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ABSTRACT: 
 
Dense stereo matching is one of the fundamental and active areas of photogrammetry. The increasing image resolution of digital 
cameras as well as the growing interest in unconventional imaging, e.g. unmanned aerial imagery, has exposed stereo image pairs to 
serious occlusion, noise and matching ambiguity. This has also resulted in an increase in the range of disparity values that should be 
considered for matching. Therefore, conventional methods of dense matching need to be revised to achieve higher levels of 
efficiency and accuracy. In this paper, we present an algorithm that uses the concepts of intrinsic curves to propose sparse disparity 
hypotheses for each pixel. Then, the hypotheses are propagated to adjoining pixels by label-set enlargement based on the proximity 
in the space of intrinsic curves. The same concepts are applied to model occlusions explicitly via a regularization term in the energy 
function. Finally, a global optimization stage is performed using belief-propagation to assign one of the disparity hypotheses to each 
pixel. By searching only through a small fraction of the whole disparity search space and handling occlusions and ambiguities, the 
proposed framework could achieve high levels of accuracy and efficiency. 
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Dense stereo matching has always been one of the fundamental 
and active areas of photogrammetry and computer vision. In 
addition to three-dimensional (3D) scene reconstruction, several 
other applications such as view synthesis, image-based 
rendering and robotics benefit from the results of dense 
matching. Generally, any dense stereo matching technique can 
be described by the following three components: matching cost 
computation, cost aggregation and disparity computation 
(Scharstein and Szeliski, 2002). Disparity refinement, which is 
basically enhancement of the generated depth field, can also be 
considered as the fourth step of the dense matching.  
Most of the dense matching techniques, which are discussed in 
the next section, still have considerable computational 
complexity regarding the size of the disparity search space. The 
techniques proposed to deal with such complexities either 
evaluate the complete disparity space implicitly or require 
successive correspondence search over the full or limited range 
of disparities. In addition, the sensitivity of matching techniques 
to occlusion, noise and matching ambiguity at poorly-textured 
regions is undeniable. These necessitate enforcing constraints 
such as ordering and uniqueness that are not always 
efficient/true for all types of scenes. 
In this paper, we present a matching algorithm that is generally 
based on the concepts of intrinsic curves (Tomasi and 
Manduchi, 1998). This matching strategy avoids exhaustive 
disparity search space exploration by proposing sparse disparity 
hypotheses for each pixel. Then, the hypotheses are propagated 
to adjoining pixels by label-set enlargement based on the 
proximity in the space of intrinsic curves in order to avoid gaps 
created due to noise. The same concepts are applied to model 
occlusions explicitly via a regularization term in the energy 

function. Finally, a global optimization stage is performed using 
belief-propagation to assign one of the disparity hypotheses to 
each pixel. 
The rest of the paper is organized as follows. First, a brief 
review of literature in dense stereo matching is presented. Then, 
the details of the proposed technique are presented in sections 3 
and 4. The experiments performed to evaluate our method are 
discussed in section 5 and, finally, the conclusions are 
mentioned in section 6.    
 

2. RELATED WORK 

The techniques of dense matching can be classified into two 
categories of local and global methods. Local methods construct 
a cubic cost volume ( , , )C x y d , which represents the cost 

associated with matching a pixel ( , )x y  in the left (reference) 

image to the corresponding pixel in the other stereo image 
(right image) at a disparity value d	 belonging to the full 
disparity search range. This matching cost is usually quantified 
by a per-pixel dissimilarity measure. Then, the disparity map 
can be determined by finding the minimum cost at each pixel as 
ˆ( , ) arg min ( , , )dd x y C x y d . However, such results are highly 

noisy because the solution is not regularized. To regularize the 
solution one can aggregate the costs over a support region (local 
window) and find the disparity with the lowest aggregated cost. 
Basically, the window-based cost aggregation means filtering 
the ( , )x y  dimensions of the cost volume (Hosni et al., 2013). 
Thus, the aggregated cost over a window W can be achieved as 

( , )( , )
( , , ) ( , , )S u vu v W

C x y d C x y d


 , where ω is the weight of 

a pixel in the support area (Gurbuz et al., 2015). For instance, in 
the sum-of-squared-differences (SSD) algorithm, the support 
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aggregation is done by summing matching costs over a squared 
window surrounding each point assuming a constant disparity, 
i.e. ω=1. In some algorithms, the aggregation is performed 
implicitly by computing a window-based matching cost such as 
normalized-cross-correlation (NCC). Although these window-
based aggregations yield smoother results, they ignore disparity 
discontinuities since the windows are not aligned with image 
edges. In order to preserve depth discontinuities, edge-aware 
weighted filters, e.g. geodesic distance, bilateral and guided 
filtering, can be used at the cost of noticeably higher 
computational complexity (Yoon and Kweon, 2006; Hosni et 
al., 2009; Hosni et al., 2013). The main drawback of local 
techniques is that they require evaluating the full disparity 
space image (DSI). That is the matching costs should be 
computed and aggregated at each pixel for all possible 
disparities (Sinha et al., 2014). They also depend largely on the 
choice of the window size (W). While a small window is 
preferred to avoid over-smoothing and to increase 
computational efficiency, a large window is required in areas of 
low texture to decrease matching ambiguity. These facts results 
in a trade-off between lower success rate using small windows 
and border bleeding artefacts using large windows (Geiger et 
al., 2011). Therefore, when the local characteristics of the 
pixels are similar, considerable ambiguity is involved in finding 
their correspondences without global reasoning. 
In global methods, stereo matching is formulated as a pixel 
labelling problem, where the inputs are a set of pixels and a set 
of labels (i.e. potential disparities). From the probabilistic point 
of view, this can be treated as an inference problem using 
Bayesian approaches. That is inferring the disparity map given 
the likelihood based on image observations and the prior based 
on the assumptions about the scene structure (e.g. disparity 
smoothness) (Sun et al., 2013). Bayesian approaches can be 
divided into two categories based on path-finding and Markov 
random fields (MRF). In path-finding approaches, ordering and 
uniqueness constraints are the priors that are used to solve 
scanline matching in terms of finding the shortest path to go 
from the beginning to the end of the corresponding scanlines 
(epipolar lines) in the matrix of their pair-wise matching costs. 
The most popular solution used in the literature to find such 
minimum-cost path is dynamic programming (DP) (Cox et al., 
1996). The main drawback of these techniques is that the 
dependence between scanlines is either totally ignored or 
partially considered via inter-scanline vertical edges (Ohta et 
al., 1985). Without the smoothness assumption between 
scanlines, the results of path-finding approaches often suffer 
from streaking effect (Zitnick and Kanade, 2000). As a 
powerful alternative, the labelling problem can be modelled as a 
Markov random field (MRF) since a particular pixel label 
depends only on the labels of its neighbours (Boykov et al., 
1998). Such problem can then be solved in an energy 
minimization framework, where a global energy function 
penalises intensity dissimilarities between the corresponding 
pixels and discontinuities between the neighbouring pixels in 
the disparity map (Scharstein and Szeliski, 2002). In other 
words, the maximum a posterior (MAP) estimate of the 
disparity map can be achieved by minimizing this energy 
function. However, minimizing a global MRF-based energy 
function is generally NP-hard. Therefore, a variety of 
approximation algorithms have been proposed that apply graph 
cuts or belief propagation for inference (Sun et al., 2003; 
Boykov et al., 2001). Semi-global matching (SGM) is also a 
technique that approximates the global MRF inference by 
aggregating cost functions along several (usually eight or 
sixteen) local paths in the image and computes the disparity 
with a winner-take-all mechanism (Hirschmüller, 2008). 

A drawback of global methods is their computational 
complexity, which does not scale well to large label spaces 
(large DSI). Several solutions exist for limiting the disparity 
search range. The simplest way is to select only the best 
disparities for each pixel that correspond to the highest 
matching scores. Another way is the hierarchical approach, in 
which a Gaussian pyramid of the original images is constructed 
and disparities are computed at each level. Then, disparity 
results at coarser levels are used to reduce the disparity range at 
finer levels. Local, fast window-based techniques can also be 
used before applying a complex global technique to reduce the 
matching ambiguity. A more recent category of techniques for 
disparity search space reduction is based on assuming planar 
hypotheses for specific regions of the images. For instance, 
Libelas method builds a prior on the disparities by forming a 
triangulation on sparsely matched key-points (Geiger et al., 
2011). PatchMatch stereo also finds correspondences between 
small patches (segments) of the images by iteratively 
propagating disparities from initial seeds to their neighbours 
(Bleyer et al., 2011). In LPS method, local slanted plan 
hypotheses, which are derived from initial sparse feature 
correspondences, are used to propose disparity hypotheses 
(Sinha et al., 2014). Except for the best-candidate based 
method, the rest of these techniques require either exhaustive 
DSI computation or successive matching to find the appropriate 
priors.  
Another drawback of global methods is their tendency to fail in 
occluded regions (Mozerov et al., 2015). Generally, uniqueness 
and ordering constraints are used to handle occlusion. 
Uniqueness is usually enforced by left-right cross-checking of 
disparity maps. The ordering constraint, which is mostly 
satisfied in DP-based methods, requires that the relative 
ordering of pixels remains the same on the corresponding 
scanlines. However, such assumption is not always true, 
especially in scenes containing narrow foreground objects 
(Scharstein and Szeliski, 2002). 
 

3. ORIGINAL CONCEPTS OF INTRINSIC CURVES 

3.1 Definition 

In this study, we revisit the concept of intrinsic curves proposed 
by Tomasi and Manduchi (1998) to develop a new dense 
matching approach. Intrinsic curves are the multidimensional 
representations of the paths that the image descriptors follow as 
a scanline is traversed from left to right. Assume the intensity 
and its derivative (gradient) as two image descriptors. Scanlines 
can then be considered as one-dimensional (1D) signals of 
intensity l(xl) at every location xl on the left scanline and r(xr) at 
every location xr on the right scanline (Figure 1a)1. 
Respectively, their derivatives are l'(xl) and r'(xr). If we plot 
l'(xl) versus l(xl), then we lose the spatial track of xl

 (Figure 1b), 
i.e. the new representation of the left scanline would be Cl=l'(l). 
In this new representation, if l(x) is replaced by a displaced 
replica l(xl+d), the curve Cl of Figure 1b remains the same. Due 
to this invariance to displacements (disparities), these curves are 
called intrinsic curves. Then, the problem of image matching 
would be converted to the problem of curve matching.  
It should be noted that in order to have a continuous/smooth 
representation of the curves, the scanline intensity signals are 
modelled with piece-wise cubic splines with regard to x.  
 

                                                                 
1 The stereo images belong to Middlebury Stereo Datasets; see 

Section 5. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-123-2016

 
124



 

 
Left image 

 
Right image

a 

b 
Figure1. (a) One part of left and right corresponding scanlines; 
(b) Intrinsic curves of the left and right scanlines (Cl, Cr) in red 
and blue, respectively. 
 
3.2 Matching Cost Computation 

If the only difference between two scanlines is the geometric 
disparity, the two curves would coincide everywhere. However, 
the images are usually corrupted by noise and photometric 
transformations. Therefore, there is a non-constant variation 
between the two curves. According to Tomasi and Manduchi 
(1998), zero-mean low-pass filtering of the images may remove 
the noise and brightness bias between images completely. 
Therefore, contrast difference is the only remaining difference 
between scanlines, which causes the right intrinsic curve Cr be 
an expanded/contracted form of the left intrinsic curve Cl from 
the origin. This assumption suggests a radial metric for finding 
candidate matches based on intrinsic curves; i.e. two points 
might be corresponding if they are collinear with the origin in 
the two-dimensional space of the curves, e.g. points cl

1 and cr
1 

in Figure 1b. In this sense, their radial distance in the full space 
of curves shows the degree of their similarity and measures the 
matching cots. 
 
3.3 Local Aggregation 

The original study suggests aggregating the candidate matches 
into candidate matching segments; i.e. a candidate match and its 
close neighbours on the intrinsic curves belong to a matching 
segment, and these matches are either all wrong or right. For 
instance, candidate correspondences (cl

1, cr
1) and (cl

2, cr
2) 

belong to the same segment since the arc-length sl between cl
1 

and cl
2 is smaller than a threshold and is also close to the arc-

length sr between cr
1 and cr

2. The matching cost of each 
segment is defined as the sum of the matching costs of its 
correspondences. 
 
3.4 Disparity Computation 

Because of the aggregation step, there are fewer candidate 
segments than candidate matching points; therefore, the search 
space for matching is reduced. Constraints of uniqueness and 
ordering are applied to the candidate segments to solve the 
matching with a path-finding approach. That is, two candidate 
segments, e.g. S1={(cl

1,c
r
1),(c

l
2,c

r
2)} and S2={(cl

3,c
r
3),(c

l
4,c

r
4)}, 

can follow each other only if there is no overlap between them 
(uniqueness) and one is the successor of the other (ordering). 

Based on this concept, a graph is formed in which the candidate 
segments are the nodes, and segments that can follow each 
other are linked with edges. The edges are weighted based on 
the aggregated matching cost of the source nodes. Then, an 
application of a shortest-path-finding algorithm produces the 
minimum-cost path through the scanline, that is, the best 
matching segments. 
 
3.5 Shortcomings of the Original Concepts 

Although low-pass filtering of a signal reduces its noise level 
and subtracting the mean from two signals decreases their shift 
(bias), there usually remains some local shift between the 
signals. In other words, assuming an affine photometric 
distortion model is locally possible, but not globally. As a 
result, the radial metric (phase similarity) is not applicable 
everywhere. For example, at the stereo pair of Figure 1a, only 
for 35% of the points, the ground-truth match exists among the 
hypothesized candidate matches. 
In addition, computing matching cost as the radial distance 
between two points is not enough to resolve the matching 
ambiguities since this distance is only a pixel-wise measure, 
similar to squared intensity difference (SD).  
Another shortcoming arises from the aggregation step. While 
segmenting candidate matches based on the arc-length 
proximity seems like a brilliant alternative for window-based 
cost aggregation, it does not provide dense matching and 
struggles for finding correct matches at poorly textured image 
areas. To understand this more clearly, a part of a scanline with 
both poor and high-variance textures is shown in Figure 2. 
Sampling the intensity signal of this scanline based on a 
constant x (1 pixel) results in a uniform grid through the 
scanline (Figure 2a). However, sampling based on a constant 
arc-length (9 gray values) through the intrinsic curve results in a 
non-uniform grid through the scanline (Figure 2b). This non-
uniform grid is denser at busy areas of the image since the arc-
lengths are longer where high intensity changes happen. As a 
result, at these areas candidate matches may not be close 
enough (in terms of arc-length) to form candidate segments; 
therefore, they will be left unmatched. On the other hand, at flat 
areas of the image, the arc-lengths are shorter. Thus, these areas 
produce crowded candidate segments with high ambiguity that 
result in wrong matches. 
 

4. PROPOSED DENSE MATCHING ALGORITHM 

In contrast with the original concept, we do not want to lose the 
full track of disparity. However, we are looking for a solution to 
maximize the benefits from the concepts of intrinsic curves in 
order to first, reduce the disparity search space without 
requiring successive matching or additional search, and, second, 
to handle the poorly-textured areas (ambiguity) and occluded 
areas (occlusion) efficiently. 
 
4.1 Hypothesis Generation  

We establish the hypotheses for pixels belonging to a small 
neighbourhood (Ni) by assuming that the photometric 
transformation between corresponding scanlines can be locally 
modelled with an affine transformation as follows: 
 

 ( ) ( )     , l l l
i i ir x d l x x N                     (1) 

 
where the gain parameter αi and the shift parameter βi represent 
the difference in contrast and brightness between the scanlines 
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in the local neighborhood Ni. This assumption necessitates zero-
mean low-pass filtering of the image, e.g. with a Gaussian filter 
with kernel size 3 and standard deviation of 1.2, in order to 
avoid an additional noise term in Equation (1). In fact, the noise 
term can be considered small enough to be independent of x and 
to be integrated to the brightness bias term.  
If we consider the parametric representation of the left intrinsic 
curves by a pair of functions as Cl(x) = (l(x), l'(x)), then the 
parametric form of the right curve can be estimated as 

( ) ( ( ) , ( ))r l l l
i i iC x d l x l x      . This proves that, at 

corresponding points, Cl and Cr cannot be radial from the 

centre; however, the tangents to the curves, ( , )l l lt  and 

( , )r r rt , have the same orientations (θl, θr).  
 

1

1 1

( ) tan ( )

( ) tan ( ) tan ( )

l l

r l i

i

l
x

l
lr

x d
r l








 







  
 

                   (2)            

 
Therefore, at any pixel p at coordinates (xp, yp) on the left 
image, the set of disparity candidates Dp can be defined as 
follows: 
 

{ | ( ( ) ( )) }l r
p p pD d D abs x x d T                (3)            

 
where D is the whole range of possible disparities. 
Although this assumption is generally true for small thresholds 
T, it may cause problems at texture-less areas of the image, 
where intensity changes are either very low or zero. Because, in 
these cases, even small values of remaining noise on the 
scanlines are large enough, compared to the values of ( , )l l  , to 

make noticeable differences between θl and θr. To avoid such 
situations, we can increase the threshold T. In addition, a 
filtering step is applied to fill in any gaps in the disparity 
hypotheses which may exist because of noise. This filtering step 
is similar to the idea proposed by Veksler (2006), however with 
different definition and measures. Let define set Pd as 

{ |  }d pP d D p . In other words, Pd is the set of all the pixels 

for which the disparity d is selected as a candidate disparity. 
Now, Pd can be extended (enlarged) to all the pixels which are 
close to pixels of set Pd on the intrinsic curves. That is: 
 

{ | ( , )   for some }extended
d dP P   i i j jp p p p       (4)            

 
where φ(pi, pj) is the curve arc-length measured as: 
 

 1/ 22 2( , ) ( ( )) ( ( ))
p j

i

x

xp

l x l x dx   i jp p                (5)  

 
It is noteworthy that this measure to extend the disparity 
candidates considers the fact that close pixels (in spatial space) 
that have similar intensities and similar intensity changes 
(therefore, are close in the curve space) are more probable to 
have similar disparities. 
 
4.2 Occlusions 

Using intrinsic curves, occlusions stand out as pieces of one 
curve, usually in form of loops, which remain unmatched in the 
other curve. Figure 3a and Figure 3b show two scanlines and 

their corresponding intrinsic curves. The stars on the curves 
show the matched pixels and the circles on the left curve show 
the occluded pixels.  
 

 
a 

 
b 

Figure 2. (a) Uniform sampling of a scanline based on position; 
(b) Non-uniform sampling based on arc-length.   
           
 

 
Left image 

 
Right image 

a 

b 
Figure 3. (a) One part of left and right corresponding scanlines 
with partial occlusions; (b) Intrinsic curves demonstrating 
matched pixels (shown by stars) and occluded pixels (shown by 
circles in the green frame). 
 
As it can be noticed, occlusions happen at left arcs whose 
curvature changes are not similar to the right arcs. In other 
words, the curvature of the left curve changes the same way as 
the curvature of the right curve between any two non-occluded 
corresponding points; i.e. the curve remains either concave or 
convex in both curves. To formulate this concept 
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mathematically, consider a pixels xl
i on the left scanline and its 

adjacent neighbours xl
i+1 and xl

i1. Their correspondences on 
the right scanline are denoted as xr

i, xr
i+1 and xr

i1. 
Respectively, the points on the intrinsic curves associated with 
these pixels are denoted as cl

i, c
l
i+1, c

l
i-1, c

r
i, c

r
i+1 and cr

i-1 (Figure 

4). Let's assume that 1l i
i
 contains the curvature values of the 

left curve between cl
i and cl

i+1. Similar definition applies to 
1

1 1,   and l i r i r i
i i i  
  . Therefore, the similarity of curvature 

changes around pixels xl
i and xr

i can be measured as follows. 
 

 1 1

{ , 1}
( , ) min ( ) ( )l r l j r j

i i j j
j i i

x x sign sign  

 
           (6)  

 
If xl

i is non-occluded and is surrounded by two non-occluded 

pixels xl
i+1 and xl

i1, then 1( )l i
isign    and 1( )r i

isign   are the 

same; besides, 1( )l i
isign    and 1( )r i

isign    are equal too, which 

means ( , ) 0l r
i ix x  . Alternatively, if it is surrounded by one 

occluded pixel at one side, for example at xl
i+1, and by one 

non-occluded pixel at the other side (xl
i1), then only 

1( )l i
isign    and 1( )r i

isign    are equal; however, 1( )l i
isign    

and 1( )r i
isign    are different. This shows an occurrence of 

occlusion. This concept is used later in defining the global 
energy function for matching. 
 

 
Figure 4. Example of intrinsic curves to measure local curvature 
similarity for occlusion detection 
 
It should be noted that occlusions are also implicitly considered 
in the stage of hypothesis generation. That is, the pixels with 
empty candidate disparity sets are automatically recognized as 
occluded pixels and will be left unmatched. 
 
4.3 Global Energy Function 

Consider the reference image as a set of pixels P with observed 
intensities Ip for each Pp . Therefore, a pixel p is 

representative of image observations at pixel p. The pixel p has 
coordinates (xp,yp) and its four immediate neighbours 
{(xp1,yp), (xp+1,yp), (xp,yp1), (xp,yp+1)} form a 
neighbourhood set Np. The set of all candidate disparities D is 
defined as p

P
D D


 

p
, where Dp is the set of disparity 

hypotheses for pixel p as defined in Section 4.1. 
In global algorithm, the goal of matching is to compute, for 
each pixel p, an optimal label pd as the disparity at this pixel, 

so that the following energy function is minimized: 
 

( , ) ( , )
( , ) ( , )

p

data p occ p

smooth p q
P N

E d E d
E P D E d d

 

 
   
  

 
p q

p p
               (7)  

 
In the following subsections, the data term Edata and smoothness 
term Esmooth, the occlusion term Eocc are defined. Later in 

Section 4.4, the belief propagation strategy to minimize this 
energy function is explained as well.  
 
4.3.1 Data Term: The data term encodes the intensity 
similarity (photometric consistency) of pixel correspondences 
for hypothesized disparities: 
 

( , ) ( ( , ))data p data pE d F dp p                       (8)  

 
where ( , )pF dp is the cost of matching pixel p to the right 

image with disparity pd . In this study, we measure F based on 

non-parametric census transform (Zabih and Woodfill, 1994). 
The function data  is a truncated L1 norm function proposed by 

(Sun et al., 2003) that is robust to noise: 
  

( ) ln (1 ) expdata d d
d

t
t e e


  

         
              (9)  

where ed and d are parameters controlling the shape of the 
function.  
 
4.3.2 Smoothness Term: The smoothness term encodes the 
piecewise smoothness prior on the disparities of every pixel p 
and its immediate neighbours q. 
 

( , ) ( )smooth p q smooth p qE d d d d                (10)  

 
where the function smooth  is also a robust function defined 

similar to Equation (9) with parameters es and s.  
 

( ) ln (1 ) expsmooth s s
s

t
t e e


  

         
        (11) 

 
The function smooth  has the form of a potential function of 

Total Variance (TV), which has the discontinuity preserving 
property needed for a proper smoothness term (Sun et al., 
2003). The parameter es controls the upper bound (truncation) 
of the model and the parameter s defines the sharpness (Figure 
5). 
 

 
a b c 

Figure 5. The robust function (t) with different parameters. (a) 
e=0.01, =0.6; (b) e=0.05, =0.6; (c) e=0.05, =1.8. 
 
4.3.3 Occlusion Term: In addition, we want to include the 
occlusion term for encoding the occlusion clues as explained in 
Section 4.2. Therefore, we integrate such occlusion assumption 
into the basic energy function using a soft constraint as Eocc. 
 

( , ) ( , )occ p p p pE d x x d  p                       (12)  

 
where the function  is defined as in Equation (6). This energy 
term imposes a penalty for a pixel p being occluded on the right 
image assuming a disparity dp. 
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4.4 Approximating Inference by Belief Propagation 

From probabilistic point of view, the energy is equal, up to a 
constant, to the negative log posterior. Therefore, minimizing 
the energy function E(P,D) is equivalent to maximizing a 
posterior probability p(D|P); that is the disparity map given 
image observations (Equation (13)). In fact, in a Markov 
random field network, pixels P can be considered as observable 
nodes of the graph, and disparity hypotheses D (or labels) can 
be considered as random variables (hidden nodes). There is a 
link (undirected edge) between any pixel p and all the labels in 
its candidate disparity set Dp and also between any directly 
neighbouring pixels:  

( , ) ( , )
p

p p q
P N

posterior d d d 
 

 
 
 
 

 
p q

p             (13)  

 
where  is the unary potential, 
 

 ( , ) exp ( ( , ) ( , )p data p p p pd F d x x d     p p     (14) 

 
and  is the interaction or binary potential. 
 

( , ) exp( ( ))p q smooth p qd d d d                  (15) 

 
To maximize this posterior, loopy belief propagation (LBP) 
technique is used (Sun et al., 2003). There are several 
algorithms to perform LBP, from which the max-product 
algorithm is applied here that maximizes the joint posterior. 
Note that this would be equivalent to the min-sum algorithm, if 
the negative log probabilities were used instead of the 
potentials. Max-product is basically a message-sending 
algorithm where every observable node p sends a message 
( ( )p qmsg d ) to node q in its neighbourhood about the amount 

of its belief that node q has disparity value d:  
 

\

( ) max ( , ) ( , ) ( )
p

p
l D N

msg d l d l msg l  
 

 
 
 
 

p q s p
s q

p   (16) 

 
where Np\q means all the pixels at the neighbourhood of pixel p 
except for q, to which the message is being sent. It should be 
noted that for a pixel q should only receive messages about 
disparities that belong to its candidate disparity set, i.e. qd D . 

The details of the algorithm are avoided here and readers are 
referred to Sun et al. (2003) and (2005) for more details. The 
message sending iterates several times until all the nodes 
receive the complete messages from the other nodes. Then, at 
the end, the belief at each node p about any disparity candidate 
d (i.e. ( )pB d ) can be computed as follows. 

 

( ) ( , ) ( )
p

p
N

B d d msg d 


  q p
q

p                       (17) 

 
Therefore, the disparity candidate which maximizes the belief is 

the optimal one ( ˆ
pd ), which together with the optimal 

disparities at other pixels maximizes the posterior of Equation 
(13), or equivalently, minimizes the energy of Equation (7). 
 

 ˆ arg max ( )
p

p p
d D

d B d


                                 (18) 

The matching algorithm is repeated once considering the left 
image as the reference and once in reverse way. At the end, left-
right cross-checking is also performed to remove the outliers. 
 

5. EXPERIMENTAL RESULTS 

In order to test different aspects of the proposed dense matching 
algorithm, some training stereo images belonging to the 
Middlebury Stereo benchmark were used (Scharstein and 
Szeliski, 2002; Scharstein and Szeliski, 2003; Scharstein and 
Pal, 2007; Hirschmüller and Scharstein, 2007). In future, more 
tests will be performed on the 2014 datasets of the benchmark, 
which will allow the comparison of this algorithm with other 
state-of-the-art ones.  
For hypothesis generation, orientation threshold of T=15 
degrees was used (in Equation (3)), and the maximum arc-
length in the curve was considered to decide the arc-length 
threshold  in Equation (4). The experiments on the stereo 
images of Figure 6 showed that the ground-truth disparity value 
of more than 868% of the pixels existed among the candidate 
disparities hypothesized for those pixels. The reason of failure 
at other pixels was the fact that no hypothesis was generated at 
all for those pixels. They are, mainly, the pixels located at 
texture-less or uni-color areas of the image. At these areas, the 
orientation at the intrinsic curve is undefined since there is 
neither intensity nor gradient-of-intensity changes. Therefore, 
these points would be left with no candidate hypothesis, unless 
some were found at the hypothesis extension step. That is, a 
pixel is locally located in the texture-less area but its close 
surrounding area has texture variations. 
In addition, the size of the set of candidate disparities for each 
pixel was, in average, 173% of the size of the full disparity 
search range. Since the computational complexity of most 
matching algorithms is linearly dependant to the size of the 
disparity search space, such reduction of the search space can 
be proportional to the increase of matching efficiency. In case 
of belief propagation, the complexity of optimization is linearly 
dependant on the size of disparity search space. That is our 
algorithm increased the speed of LBP by 83% compared to the 
case when the whole disparity search space must have been 
considered. 
Regarding the proposed method to detect potential occlusions, a 
test was performed on the stereo images. For each pair, the 
function  , as defined in Equation (6), was calculated at non-
occluded ground-truth pixels. Figure 7 shows the value of this 
function for the image of dolls in Figure 6 (note that the 
 values were ordered ascending). The same results were 
obtained for other images. In average for 921% of the non-
occluded pixels, the value of   was exactly zero. Therefore, 
the consideration of this function to estimate the occlusion term 
of the energy function (Eocc) as a soft prior (not a hard/binary 
constraint) was logical. 
Figure 8 shows the computed disparity maps using the proposed 
method. In the experiments of this study, disparity refinement 
was not performed, e.g. median filtering or sub-pixel estimation 
and gap-filling using interpolation techniques; because the 
objective of these experiments was to check the accuracy 
achievable only by the matching algorithm. Under each 
disparity map at Figure 8, the accuracy of matching is denoted 
with two values R1 and R2. R1 is the percentage of pixels whose 
computed disparity values differ from their respective ground-
truth disparities less than 1 pixel. R2 is the percentage of pixels 
whose computed disparity values have more than 2 pixels 
difference from their respective ground-truth disparities. In 
average, the matching algorithm succeeded to match 92.8% of 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-123-2016

 
128



 

pixels with less than 1 pixel difference from the ground-truth. It 
should be noted that the estimated disparity maps were 
approximately from 4% to 20% less dense than the ground-truth 
maps mainly because of the pixels for which no candidate 
disparity was hypothesized. 
 

 

 

 

 

 

 
Figure 6. Test stereo datasets: the left images and their non-
occluded ground-truth disparity maps to which left-right cross 
checking was applied. 

 

 
Figure 7. Values of curvature similarity   at non-occluded 
pixels of a stereo pair 
 
 

R1= 91.9% , R2=93.2% R1= 93.6% , R2= 95.1% 

R1= 92.1% , R2=96.4% R1= 92.3% , R2=93.9% 

R1= 92.5% , R2=93.9% R1= 91.8% , R2=94.1% 

Figure 8. Estimated disparity maps using the proposed matching 
technique and their accuracies. 
 

6.   FUTURE WORK AND CONCLUSION 

In this study, we revisited the concepts of intrinsic curves and 
studied their characteristics in order to propose an efficient 
dense stereo matching algorithm. The first objective of this 
study was to reduce the disparity search range with a simple 
search at the space of the intrinsic curves and without requiring 
computationally complex techniques such as hierarchical 
matching. The suggested hypothesis generation technique 
considered both spatial and photometric characteristics of pixels 
to propose the candidate disparities. The second objective was 
to reduce the ambiguities due to occluded pixels of images by 
integrating the occlusion-detection clues explicitly into the 
global energy function as a soft prior. These clues were also 
derived using the concepts of intrinsic curves and their capacity 
to manifest occlusions.  
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In the future, modifications will be applied to the hypothesis 
generation technique so that the orientation thresholds can be 
decided adaptively based on image observations, e.g. intensity 
changes. This modification will help to fill the gaps at non-
occluded pixels, and, at the same time, to keep generating 
efficient disparity candidate sets with relatively small size. 
Furthermore, the details of the matching algorithm using LBP 
will be investigated. For instance, different matching cost 
functions will be tested to choose the one which best fits to this 
framework. In addition, the results by different algorithms of 
LBP such as sum-product will be evaluated and compared. In 
the future, when the matching algorithm will be tested 
comprehensively, the results obtained from the datasets of the 
Middlebury Stereo benchmark and ISPRS Benchmark on High 
Density Aerial Image Matching will be submitted for further 
evaluation.  
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