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ABSTRACT:

This work presents a new method that automatically detects and analyzes surface defects such as corrosion spots of different shapes
and sizes, on large ship hulls. In the proposed method several scans from different positions and viewing angles around the ship are
registered together to form a complete 3D point cloud. The R, G, B values associated with each scan, obtained with the help of an
integrated camera are converted into HSV space to separate out the illumination invariant color component from the intensity. Using
this color component, different surface defects such as corrosion spots of different shapes and sizes are automatically detected, within a
selected zone, using two different methods depending upon the level of corrosion/defects. The first method relies on a histogram based
distribution whereas the second on adaptive thresholds. The detected corrosion spots are then analyzed and quantified to help better
plan and estimate the cost of repair and maintenance. Results are evaluated on real data using different standard evaluation metrics to
demonstrate the efficacy as well as the technical strength of the proposed method.

1. INTRODUCTION

Nowadays, there are close to 6 million large ships in service
(Review of Maritime Transport, 2014), and all of them need to
inspect, clean and paint their hulls regularly (every 4-5 years)
(Ortiz et al., 2007). Traditional manual surveying of ship hulls
is costly, time consuming and of limited accuracy (Ortiz et al.,
2007) (Biskup et al., 2007). On the other hand, 3D scanners have
emerged as a powerful technology solution for many industries
in recent times (Biskup et al., 2007), and painting/repairing ships
is not an exception.

Ship hull inspection for detecting surface defects such as corro-
sion for re-painting and repairing purpose poses a number of chal-
lenges, ranging from time consumption due to large dimensions
of the ship, limited accuracy to poor illumination and limited visi-
bility, etc. Moreover, these defects could be of any shape and size
and can be located at any part of the hull. Detection of these de-
fects is currently done manually by experts who inspect the hull
and mark the areas to be treated/repaired. This is a subjective
task which makes it very dependent on the experience of person
doing it and is also affected by his cumulative fatigue (Navarro et
al., 2010).

Alternatively, laser scanners can operate in total darkness, in rela-
tively severe weather conditions and provide fast 3D scans of the
hull at high resolution. These high resolution scans can then be
used to analyze the hull’s surface to detect these defects.

The main aim of this work is to develop a method that uses com-
mercially available 3D laser scanners to scan complete ship hulls
and then use these scans to automatically detect and analyze de-
fects such as corrosion spots on the surface of the ship hull. This
will not only help in reducing the inspection time by many folds
but also increases the reliability as well as the accuracy of the
detection and estimation of these defected regions, as compared
to manual inspection. As a result, this could lead to better op-
timization of different repair and maintenance processes saving
millions of dollars every year in the shipping industry.

2. RELATED WORKS

Over the years, the task of detecting surface defects has mostly
been considered as a texture analysis problem as presented in
(Fernández-Isla et al., 2013). In (Xie, 2008), texture analysis
techniques for detecting defects are classified into four catego-
ries: structural approaches, statistical approaches, filter based ap-
proaches, and model based approaches. Whereas, in (Kumar,
2008), they are classified into three: statistical, spectral, and mo-
del based. Ngan et al. (Ngan et al., 2011) divide defect detec-
tion methods largely into nonmotif-based and motif-based ap-
proaches. The motif-based approach (Ngan et al., 2010) uses
the symmetrical properties of motifs to calculate the energy of
moving subtraction and its variance among different motifs for
detection. Many defect detection methods rely on clustering tech-
niques which are mainly based on texture feature extraction and
texture classifications. These features are collated using methods
such as Fourier transform (Tsai and Huang, 2003), co-occurrence
matrix (Han and Shi, 2007), Gabor transform (Kumar and Pang,
2002) and the wavelet transform (Ngan et al., 2005).

The wavelet transform is an attractive option when attempting de-
fect detection in textured surfaces (Truchetet and Laligant, 2008).
In the literature review we find two main categories of defect de-
tection methods based on wavelet transform. The first category
includes direct thresholding methods that rely on the fact that
wavelet decomposition can attenuate texture background (Tsai
and Huang, 2003) (Han and Shi, 2007). This allows the use
of existing defect detecting techniques for non-textured images,
such as (Sezgin and Sankur, 2004). Textural features extracted
from wavelet-decomposed images are another category which is
widely used for defect detection (Wong et al., 2009) (Lin, 2007).
Features extracted from the texture patterns are used as feature
vectors to feed a classifier (Euclidean distance, Neural Networks,
Bayer, or Support Vector Machines). This has certain limitations
when handling large image data obtained for different inspection
tasks.

The authors of (Zheng et al., 2002) presents a method based on
images of external metallic surfaces using an intelligent approach
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based on morphology and genetic algorithm to detect structural
defects on bumpy metallic surfaces. The approach employs ge-
netic algorithms to automatically learn morphological parameters
such as structure elements and segmentation threshold, etc.

In (Armesto et al., 2011), a light sweeping method for detecting
defects on car surfaces is presented. A series of images are ob-
tained which are then merged together. After blurring and match-
ing, defects appear as dark pixels after subtracting from the ori-
ginal image. However, the method has practical limitations for
large volumous objects/surfaces.

A sensor system based on thresholding technique is introduced in
(Navarro et al., 2010), that is especially suited for image seg-
mentation under variable and non-uniform lighting conditions.
A global reference value is calculated using denominated His-
togram Range for Background Determination. This value is sub-
sequently used to calculate the local threshold of each area of the
image, making it possible to determine whether or not a pixel
belongs to a defect. The drawback of this method is that the cam-
era’s optical axis should always be placed perpendicular to the
plane of the surface to be inspected.

Laser scanning as a new technology has been introduced in the
marine industry for the last few years (Biskup et al., 2007). 3D
scanning technology has begun to emerge in shipyards, but has
not yet been exploited for the inspection process and specially de-
tection and analysis of defects on the hull. For these operations,
in recent years, a tendency of improvement appeared using the
techniques of vision (Navarro et al., 2010). However, these solu-
tions do not provide acceptable results in the case of inspection of
very large surfaces, in varying and non-uniform lightening con-
ditions in the open air (Navarro et al., 2010) (Zheng et al., 2002).
Such drawbacks and others can be overcome in addition to high
accuracy and scanning rates by using 3D scanning technology.

Biskup et al. (Biskup et al., 2007) used a terrestrial laser scanner
FARO LS 880 to model the hull and the deck of a ship. Analysis
of data from the scanner was performed with the aid of commer-
cially available software Geometric Studio 8. At the end, they get
3D model of two differentiated parts (deck and hull) of the ship.
Based on this model, certain series of analysis could be made
as detection of construction defects, possible asymmetries, along
with a variety of different measures. However, surface defects
are still not detected. In this work we present a new method of
detecting and then analyzing surface defects like corrosion on the
ship’s hull exploiting data from a 3D scanner. According to the
best of our knowledge no prior work exists that exploits the 3D
LiDAR point clouds to detect and then analyze surface defects on
ship hulls.

In the proposed method several scans from different positions and
viewing angles around the ship are registered together to form
a complete 3D point cloud (Section 3.). The R, G, B values
associated with each scan, obtained with the help of an integrated
camera are converted into HSV space to separate out the color
component. Different surface defects such as corrosion spots of
different shapes and sizes are automatically detected, within a
selected zone, using two different methods depending upon the
level of corrosion/defects (Section 4.).

The first method relies on a histogram distribution whereas the
second on adaptive threshold based method. The detected cor-
rosion spots are then analyzed and quantified to help better plan
and estimate the cost of repair and maintenance (Section 5.). The
results are evaluated on real data using different standard eva-
luation metrics to demonstrate the utility as well as the efficacy
of the proposed method (Section 6.). Conclusion is presented in
Section 7..

3. DIGITIZATION OF SHIP HULL

The digitization of a complete ship’s hull, using a stationary grou-
nd based LiDAR scanning system, requires scanning from multi-
ple positions at appropriate distances. For high resolution scans,
as necessary for our application, the distance is kept nominal with
slower scanning rates and large scan overlaps. These multiple
scans after transformation in a global frame of reference are re-
gistered together and filtered to obtain a 3D point cloud of the
complete ship hull as shown in Figure 1. The 3D scanning sys-
tem, as shown in Figure 1(b) has an integrated 2D camera which
allows a colored 3D point cloud i.e. each 3D point with its asso-
ciated R, G & B values.

(a)

(b)

Figure 1. (a) shows the complete 3D point cloud of the ship and
the docking area before the filtering phase. Each 3D point is cou-
pled with the corresponding R, G & B value. (b) shows the
10 different scanning positions (and different viewing angles), of
P20 laser scanner, used to scan the complete ship.

Registration of Multiple Scans

In order to obtain multiple scans the ground based LiDAR scan-
ner is placed at different positions all around the ship to ensure
full coverage at suitable resolution. The scans are taken such to
ensure some overlapping to facilitate the registration process as
shown in Figure 1(b). In order to further aid the process, addi-
tional targets are also placed all around the ship. The scans are
registered, one by one, using a standard ICP algorithm (Besl and
McKay, 1992). In order to satisfy the equations, it is ensured that
at least 3 common targets are visible in each successive scan.

4. DETECTION OF CORROSION SPOTS

Once the 3D point clouds of the complete ship’s hull is obtained
after the registration step, corrosion spots are detected. As the
3D point cloud also contains parts of the ship and surrounding
other than the hull, we allow the user to manually select a zone
on the hull to be analyzed for corrosion spots, using a simple GUI
as shown in Figure 2. The detection of corrosion spots are then
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conducted within this selected zone automatically. Although it is
possible to analyze the complete ship’s hull all at once, this ma-
nual selection of smaller zones of the hull (a common industrial
practice) allows the user/expert to quickly and efficiently identify
the zone of interest (with larger chance of corrosion spots) for fur-
ther processing and prevents wasting resources on less interesting
parts.

(a)

(b)

Figure 2. The two images show the zones selected by the user.
(a) shows a zone with minor corrosion whereas (b) shows a zone
with dominant corroded area.

As the corrosion spots are usually more apparent as visual defects
(change in color, intensity, etc.) and less of physical deformation
(bending, breaking, etc.), the color information plays an impor-
tant role in the detection process. This is also supported by the
fact that usually the ship’s hull itself is mono color with very little
variation and so corrosion spots are easily visible.

As the R, G, B (Red, Green and Blue) color values are prone to
lightning variation, they are converted into HSV (Hue, Saturation
and Value) color space, for each 3D point. This conversion sepa-
rates the color component from the intensity component. Also,
the intuitiveness of the HSV color space is very useful because
we can quantize each axis independently. Wan and Kuo (Wan
and Kuo, 1996) reported that a color quantization scheme based
on HSV color space performed much better than one based on
RGB color space. The component, invariant to the lightening
conditions, is then analyzed. It is referred to in this paper as the
color component as it provides more stable color information.
Based on the description presented in (Hughes et al., 2013), the
following equations were used for the conversion.

h′ =

{ (G−B)
δ

if R = MAX
2+(B−R)

δ
if G = MAX

4+(R−G)
δ

if B = MAX

H = h′ × 60◦, S = MAX−MIN
MAX

, and V = MAX

Here MAX = max(R,G,B), MIN = min(R,G,B), δ =

MAX − MIN and H , S, V are the corresponding point of
R, G, B, in the HSV space. Also, to be noted that the norma-
lized values of R, G, B are used, i.e. R, G, B ∈

[
0 . . . 1

]
, and

so as a result H ∈
[
0 . . . 360◦

]
and S, V ∈

[
0 . . . 1

]
. In case

of R = G = B = 0, H is undefined, hence it is assumed to
be −1. After the conversion, the color component is then used
in our analysis. Two different techniques are proposed to detect
corrosion spots depending on the type of zone selected. They are
explained as follows.

4.1 Histogram based Detection

If the selected zone has a majority of non-corroded area as shown
in Figure 2(a) then a histogram distribution based method is used.
Similar to 2D image segmentation, the larger non-corroded sur-
face is considered as background with corrosion spots as fore-
ground.

A histogram is obtained for each channel of the color component
in the HSV space. Based on these histograms upper and lower
bounds for the color component (c = {H,S}) of the background
region (i.e. non corroded region) BcU and BcL respectively are au-
tomatically calculated. Based on the distribution, theBcU andBcL
are calculated by analyzing the dominant peaks as shown in Fig-
ure 3. Centered on the highest peak, only the peaks with more
than 50% of this maximum height are considered for the deter-
mination of the cutoff region (1)&(2). Once the upper and lower
bounds are determined, the 3D points belonging to the corroded
region are segmented using (3), as shown in Figure 4.

BcU = Hc
max +

m+∑
i

Hc
bini

(1)

BcL = Hc
max −

m−∑
i

Hc
bini

(2)

Pi ∈

{
Non corroded region if BcL ≤ P ci ≤ BcU

Corroded region if P ci > BcU or P ci < BcL
(3)

Here Pi is the ith 3D point in the selected zone while P ci value
of its color component. Hc

max is the value corresponding to the
maximum peak in the distribution, while Hc

bini
is the bin size

of the ith peak for the color component c. m+ and m− are the
number of peaks considered in the cutoff region along the +ve
and −ve directions as shown in Figure 3.

The 3D points belonging to the corroded region are then clustered
for further analyses as explained in Section 5..

4.2 Threshold based Detection

If the selected zone is heavily corroded as shown in Figure 2(b)
then the histogram based method is not useful as the predominant
background (i.e. non corroded area) is not readily available and
we cannot base our model on the dominant corroded zone due to
a lot of variation in the color components. Thus, we employ an
adaptive threshold based method in which a smaller sample vol-
ume is used to calculate the upper and lower bounds BcU and BcL
respectively. This smaller sample volume of any non-corroded
region can be selected from within the selected zone or from any
other part of the hull as the ship hull is mainly the same (material
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(a)

(b)

Figure 3. (a) and (b) show the histogram distribution for H and
S respectively for 3D points of a selected zone. Based on the
dominant peaks, BcU and BcL are automatically selected.

and paint color, etc.) all around. The effect of illumination varia-
tion on the color values of 3D points on different parts of the hull
due to overlaying shadows, reflections, etc., is already catered for
by separating the intensity and the color component by conver-
ting into HSV color space and using only the color component
for the analysis. Once BcU and BcL are calculated using (4)&(5),
the 3D points belonging to the selected zone are segmented using
(3).

BcU = P cs + 3
√
σcs2 (4)

BcL = P cs − 3
√
σcs2 (5)

Here P cs is the mean value of the color component c of all the 3D
points in the sample zone, while σcs

2 is the variance respectively.

The 3D points belonging to the corroded region are segmented
out as shown in Figure 4 and further analyzed as explained in the
next section.

(a)

(b)

(c)

Figure 4. (a) shows the colored 3D point cloud of a small part
of a selected zone. (b) shows the corroded region segmented out
after detection while in (c) we find the 3D point cloud with the
corroded region extracted out.

5. ANALYSES AND ESTIMATION OF THE
CORRODED REGION

In order to analyze the corroded region, the 3D points belong-
ing to these regions are first extracted out (as shown in Figure 4)
and then clustered together using a k-means clustering algorithm
as presented in (Zhou and Liu, 2008). The initial k clusters are
selected randomly and the algorithm minimizes the dissimilarity
measure between all 3D points and their respective associated
cluster centroids. It uses the objective function defined as:

J =

k∑
j=1

n∑
i=1

‖P ji − C
j‖2 (6)
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where ‖P ji − C
j‖2 is a chosen distance measure (Squared Eu-

clidean distance) between a 3D point P ji and its associated clus-
ter centre Cj . This distance measures the dissimilarity of the
3D points to their respective associated cluster centers. Based
on the clustered n 3D points, new centroids are estimated as the
barycenters of the clusters and the process is repeated until the
centroids seize to move.

Figure 5. Estimation of V olcorr and Areacorr for the 3D points
of the corroded part contained in each adapted Voxel.

Estimation of Corroded Region

Once the 3D points are clustered, the total volume and surface
area of the corroded regions are determined. This helps in esti-
mating the amount of work and material (such as paint) required
for renovation/overhauling of the ship’s hull.

As the clusters formed of different corroded regions are of vary-
ing shapes and sizes, it is difficult to calculate the exact surface
area and volume. Hence, we use a finite element method by divid-
ing these regions into finite number of very small 3D voxels (Ai-
jazi et al., 2013). Although the maximum voxel size is limited to
5 cm3, the actual voxel size varies depending on the maximum
and minimum values of the constituting 3D points along each of
the three axes as shown in Figure 5. This way, a certain corroded
region may be divided into tens or hundreds of smaller voxels de-
pending upon the density and size while the adaptive voxel sizes
ensure that the profile of the region is preserved. The volume
is then simply calculated as the volume of the bounding cuboid
(refitted/adapted voxel). The total volume is then the sum of all
individual voxels as shown in (11).

In order to calculate the surface area, an arbitrary plane is de-
termined by calculating the best-fit plane through the 3D points
contained in the refitted/adapted voxel using planar regression of
data as presented in (Fernández, 2005). A best-fit plane is defined
with the equation:

(xi − x) = B(yi − y) + C(zi − z) (7)

where x, y, and z are the respective mean values of X , Y , and Z
coordinates of all points. To find the equation of the best-fit plane
for a given set of points, Press et al. (Press et al., 2007) present
the following equations that are solved for B and C:∑

((xi − x)(yi − y)) =

B
∑

(yi − y)2 + C
∑

((yi − y)(zi − z)) (8)

∑
((xi − x)(zi − z)) =

B
∑

((yi − y)(zi − z)) + C
∑

(zi − z)2 (9)

The result of the regression is a plane that passes through a point
with coordinates (x, y, z) and is returned in the form of a vector
normal to the best-fit plane. The equations in (Press et al., 2007)
are corrected to deal with traces/residue, by replacing (7) with the
following definition:

(yi − y) = A(xi − x) + C(zi − z) (10)

and modifying (8) and (9) accordingly.

These 3D points contained in the refitted/ adapted voxel are then
projected on this plane as shown in Figure 5 and area is calculated
as the area of the bounding rectangle. The total surface area is
again the sum of individual areas as presented in (11) and (12).

V olcorr =

N∑
i=1

(|Xi
max −Xi

min|.|Y imax − Y imin|.|Zimax −Zimin|)

(11)

Areacorr =

N∑
i=1

(|Xpi

max −Xpi

min|.|Y
pi

max − Y p
i

min|) (12)

Here N is the total number of voxels, X , Y , Z and XP , Y P

are the 3D and 2D-projected coordinates of the points respec-
tively. As the voxel sizes are very small, the volume and surface
area estimations of the corroded region, V olcorr and Areacorr
respectively, are quite accurate.

6. EXPERIMENTS, RESULTS AND EVALUATION

The proposed method was evaluated on real data. 700× 106 3D
points were obtained after scanning a ship (120 m long and 20 m
wide) using Leica’s P20 laser scanning station as shown in Fig-
ure 1. Multiple scans were obtained from ten different locations,
all around the ship, and then registered together as explained in
Section 3..

Different zones on the ship’s hull were selected and the corro-
ded regions were detected and then analyzed using our method.
Some qualitative results are presented in Figure 6. The figure
shows that the method is able to successfully segment out most
of the corroded regions. As the method is non parametric (does
not rely on particular shapes and sizes) it is able to segment corro-
ded regions of different shapes and sizes. For quantitative results,
some of these zones were manually segmented to obtain ground
truth. The detection results are presented in Table 1 using diffe-
rent standard evaluation metrics as described in (Vihinen, 2012).
The analysis was conducted with 3D points.

Although, all these metrics are commonly used to evaluate such
algorithms, MCC (Matthews Correlation Coefficient) is regarded
as most balanced measure as it is insensitive to different class
sizes (like in our application sometimes the number of points be-
longing to the corroded regions are significantly less or more than
that of the non-corroded regions).

The MCC, like the other measures, is calculated based on the
count of the true positives (i.e. correct detection of 3D points be-
longing to corroded region), false positives, true negatives, and
false negatives. A coefficient of +1 represents a perfect predic-
tion, 0 no better than random prediction and −1 indicates total
disagreement. The detailed results including overall accuracy
ACC and MCC greater than 88% and +0.6 respectively, clearly
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Table 1. Detection results using different standard evaluation
metrics.

Metrics Results
ACC Accuracy 0.881
PPV Positive Predictive Value 0.911
NPV Negative Predictive Value 0.870
FDR False Discovery Rate 0.088
F1 F1 measure 0.902
MCC Matthews Coefficient Correlation +0.690

Table 2. Evaluation of volume and surface area estimation.

Ground Truth Estimated Error
Zone V ol Area V ol Area ∆V ol ∆Area

(m3) (m2) (m3) (m2) (%) (%)
1 0.072 0.76 0.070 0.73 2.78 3.95
2 0.409 4.75 0.400 4.60 2.20 3.16
3 0.470 5.38 0.460 5.24 2.13 2.60
4 0.007 0.24 0.007 0.25 2.94 4.17
5 0.091 1.24 0.089 1.21 2.20 2.42

demonstrate the efficacy of the proposed method. It is also ob-
served that the PPV is generally found higher than NPV which
suggests that the method is more conservative and is more likely
to detect corroded zones once highly certain otherwise it does not.
Hence, false positives are usually less than false negatives.

The estimation of V olcorr andAreacorr by the proposed method
was also evaluated. Estimated values for five different zones were
compared with the corresponding ground truth. The ground truth
was obtained by manual labeling of corroded zones followed by
Volume and Surface Area calculation based on the equal distribu-
tion of 3D points using a 3D CAD software. This supposition of
equal distribution is justified by the fact that the sizes of the se-
lected zones were relatively small and the position of the scanner
was fixed. This ensures that there is minimal to no variation in
the point density in the selected zone. The results are presented in
Table 2. The results show a relatively small error which demon-
strates the efficacy of the method. This error difference between
the estimated and the ground truth value also includes the error
due to some False Positives FP (zones wrongly detected as cor-
roded zones) as well as False Negatives FN (corroded zones not
detected).

We also evaluated the effect of registration errors in the estima-
tion of V olcorr and Areacorr . For this analysis, multiple scans
of a particular zone were registered with small but different regis-
tration errors. The results, presented in Table 3, show that regis-
tration errors play an important part in the detection and analysis
of corroded regions as this effect the estimation of the dimension
and magnitude of the corroded regions. This may in turn result
in higher or lower estimation of repair costs (in terms of material
required such as paint, man hours and other processes, etc.).

7. CONCLUSION

In this work a new method for automatic detection and analysis
of surface defects such as corrosion spots of different shapes and
sizes, on large ship hulls is presented. In the proposed method
multiple scans from different positions around the ship are re-
gistered together to form a complete 3D point cloud. The R,

Table 3. Effect of registration errors in the estimation of V olcorr
and Areacorr .

Registration Error V ol Areacorr ∆Areacorr
Zone (mm) (m3) (m2) (%)

1 1 0.089 1.21
2 4 0.093 1.28 ⇑ 6%
3 13 0.103 1.41 ⇑ 16%

G, B values associated with each scan, are converted into HSV
space to separate out the illumination invariant color component
from the reflectance intensity. Using this color component, dif-
ferent surface defects such as corrosion spots of different shapes
and sizes are automatically detected, within a selected zone, us-
ing two different methods depending upon the level of corro-
sion/defects. These detected corrosion spots are then analyzed
and accurately quantified. The different aspects of the method are
thoroughly evaluated on real data using different standard evalua-
tion metrics and the results clearly demonstrates the efficacy as
well as the applicability of the proposed method.

This method not only helps to increase the reliability but also
the accuracy of the detection and estimation of these defective
regions, as compared to manual inspection that is currently the
standard practice. As a result, this could definitely lead to better
estimation of cost and optimization of different repair and main-
tenance processes in the shipping industry.
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(g) (h) V olcorr = 0.007 m3 Areacorr = 0.25 m2

Figure 6. (a), (c), (e) & (g) show the colored 3D point clouds of different zones while (b), (d), (f) & (h) present the 3D point clouds
with the corroded region segmented out along with the corresponding V olcorr and Areacorr respectively.
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