3D

data structure enabling cylinder-based neighborhood queries. An

octree as presented in the last section would be suitable for this

task. However, we found that for our data sets these queries can

be processed faster using KD-trees.

KD-trees are structures partitioning k-dimensional points based

on half spaces. Since in this work we are interested in 3D en-

tities, we restrict the following discussion to 3D space. Initially

the first two points to be inserted are divided by a plane perpen-

dicular to the axis of the first dimension (x-axis). These spaces

define the initial nodes of the tree. For a new point pnew to be

inserted the leaf node in which pnew is located in along with the

point pold already contained by the node are identified. The node

then is further split by a plane separating pnew and pold lead-

ing to two new leaf nodes, see figure 4 (left). The orientation of

the plane is defined orthogonally to the second dimension. Sub-

sequent insertions are performed in a similar way: first the leaf

node, the contained point and the dimension d defining the direc-

tion of its last separation are identified. Then, the node is divided

by a plane possessing a normal in direction of the incremented

dimension ((d + 1) mod 3), resulting in two new leaf nodes.

For implementation details the reader is referred to the algorithm

proposed in (Press et al., 2007).

In order to extract the point set Q containing the points located

in a cylinder defined by the point p, its axis np, its radius rf(p)
and height hf(p) efficient neighborhood queries have to be pro-

vided. To identify the node whose daughters hold all points in

the tube we identify the node fully containing the tube. Therefore

we construct two points hl = p − h

2
np and hu = pl +

h

2
np,

see figure 4 (right). Starting at the root of the tree for each node

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-115-2016

 
118



it is evaluated if the two spheres defined by hl and hl and the

radius rf(p) are fully contained by one of the daughter nodes.

Let g be the position of the plane separating the daughter nodes

in dimension D. Then the conditions are given by

hl,u(D) + rf(p) < g (9)

and

hl,u(D)− rf(p) > g. (10)

If a node fulfills both conditions (9),(10) and its daughter nodes

do not, the node is guaranteed to be the smallest node holding

all points located in the cylinder. Once this node is identified,

all points contained by the daughters are skimmed and those lo-

cated in the cylinder define the set Q. Analogously to filtering

in the first iteration, all inconsistent samples qi possessing PFDs

largely differing from np are identified and removed from Q. The

remainder is median filtered along np.

3. RESULTS

3.1 Fountain Dataset

The first evaluation is carried out on the Fountain dataset (Strecha

et al., 2008) for which a ground truth mesh based on LiDAR data

is available. Triangles of this mesh were reprojected to the center

view to generate a ground truth depth map. Using (Rothermel

et al., 2012), an initial point set was obtained by matching each

view to its four closest neighbors. These points then were subject

to the integration algorithm employing the two filter strategies

(normal and line-of-sight filtering). Thereby, the parameters of

cylinder radii for oc- and kd-trees were set to our standard pa-

rameters r = 1.4 and h = 15. For comparison, points were also

integrated by an state-of-the art algorithm proposed in (Fuhrmann

and Goesele, 2011). For evaluation purposes a subpart of the gen-

erated points was selected and the depths were compared to the

ground truth depth map. Whereas figure 5 displays statistics of

residuals, figure 6 displays the subpart of generated points which

were meshed using Delaunay triangulation and the color-coded

residuals. From the meshes it can be observed that line of sight

filtering delivers surfaces possessing slightly less outliers. This is

due to the fact that normals, and therefore the direction of cylin-

ders, in areas of limited density might be erroneous. An improve-

ment of sub-pixel accuracy can not be observed. Comparison of

the standard deviations of residuals and σ3 filtered residuals of

our method and (Fuhrmann and Goesele, 2011) clarifies that the

median-based approach produces clearly less outliers. Again, re-

sults of σ3 filtered residuals are rather similar. However, specify-

ing the multiplier determining the footprint-dependent sampling

rate to four (FG-s4, figure6c), the number of outliers is decreased,

but so is the point density and therefore the preservation of de-

tails. The density in figure 5 denotes the size of the area induced

by the filtered, projected points. Our approach delivers lower den-

sities, however a loss of detail in the meshes can not be observed.

Table 1 lists the processing times of the single algorithms and

shows that the presented approach clearly out-performs the com-

parison method.

Method ours-los ours-n FG-s4 FG-s2 FG-s1

time (min) 1.8 1.6 36 92 519

Table 1: Processing times for filtering the complete Fountain

dataset of our algorithm and the method proposed in (Fuhrmann

and Goesele, 2011).
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Figure 5: Mean differences, standard deviations and density anal-

ysis for the sub-area of the fountain dataset displayed in figure 6.

Comparison of our algorithms with main filter directions along

lines of sight (los) and normals (n) and (Fuhrmann and Goesele,

2011) using different GSD multipliers (1,2,4).

3.2 Middlebury Dataset

The second evaluation is carried out on the Middlebury MVS

benchmark data set (Seitz et al., 2006). Therefore we gener-

ated depth maps for the temple and dino datasets in ’full’ image

configurations. Again, we used the aforementioned SGM-based

MVS to reconstruct depth images. Thereby, each image is treated

as reference image which is stereo matched against the 8 closest

neighboring views. By multi-view forward intersection and con-

straints on geometric consistency redundant observations across

the set of disparity maps are refined resulting in one depth map

per view. Since the evaluation is performed on triangle meshes,

we apply filtering along normals to extract oriented points and

subsequently carry out a Poisson reconstruction (Kazhdan et al.,

2006). In order to extract a surface close to the oriented points

generated by our approach an octree depth similar to our octree

is specified and no constraints regarding the minimal number of

points per octree cell is applied. Figure 8 depicts the results for

the two data sets. Median filtering was carried out as described

in section 2.2 using 2 iterations. Since depth observations of the

dino dataset turned out to be more noisy, the parameters for the

tube radius was set to r = 4 instead of r = 1.4 for the temple

dataset. The dynamic sampling width for both data sets were set

to α = 2 and β = 0 (see equation (2)). The first column in figure

8 shows the points contained by all refined depth maps. The sec-

ond column depicts the oriented point set derived by the proposed

algorithm. As can be seen the gross of outliers are removed and

small details are preserved: for the temple data set 99.5% of ob-

servations possess an average deviation of 0.55mm to the ground

truth and 0.47mm for the dino data set respectively (figure 7).

The actual pixel footprints are in the range of 0.1-0.4mm. De-

pendent on accuracy and completeness levels given on the Mid-

dlebury evaluation page, the algorithm ranks in the range of 13

to 1 (with several others).The run times for the fusion process on

a single core clocked at 3.3 GHz amounted 171 seconds for the

Dino and 78 seconds for the temple data set.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Meshes derived from filtered point clouds and differences of reprojected points to ground truth mesh (dark blue / dark red

correspond to +5 / -5 GSD). (a)-(c): Results derived by (Fuhrmann and Goesele, 2011) employing gsd-wise multipliers of 1, 2 and 4.

(d) and (e): our approach with filtering along normals and in direction of line of sight. (f): ground truth.

Figure 8: Results for the temple and dino data sets. From Left to right: raw point cloud; oriented points resulting from our method;

mesh generated by Poisson reconstruction using our oriented points; ground-truth mesh.
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Figure 7: Results for the Middlebury benchmark using the dino

dataset.

3.3 Aerial Dataset

Figure 9: Mesh representation of the urban scenario. Clear edges

(green rectangle) and small details as poles on the church roof

(red circles) are successfully reconstructed.

Within a second test, the capability of processing large scale scenes

is shown. Therefore we generated depth maps of a urban scenario

using aforementioned MVS. The imagery was captured with an

medium format Leica RCD30 Penta oblique system. Nadir im-

agery possesses an overlap of 80% in-strip and 75% cross-strip.

The oblique cameras were mounted with an angle of 35◦. The

size of the average pixel footprint is 6.6 cm across the whole data

set. After filtering and normal computation in image space single

depths are converted to points and streamed into 40 meters cubes

subdividing object space. The points then are tile-wise filtered

by sub-sampling with α = 2 and β = 0 using tube radius of

two GSD. Since no ground truth is available for the data set this

test is of more qualitative nature, more precisely, preservation of

details, artifacts at tile borders and correctness of topology are

evaluated visually. For visual inspection, a mesh was computed

using a Poisson reconstruction based on oriented points gener-

ated by our approach (see figure 9). As can be seen edges are

extracted clearly (green rectangle) and details like the poles are

reconstructed successfully. Virtually no outliers are contained in

the reconstructed surface and narrow alleys are topological cor-

rect. The depicted area is computed from 25 tiles. Albeit some

artifacts are introduced at tile borders of oriented points, these

are not visible in the mesh representation due to smoothing in the

course of mesh extraction. Figure 10 depicts a reconstruction of

a larger part of the urban data set.

4. CONCLUSIONS AND FUTURE WORK

In this article we presented a median-based approach for the fu-

sion of depth maps. Point coordinates are sub-sampled using a

multi-level octree. By sorting points to the tree, an initial point set

favoring observations possessing the smallest pixel footprint is

identified. Iterative median filtering of points in a cylinder along

point-wise lines of sight or normals lead to an improved set of

oriented points. Within our tests concerning the filter direction, it

was shown that filtering along lines of sight yields surfaces with

less outliers compared to filtering along point normals. This is

due do the fact that normal computation might fail in areas of

limited density. However, accuracy of the derived surfaces was

comparable. Moreover, compared to results derived by a state-

of-the-art algorithm, our method produces less outliers, similar

accuracy and superior processing times. Evaluation on the Mid-

dlebury MVS benchmark showed that the implemented algorithm

in combination with (Rothermel et al., 2012) and (Kazhdan et

al., 2006) performs well on completeness and precision: for the

temple data set 99.5% of observations possess an average devi-

ation of 0.55mm to the ground truth and an average deviation

of 0.47mm for the dino data set, respectively. We showed that

by spatially subdividing point clouds using the proposed tiling

scheme the method scales well and makes the algorithm suited

for reconstruction of complex urban scenes from high resolution

airborne imagery. Although specifying the main filter direction

along the surface normal and incorporating only limited number

of neighboring points for filtering, artifacts are visible at some

parts of the tile borders. Albeit being eliminated in the course

of integration within the subsequent Poisson reconstruction, this

problem can be eliminated by extension of single cubes using a

small apron. Furthermore, a loss of detail is observed and bulges

at edges are introduced during meshing. Since the oriented points

are of good quality, we plan to use an algorithm for mesh ex-

traction not incorporating further optimization causing additional

smoothing. Moreover, re-meshing or mesh connection at tile bor-

ders has to be investigated to fully enable the generation of con-

sistent large-scale surface meshes.
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