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ABSTRACT:

In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D
models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this
demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation
of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like
teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan
data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have
developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS
is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language
(XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and
implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.),
(2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions)
and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments:
First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a
simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

1. INTRODUCTION

Laser scanning is a widely used method of acquiring high-detail,
high-precision 3D models of physical objects in many technical
fields of modern society like construction, mining, farming and
forestry, or science. The technology is advancing quickly, and
increasingly capable laser scanners are introduced every year. A
remaining problem is that laser scanners are still very expensive,
and it is unlikely that they will become significantly more afford-
able in the foreseeable future. However, there are use cases where
it might be possible to replace the operation of a real laser scan-
ner with a computer simulation, resulting in a massive reduction
of costs and effort. If the focus of interest in a laser scanning
operation is on the acquisition of some very specific real-world
data, it can never be replaced by a simulation. However, there
are many questions in laser scanning research for which the an-
swers lie not in the actual content of the captured data, but in its
structural characteristics, and these can very well be reproduced
in a simulated environment. Possible use cases for a laser scan-
ning simulator are, e.g., research and planning of scanning strate-
gies, laser scanning teaching and training, generation of artificial
scan data for algorithm development, or sensor development and
evaluation. More detailed thoughts on the usefulness of a laser
scanning simulator were presented by Lohani and Mishra (2007).

2. RELATED WORK

The general idea to simulate laser scanning is not new. A signif-
icant increase in publications on the topic can be observed since
around 2005. Most publications focus on methods and algorithms

∗Corresponding author

to achieve high simulation realism for one very specific aspect of
the light detection and ranging (LiDAR) technology, or for very
specific applications like forestry (e.g. Lovell et al. (2005)). The
following paragraphs provide an overview of some selected pub-
lications with an emphasis on their unique characteristics.

Lohani and Mishra (2007) have developed an airborne laser scan-
ning (ALS) simulator for education and general research. The ap-
plication features a user-friendly graphical user interface (GUI)
which includes a scene generator/editor and a graphical flight
path planner, turning the software into a complete ready-to-use
ALS simulation suite. However, the LiDAR simulation method
described by Lohani and Mishra (2007) works with “2.5D” ele-
vation maps only. Overhanging geometry is not supported, the
scene is meant to be scanned exclusively from above. Therefore,
the presented approach cannot be used to simulate terrestrial laser
scanning (TLS) with realistic high-detail scenes.

A critical aspect of TLS simulation is the support of scene data
structures that allow detailed representation of objects with com-
plex geometry (e.g. vegetation), suited for realistic simulation
of LiDAR measurements from close distances and from any di-
rection (as opposed to 2.5D elevation maps, which only allow
meaningful measurements from above). A project that takes this
into account is presented by Kim et al. (2009). In contrast to
the system described by Lohani and Mishra (2007), they use true
3D geometry to describe the scanned scene. This approach may
make their software potentially usable for meaningful TLS simu-
lation as well. However, this is not discussed in the paper.

One solution which was explicitly designed for TLS simulation
was published by Wang et al. (2013). They have modeled the
interaction between a RIEGL VZ-1000 TLS system and a Tilia
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tree, represented by a triangle mesh. The purpose of their imple-
mentation is the investigation of the effects of different scanning
positions (distance between tree and scanner, and elevation of the
scanner above ground) on the derivation of plant characteristics
like leaf area index from the generated point cloud. The publi-
cation does not mention to which extent their software could be
used for other purposes, or how easily it could be modified and
extended.

An important aspect to point out here is that none of the solutions
mentioned above simulate beam divergence - the fact that a laser
beam is not an infinitely thin line, but a cone of light which in-
tersects with surfaces in an elliptical area, called the laser’s foot-
print. This has a number of implications on how the light is re-
flected by surfaces and detected by the LiDAR sensor. Modern
laser scanners take these effects into account and measure the so-
called full waveform of a reflected laser pulse. In contrast to the
single point coordinates which are returned by less sophisticated
scanner models, the full waveform contains valuable additional
information which can be used by LiDAR researchers to learn
more about the nature of the scanned objects. For example, this
is especially useful for LiDAR-based studies of vegetation, due to
the complex geometry of plants (e.g. Hollaus et al. (2009), Höfle
et al. (2012)).

Kukko and Hyyppä (2009) have developed a laser scanning sim-
ulator which is capable of modeling beam divergence and full-
waveform signal recording. Generally, their model of the physics
involved in LiDAR measurements is very detailed, resulting in
a high level of simulation realism. However, just like the solu-
tion presented by Lohani and Mishra (2007), their simulator uses
2.5D elevation maps to represent scene geometry, so that it can
only be used for ALS simulation.

A TLS simulation that includes modeling of beam divergence and
full-waveform signal detected is described by Hodge (2010). Un-
usual for a TLS simulation, this implementation uses 2.5D eleva-
tion maps, which is explained by the fact that it was specifically
designed to analyze errors in high-resolution TLS scanning of un-
even surfaces (e.g. pebble-covered ground) from close distances
(ca. 3 m). The system is designed to work with scene models at
scales below ca. 1x1 m and a single scanning position. Scanner
platform movement is not supported. However, the implemen-
tation models radiometric as well as geometric aspects of high-
resolution, small-distance laser scanning with high realism.

3. OUR APPROACH

Laser scanning is a highly versatile technology with many differ-
ent fields of application, and several different modes of operation
(e.g. airborne, stationary terrestrial, mobile terrestrial, and even
naval). Accordingly, there are just as many possible applications
for a laser scanning simulator. A study of existing literature has
shown that most previous research projects on laser scanning sim-
ulation were focusing on highly detailed modeling of small parts
of this wide field, like one specific mode of operation (e.g. ALS),
or one specific aspect of the complex physics of LiDAR measure-
ments.

We decided to follow an opposite approach and started to de-
velop a flexible multi-purpose simulation framework which could
support many different types of laser scanning research projects.
More specifically, the system is designed to have the following
characteristics:

• Support for many different types of environments (scan tar-
gets), scanners, platforms and survey methods, ground-based
as well as airborne, stationary as well as mobile.

• Especially, support for scenes with true 3D geometry (as op-
posed to “2.5D”). This is an essential requirement for real-
istic TLS simulation.

• A “data-driven” simulation engine: As many aspects as
possible should be stored in configuration files, so that they
can be changed easily.

• Support for easy modification and extension, to provide a
solid foundation for many different aspects of laser scanning
research and allow “rapid prototyping” of new features and
experiments.

• Based on free, open-source and platform-independent soft-
ware, to enable and encourage a large group of potential
users to try and possibly modify and extend the program to
meet their requirements.

We created a modular and highly configurable laser scanning sim-
ulation framework called HELIOS, that incorporates all of these
ideas. As already mentioned, its development follows a “breadth
first” strategy: We decided to focus on simple implementations of
many aspects first, instead of starting with complex implementa-
tions of few aspects. This leads to the situation that some features
are not yet developed as far as one might expect of a mature,
full-featured LiDAR simulator, while others are new and unique
- especially combined in a single software package. Also, some
features are already stable and well-tested, while others still have
an experimental character.

3.1 Software Architecture

HELIOS is written in the Java programming language, which
supports fast development, high runtime performance and very
good multi-platform support, so that the software can run out-of-
the-box on Windows, Linux and Mac OS operating systems.

The system is designed as a modular library that can be used to
develop different types of applications that make use of its laser
scanning simulation capabilities. In theory, this includes desktop
applications as well as web-based solutions (e.g. through inclu-
sion of HELIOS into a Java Web Servlet) and even mobile apps.
However, only PC desktop applications have been implemented
and tested so far.

The HELIOS library consists of a core package and a number of
modules that perform different tasks. The core package contains
classes that model the three main components of the simulation:
The platform (Section 4.), the scene (Section 5.) and the scanner
(Section 6.). Each simulation that is run with HELIOS represents
a series of interactions between these three components.

Modules are built on top of the core components and provide ex-
tended functionality for different tasks. Currently, there are mod-
ules for the following tasks:

• Loading of simulation assets (i.e. scene, platform and scan-
ner definitions) from files

• Playback of pre-defined surveys

• Real-time 3D visualization

• Survey planning
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Applications are developed by including the core and one or more
module packages and connecting them in the desired way. Not
all modules might be required to implement a specific simulation
task, and existing modules could be replaced with others that per-
form the same tasks in a different way. The following sections
take a closer look at the different modules and components of the
system, and describe their current capabilities and how they work
together.

4. THE PLATFORM (CORE COMPONENT)

The platform component simulates the platform on which the
scanner is mounted. All changes of the scanner’s position and
orientation in space are caused and controlled by the platform
component. HELIOS implements multiple platform classes that
can be used to simulate different types of aircraft and ground ve-
hicles, as well as stationary platforms.

An actual implementation of a specific platform consists of two
parts: A class which contains the logic to simulate the general
platform type (e.g. a wheeled ground vehicle or a helicopter) and
a set of parameters that define the specific characteristic of the
platform (e.g. mass, maximum speed, position and attitude of the
scanner mount, etc.).

Currently, HELIOS implements the following platform classes:

• Four-wheel ground vehicle with one steerable axle

• Helicopter/Multicopter

• Simple linearly interpolated movement along straight lines

• “Dummy” platform without movement code (base class of
all other platform classes, can be used to simulate stationary
scanners)

The ground vehicle and helicopter classes use simple physical
models with parameters like mass, gravitation and engine forces,
to approximate the real-world behaviour of these vehicle types.
The linear path movement platform simply interpolates the po-
sition of the platform on a straight line between two waypoints
with constant speed. The “dummy” platform does not contain
any movement code at all. It can be used to simulate stationary
platforms like tripods.

As already mentioned above, each platform class has various con-
figuration parameters that can be adjusted to represent specific
platform models. These configuration settings can be loaded into
the software using the assets loader module (Section 7.).

It is important to note that the platform component does not con-
tain any logic to define trajectories and move along them. Plat-
form classes only control how a platform moves, but not where it
moves. In order to actually move a platform through the scene,
an additional steering module is required. This role is fulfilled by
the survey playback module, described in Section 8..

5. THE SCENE (CORE COMPONENT)

The scene component represents the environment that is scanned
by the simulated laser scanner. The scene might also influence the
platform’s position and/or movement: Stationary scanning posi-
tions as well as the trajectory of a moving scan platform need to
be planned with the geometry of the scan target in mind. Also,

slopes and path-blocking features like walls or vegetation would
limit the freedom of movement of ground vehicle platforms and
very low flying airborne platforms in the real world. However, no
collision detection between platform and scene is implemented in
the current version.

From a software engineering point of view, the scene component
serves two purposes: First, it contains a data structure that holds
scene geometry and materials data. In HELIOS, a scene is de-
fined by a triangle mesh with each triangle holding a reference
to a material definition that defines the physical properties of the
patch of surface that is represented by the triangle. Material prop-
erties affect the strength of laser pulse reflections on a surface.

The second purpose of the scene component is to provide meth-
ods for fast intersection tests between a ray, defined by origin
and direction 3D vectors, and the scene geometry. This type of
spatial query is called ray casting. HELIOS uses ray casting to
simulate the transmission of a laser pulse from the laser scanner
to the scene’s surface (see Section 6.1 for details).

Modern laser scanners operate with up to a million pulses per sec-
ond. In order to simulate such devices with optimal speed (ide-
ally, in real-time or faster), a fast raycasting algorithm is manda-
tory. The ray casting algorithm implemented in HELIOS is based
on traversal of a so-called k-dimensional tree (kd-tree), as de-
scribed by Bentley (1975). A kd-tree is a binary tree data struc-
ture that recursively splits the Euclidean 3D space of the scene
into smaller sections until each section contains only a small num-
ber of geometric primitives (typically something between one and
up to a few dozen). During the subdivision process, the positions
of the split planes as well as the parent-child-relationships be-
tween a split section as a whole and the two smaller regions cre-
ated by the split are stored in memory. This information can then
be used to implement very efficient spatial search algorithms, in-
cluding ray casting. A description of how exactly HELIOS uses
ray casting to simulate laser pulses is given in Section 6..

6. THE SCANNER (CORE COMPONENT)

The scanner component simulates the actual laser scanner. This
responsibility consists of three tasks: Simulation of the beam de-
flection unit, simulation of the firing of laser pulses, and detection
and processing of their reflections. The interaction of laser pulses
with scene surfaces is modeled in the scene component, instead.

The beam deflection unit is the part of the laser scanner that con-
trols the pattern of angular movement in which the laser beam
scans the environment. HELIOS implements different types of
beam deflection units and scan patterns (Fig. 1):

• Rotating mirror (parallel scan lines)

• Fiber array (parallel scan lines)

• Oscillating mirror (“zig-zag” scan pattern)

• Conic mirror (elliptical scan pattern, a.k.a. “Palmer scan”)

6.1 Beam Divergence and Full-Waveform Recording

HELIOS simulates laser beam divergence by approximating the
beam’s light cone using multiple raycasting queries (Fig. 2). The
rays are arranged with evenly distributed angular distances in
concentric circles around the central axis of the beam. Subsam-
pling quality can be controlled by setting the number of circles,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-161-2016

 
163



Figure 1: Different scan patterns supported by HELIOS: (a) rotat-
ing mirror, (b) fiber array, (c) oscillating mirror, (d) conic mirror.
Aircraft 3D model: CC-BY-SA Emmanuel Baranger

and thus, indirectly, the number of subsampling rays and their
density.

For each subsampling ray, a raycasting query is performed on the
scene’s geometry. If the ray intersects with a primitive, the sur-
face incidence angle and a reference to the material definition of
the intersected primitive is returned. This information is used to
simulate the interaction of the transmitted waveform with the sur-
face and to compute a reflection waveform for each subsampling
ray, taking into account the following additional parameters: en-
ergy of the emitted pulse, distance from the emitter, distance from
the center of the beam, scanner efficiency, atmospheric attenua-
tion and the BRDF surface reflectance model.

The final recorded full waveform of the entire pulse is created by
discretizing and summing up the individual waveforms of each
subsampling ray. The temporal resolution of the waveform can
be configured by the user. Currently, we are running most of
our tests with 500 discretization “bins”, which means that each
recorded waveform is represented as an array of 500 amplitude
values.

Point cloud coordinates are derived by applying echo detection
algorithms (Mallet and Bretar (2009)). So far, peak detection and
Gaussian decomposition are implemented and can be selected by
the user. The point coordinates and the full waveform data for
each pulse are then written to separate files. Each point is stored
together with a reference to the full waveform data from which it
is derived.

7. THE ASSETS LOADER MODULE

Before a simulation can be run, data sets that define a scanner,
a platform and a scene - so-called simulation assets - need to be
loaded. Theoretically, these data sets can come from different
sources: It could be entered by the user at runtime, it could be
generated procedurally (e.g. a random elevation map), or it could
be loaded from files that hold the data in one of many possible
formats. Due to this variety, no functionality to load simulation
assets data is included in the core. Instead, the required logic is
expected to be provided by a module that could be replaced with
different implementations, depending on the use case. Currently,
HELIOS features an assets loader module that reads asset defini-
tions from XML documents and some additional files (e.g. 3D
model files that hold scene geometry data).

Figure 2: HELIOS simulates beam divergence using multiple
subsampling rays. Each black dot represents one subsampling
ray. For visualization purposes, the rays themselves are not
shown and the illustration is not to scale. Aircraft 3D model:
CC-BY-SA Emmanuel Barranger

7.1 Loading Scene Assets

The XML definition of a scene does not hold actual geometry
data. Instead, geometry data is loaded from separate files in tra-
ditional 3D data formats. Currently, HELIOS supports loading of
scene geometry data from the Wavefront object 3D model data
file format (.OBJ), from the Geographic Tagged Image File For-
mat (GeoTIFF) raster map data format (“2.5D” elevation map),
and from “xyz” ASCII point cloud files.

The XML scene description defines how a scene is composed
of one or multiple geometry parts that are loaded from different
3D data files, and how the raw data that is read from the files
should be preprocessed to build the final scene. Scene part load-
ing and preprocessing is performed by a sequence of one or more
so-called filters which are applied to loaded geometry data as de-
fined in the scene description. Currently, the following filters are
available:

• Wavefront Object Mesh Loader: This loader reads a triangle
mesh with associated material definitions from a Wavefront
object (.OBJ) file. This is the standard way of loading a
triangle-mesh-based scene geometry into HELIOS.

• GeoTIFF Loader: This loader reads a terrain elevation map
from a GeoTIFF file and converts it into a triangle mesh.

• XYZ Point Cloud Loader: This loader reads an ASCII ”xyz“
point cloud file. The loader subdivides space into a grid
of cubic cells (also called ”voxels“) and checks whether a
cell contains at least one point of the point cloud. If this is
the case, the cell is defined as ”solid“, and an axis-aligned
bounding box (AABB) primitive with the extent of the cell
is created. The voxel method is a simple way of converting
point cloud geometry into a solid volume with a surface that
can be virtually scanned.

• Coordinate Transformation Filter: This filter can be used to
transform scene geometry from one spatial reference system
to another. In order to combine multiple scene parts with dif-
ferent coordinate systems into a single scene, all parts need
to be transformed to the same coordinate system. It can also
be used in the case that only a single scene part is used, but
the simulation should for some reason use a different coor-
dinate system than the one in which the part is defined.
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7.2 Loading Platform and Scanner Assets

Platforms and scanners are defined through XML alone. No ad-
ditional resource files are used. However, it is possible to define
3D model files that should be used by the (optional) visualization
module to draw the platform and the scanner.

8. THE SURVEY PLAYBACK MODULE

An important part of any laser scanning survey is to make and
carry out a plan that defines where the scanner should be placed
(or, in the mobile case, along which trajectory the platform should
move) and which scanner settings should be used for which part
of the survey. Following the modular design principles of the
HELIOS architecture, the simulator’s core does not contain any
logic to support these things. Instead, HELIOS features a module
that provides this functionality. It reads a survey definition from
an XML document and performs an automatic ”playback“ of the
survey.

The survey playback module can be used to define both surveys
with a stationary terrestrial scanner (with one or multiple scan-
ning positions) as well as surveys with a moving scanner on a
mobile or airborne platform. A survey definition can consist of
multiple scans. For each scan, the used platform, scanner and, in
the case of mobile/airborne surveys, a sequence of waypoints that
describe the platform’s path of movement during the scan, can be
defined.

9. THE VISUALIZATION MODULE

The visualization module provides interactive real-time 3D visu-
alization of a running simulation. It is based on the JMonkey En-
gine (JME) library. JME contains functionality like 3D graphics
output, user input, physics simulation and networking for com-
puter games and simulations. Currently, the visualization module
allows only limited interaction: The user can move the camera
(i.e. the position and direction of the 3D view) around the scene
and control simulation speed. However, even with only these fea-
tures, the visualization module is a very useful tool. For example,
it can be used to check if a survey playback definition is set up
and working correctly, to find programming errors in the simu-
lation code, or to create still images and videos of a simulated
survey. Figure 3 shows four different simulated surveys rendered
with the visualization module.

10. THE SURVEY PLANNING MODULE

In TLS surveys, there is an interest in keeping the number of in-
dividual scanning positions as low as possible, since each addi-
tional scanning position adds to negative effects like

• an additional amount of time required to transport the scan-
ner to the position, deploy, operate and undeploy it.

• an additional amount of electrical energy required for scan-
ner operations. This is especially critical in situations where
no spare batteries or recharging opportunities are available.

• increased redundancy in the produced scan data, leading to
an unnecessary increase in file sizes and processing time.

• additional risk of scanner damage (e.g. accidental drop-
ping), or even risk of injury for scanner operators in dan-
gerous terrain.

Figure 3: Surveys with different types of scanner and platforms,
rendered by the visualization module: (a) quadrocopter, (b) fixed-
wing aircraft, (c) tripod, (d) tractor. Aircraft 3D model: CC-BY-
SA Emmanuel Barranger. Tractor 3D model: tf3dm.com (free
for personal use)

However, if the number of scanning positions is too low, parts of
the scene may not be captured in the desired resolution, or not
at all, leaving “holes” in the data set. Survey planners are chal-
lenged to choose scanning positions in such a way that the desired
coverage and resolution is achieved, while keeping the total num-
ber of scans as low as possible. Especially in environments with
very complex geometry, this is not an easy task even for experi-
enced TLS operators.

HELIOS contains an experimental module that provides an ap-
proximative solution to the problem of finding the recommended
scanning positions (RSPs) for a given scene, based on checking
the lines of sight between potential scanning positions (PSPs)
and so-called visibility test points (VTPs). A PSP is a place where
the scanner could be positioned and operated as part of the sur-
vey. The goal of the algorithm is to find out whether or not it is
really efficient to put the scanner there. A VTP is a point on the
surface of the scene, representing the surrounding surface area to
half the distance to the next VTP. By checking the lines of sight
between a PSP and each VTP in the scene, an approximation of
the PSP’s so-called viewshed - the part of the scene that is visible
from the PSP - is computed. With knowledge about each PSP’s
viewshed, decisions can be made about which PSPs should in-
deed be used in the survey in order to achieve optimal scene cov-
erage, and which PSPs can be dismissed because they would only
produce redundant data. The complete algorithm consists of four
steps:

1. Define a set of PSPs.

2. Define a set of VTPs.

3. Compute the viewshed of each PSP.

4. Find and remove all PSPs which do not have at least one
VTP in their viewshed that is not visible from any other PSP.
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10.1 Setting up Potential Scanning Positions (PSPs)

The first observation that should be made when defining PSPs is
that the scanner will usually only be placed on horizontal surfaces
with little or no slope. It will rarely be positioned on steep slopes,
and most probably never on vertical walls.

In order to find PSPs on horizontal surfaces, the survey planning
module uses the HELIOS framework’s raycasting functionality.
In a regular grid over the scene area, with x/y step sizes that can
be configured by the user, rays are cast vertically “down from the
sky”, and the first point where the ray intersects with scene geom-
etry (i.e. the highest surface point at the given (x/y) coordinate)
is added to the list of PSPs. Pointing straight down, the rays will
never hit vertical surfaces (since they run parallel to them), so no
points on vertical surfaces will ever be selected. However, the
rays will hit slopes. The slope angle at the intersection point is
checked, and the point is discarded if the slope exceeds a thresh-
old that can be defined in the XML configuration.

10.2 Setting up Visibility Test Points (VTPs)

The set of VTPs is built with the same basic approach as the set
of PSPs. Again, raycasting is used to find surface points, but with
two major differences:

• Rays are not only cast down vertically from the top, but also
horizontally from all four sides of the scene, since (in con-
trast to PSPs) vertical walls need to be covered with VTPs,
too.

• Instead of only selecting the first intersection between a ray
and the scene, this time all ray-scene intersections are se-
lected as VTPs, since the entire surface of the scene should
be covered.

In most cases, this method of placing VTPs will not result in a
regular pattern of evenly distributed VTPs, since most surfaces
in the scene are usually not axis-aligned. Especially the complex
shapes of natural objects like plants or rocks will produce very
irregular VTP distribution patterns. This does not pose a problem
as long as the maximum distance between VTPs is small enough
to cover the scene with sufficient density.

10.3 Computing PSP Viewsheds

Computing the viewshed of a PSP means to check the lines of
sight between the PSP and each VTP in the scene. Again, the
scene raycasting functionality of the HELIOS core is used: A
PSP is defined as the ray’s origin, and its direction is defined as
the difference vector between the PSP and the VTP. Then, the
raycasting query is performed and the algorithm checks where
the ray intersects with the scene. If the distance between the first
intersection point and the VTP is larger than a predefined thresh-
old (0.05 m by default, configurable by the user through XML),
no line of sight exists, and the tested VTP is not part of the PSP’s
viewshed.

10.4 Finding Recommended Scanning Positions (RSPs)

The crucial measure for deciding whether or not a PSP is recom-
mended is the number of VTPs that are exclusively visible from
this position. In HELIOS terminology, this is called the exclusiv-
ity of the PSP. The basic idea of the algorithm, to find a set of
RSPs, is to remove all PSPs with exclusivity = 0, which means
that they are fully redundant. It is important to note here that

the removal of such a PSP will usually change the exclusivity of
some of the remaining PSPs: If a remaining PSP shares at least
one of its visible VTPs with the removed PSP, but with no others,
the removal will increase this PSP’s exclusivity by the number of
shared VTPs. Because of this, the order in which redundant PSPs
are removed matters.

One straightforward approach is to remove redundant PSPs in as-
cending order of their viewshed size (i.e. remove the PSP with
the smallest viewshed first). The thought behind this is that PSPs
with large viewsheds are generally preferable: Since the goal of
the overall algorithm is to minimize the number of required scans,
the remaining PSPs should cover as much of the scene as possi-
ble. However, this approach does not always produce the desired
result. In some cases, removing the PSPs with the smallest view-
sheds causes the redundant coverage of some VTPs to decrease
until they become exclusive for another PSP, which then needs to
be kept. This can be avoided by removing PSPs in an alternative
order that does not create additional exclusivities.

Experiments have shown that using the arithmetic mean of the
line-of-sight incidence angles on the scene surface as the order
criterion instead of the viewshed size produces better results for
some scenes. The current implementation of the survey planning
algorithm supports both methods. The basic algorithm can be
summarized as follows:

1. Build the initial sets of VTPs and PSPs and compute each
PSP’s viewshed.

2. For each PSP, determine exclusivity (i.e. identify and count
all VTPs which are only visible from the PSP)

3. If at least one PSP with exclusivity = 0 exists, remove
the one with the smallest viewshed or mean incidence angle
(depending on settings) and continue with step 2. Other-
wise, the algorithm is finished.

The result is a list of scanning positions that each have at least one
exclusive VTP in their viewshed. Altogether, they provide the
largest possible coverage of the scene with the minimal number
of scan positions.

10.5 Excluding Dispensable Scanning Positions

In analogy to inaccessible or unsafe PSPs, which need to be ex-
cluded before the RSP search algorithm is run, there may also
exist dispensable RSPs, which can only be identified after the
search is finished: They have an exclusivity greater than 0, but
the exclusive parts of their viewsheds are so small that the in-
crease in coverage which comes with the addition of these scan
positions to the survey is not worth the effort of moving and op-
erating the scanner there. It should be noted that this is difficult
to decide algorithmically, since some areas of the scene may be
more important than others, and the definition of “importance”
that applies here depends very much on things like the nature of
the scene, how the acquired data is going to be used, and the indi-
vidual notions of the people who perform the survey and process
the data.

Nevertheless, the algorithm can easily be extended to automati-
cally reduce the number of scan positions based on a simple rule:
First, all PSPs with exclusivity = 0 are removed, just like in
the basic version. Then, the PSP with the lowest exclusivity is re-
moved and the exclusivity of all remaining PSPs is re-computed.
These steps are repeated until the combined coverage of all re-
maining PSPs together drops below a specified percentage. In
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Figure 4: A pyramid scene model used to test the survey planning
algorithm.

Figure 5: Two different survey planning results for the pyramid
scene. Large white points: RSPs with removal order based on
viewshed size. Large black points: RSPs with removal order
based on mean line-of-sight incidence angle. The small white
dots represent PSPs and VTPs simultaneously, since the same
grid was used for the placement of both point types.

many scenarios, this method removes quite a large number of ad-
ditional PSPs. Future research has to investigate to which extent
these PSPs match with the ones that would also be discarded by
a human decision-maker.

11. RESULTS

11.1 Survey Planning Test: Flattened-top Pyramid Scene

Artificial scenes with simple, but deliberately designed geometry
are helpful tools to verify the correctness of the simulator. One
such scene was constructed to test the behaviour of the TLS sur-
vey planning module in a special situation where multiple PSPs
together cover the (larger) viewshed of another single PSP, and
also additional regions exclusively. If this was not the case (i.e.
if the single PSP with the large viewshed would cover the view-
sheds of the other PSPs completely), the other PSPs could be re-
moved. However, since this is not the case, the single PSP with
the large viewshed can be removed instead.

One possible scene in which this situation can occur is a hill or
pyramid with slopes that are steep at the base, but get flatter to-
wards the top. Intuitively, one would probably select the top of
the structure as a scanning position, since it provides the largest
viewshed. It covers the entire scene, except the base of the struc-
ture: The line of sight to this region is blocked by the structure
itself. In order to capture the base of the structure, additional scan
positions around the base of the structure are required. However,

Figure 6: Close-up view of a procedurally generated crop field
model.

Figure 7: A procedurally generated crop field point cloud
(overview A and close-up B) compared to a real one (overview
C and close-up D).

if the combined viewsheds of these additional PSPs cover the en-
tire viewshed of the first PSP on the top of the structure, the latter
becomes redundant and can be removed.

A scene with respective geometry was created as a triangle mesh
(Fig. 4), and the survey planning algorithm was run on it two
times with different removal order criteria. In the first test, re-
dundant PSPs were removed in ascending order of their viewshed
size. In the second test, they were removed in ascending order of
the arithmetic mean of their line-of-sight test ray incidence angles
(black points). The results are shown in figure 5.

The result of the first test (white points, removal order based on
viewshed size) is suboptimal: The two scan positions at the base
of the pyramid structure are placed in positions from where they
can not cover the entire scene. Furthermore, their viewing an-
gle on two of the pyramid’s sides are close to zero. The second
test (black points, removal order based on mean line-of-sight in-
cidence angle) produced a much better result: Very much like a
human survey planner would do, it placed two scan positions in
front of opposing corners of the pyramid, and none on the top.

11.2 Example Use Case: Virtual Crop Fields

One possible use case for HELIOS is the creation of artificial
laser scan data to support development of LiDAR point cloud pro-
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cessing and analysis algorithms. One major field of laser scan-
ning research is the investigation of laser scan data from crop
fields of different species (e.g. Höfle (2014), Hämmerle and Höfle
(2014)). Such data can be used to measure field parameters like
plant growth or biomass in precision agriculture scenarios.

In order to show possibilities for the use of HELIOS in this field
of research, a “proof of concept” experiment to simulate laser
scanning of a virtual crop field was performed. As a first step,
a program which can generate 3D triangle mesh models of crop
fields was developed. The program produces crop field models in
the Wavefront object (.OBJ) file format, based on a number of pa-
rameters like distance between plants in a row, distance between
plant rows, plant height, number of leaves, and others. Average
values for these parameters are entered by the user, and the pro-
gram adds random variations to produce more realistic results. A
screenshot of a crop field model which was generated this way is
shown in figure 6.

In the next step, XML scene, platform and scanner definitions
were written for a simulated single-position TLS survey of the
field. Finally, the simulation was run in HELIOS. Figure 7 shows
the result of the simulated scan (Fig. 7 A and B), and a point
cloud from a real crop field scan for comparison (Fig. 7 C and D).
The experiment shows that with the help of additional software
to create scene models, HELIOS can be used to produce highly
customized virtual laser scan data in a fast and easy way. One
great advantage of artificial scan data is that its creation can be
controlled very precisely, and that all relevant geometric parame-
ters are immediately available for comparison with the results of
data analysis algorithms (“virtual ground truth”). Further exper-
iments have to show to which extent these advantages outweigh
the disadvantage of lower realism, compared to performing real
scans.

12. CONCLUSIONS

Although it is still in an early stage of development, HELIOS can
already be used to support a wide variety of laser scanning re-
search projects. The system is designed to integrate all required
functionality to evaluate real and imaginary laser scanner hard-
ware and scanning methods, to produce artificial laser scan data
and to support TLS survey planning through automatic compu-
tation of recommended scanning positions. The main innova-
tion and greatest strength of HELIOS compared to existing Li-
DAR simulator is its flexibility and modularity. The XML-based
“data-driven” simulation engine can quickly be adapted to a wide
variety of requirements and simulation scenarios. Also, our real-
time 3D visualization module is a valuable and (to the best of our
knowledge) unique improvement over other LiDAR simulators.

The next step is to develop more sophisticated end-user applica-
tions that make use of the simulation capabilities of the HELIOS
library. One especially interesting possible use case is a graphi-
cal front-end that allows direct interaction with a simulated laser
scanner, as opposed to the current state of the software which al-
lows only indirect control of the scanner through XML configu-
ration files and the survey playback module. Such an application
could be a powerful tool for teaching and practice of laser scanner
operations.
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