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ABSTRACT: 

 

Vegetation mapping in urban environments plays an important role in biological research and urban management. Airborne laser 

scanning provides detailed 3D geodata, which allows to classify single trees into different taxa. Until now, research dealing with tree 

classification focused on forest environments. This study investigates the object-based classification of urban trees at taxonomic family 

level, using full-waveform airborne laser scanning data captured in the city centre of Vienna (Austria). The data set is characterised by 

a variety of taxa, including deciduous trees (beeches, mallows, plane trees and soapberries) and the coniferous pine species. A workflow 

for tree object classification is presented using geometric and radiometric features. The derived features are related to point density, 

crown shape and radiometric characteristics. For the derivation of crown features, a prior detection of the crown base is performed. 

The effects of interfering objects (e.g. fences and cars which are typical in urban areas) on the feature characteristics and the subsequent 

classification accuracy are investigated. The applicability of the features is evaluated by Random Forest classification and exploratory 

analysis. The most reliable classification is achieved by using the combination of geometric and radiometric features, resulting in 

87.5% overall accuracy. By using radiometric features only, a reliable classification with accuracy of 86.3% can be achieved. The 

influence of interfering objects on feature characteristics is identified, in particular for the radiometric features. The results indicate the 

potential of using radiometric features in urban tree classification and show its limitations due to anthropogenic influences at the same 

time. 

 

 

1. INTRODUCTION 

Mapping and characterizing vegetation and in particular single 

trees is important in forestry and urban management. Research 

on vegetation is expanding due to an increasing need to quantify 

vegetation characteristics and to model environmental dynamics 

(Vanden Borre et al., 2011). Full-waveform airborne laser 

scanning (FWF ALS) has evolved into a state-of-the-art 

technology for highly accurate 3D data acquisition. By now 

several studies indicate a high value of 3D vegetation description, 

e.g. in forestry (Hyyppä et al., 2012; Næsset, 2007), plantation 

(Fieber et al., 2013; Görgens et al., 2015) and urban areas (Höfle 

et al., 2012; Richter et al., 2013; Yan et al., 2015). The estimation 

of tree characteristics like the structure and canopy profile (Latifi 

et al., 2015; Leiterer et al., 2012; Lindberg et al., 2012), the leaf 

area index (Alonzo et al., 2015; Fieber et al., 2014), the volume 

and above ground biomass (Allouis et al., 2013; Cao et al., 2014; 

Pirotti et al., 2014)as well as the classification of tree species 

(Ghosh et al., 2014; GuangCai et al., 2012; Heinzel and Koch, 

2011; Hollaus et al., 2009; Holmgren and Persson, 2004; Hovi et 

al., 2016) have been applied, especially in forested areas. In 

contrast to closed forest stands, urban trees are characterized by 

large species diversity within small areas and a complex 

(typically anthropogenic) shape.  

 

Although the mentioned studies are performed in different fields 

of application, the usage and  type of the derived geometric and 

radiometric features are comparable. What we call “features” 

describes a quantity of a single tree object (e.g. height and crown 

length) or an observation of the returned laser signal (e.g. echo 

width) and is derived from the point cloud directly or by further 

processing (e.g. radiometric calibration). In case of tree species 

classification, features are deduced from previously detected 

single tree objects using segmentation methods like raster-based 

watershed segmentation or 3D point-based segmentation (Eysn 

et al., 2015; Koch et al., 2014). Based on the object-based 

features the species are classified using explorative analysis 

(Hollaus et al., 2009) or applying advanced classifiers such as 

SVM (GuangCai et al., 2012; Ko et al., 2014), Random Forest 

(Ko et al., 2012; Yu et al., 2014) and artificial neural network 

(Höfle et al., 2012). 

 

This paper investigates frequently used geometric and 

radiometric feature sets for tree family classification in an urban 

environment. The usage of geometric features is based on the 

assumption that the point distribution metrics is characteristic of 

the defined tree object (Holmgren and Persson, 2004). For 

example, pines tend to have a conical crown shape while maple 

trees have a round crown shape. Furthermore, the radiometric 

features depends on the amount, distribution, orientation and 

reflectance properties of the scattering elements hit by the laser. 

For example in coniferous trees, height variations of small 

scatterers like needles and small branches, tend to broaden the 

echo width. Groups of small scatterers are not separable in the 

echo waveform (Ducic et al., 2006; Höfle and Hollaus, 2010; 

Hollaus et al., 2014). Accordingly, a successful separation of 

different trees with varying structure is expected by using 

geometric and radiometric features together. Various feature 

types, which have been successfully applied in classifying trees 

in forested areas, are used in this study. The features are deduced 

from previously segmented single tree objects, based on the 

methodology of Höfle et al. (2012). Due to the 2D-based 

segmentation method using the digital surface model (DSM), 

interfering objects, like cars parking beneath tree crown, are 
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included in the segment’s point cloud. The influence of such 

interfering objects on object-based feature derivation and 

subsequently classification accuracy is evaluated. Feature 

derivation and classification are performed on i) “uncleaned” 

point cloud and ii) “cleaned” point cloud of the tree segments. 

The cleaning implies the manual removal of the points caused by 

the interfering objects. 

 

2. STUDY AREA AND DATA SETS 

The area of investigation is located in the centre of Vienna, 

Austria (LVISA, 2015). The study area is characterized by a great 

variety of planting and tree species. Deciduous trees such as 

beeches (Fagaceae), mallows (Malvaceae), plane trees 

(Platanaceae) and soapberries (Sapindaceae) are predominant 

and sparsely coniferous pine species (Pinaceae) can be found. 

The study area mainly contains large buildings and artificial 

objects such as fences, cars and some Christmas market booths. 

In total, 160 clearly identifiable single trees are considered in this 

study for classification (Table 1).  

 

The FWF ALS data were obtained in the framework of the city-

wide LiDAR acquisition campaign in the winter season 

2006/2007 under leaf-off conditions. The Riegl LMS-Q560 

system using near-infrared (1550 nm) laser pulse with a pulse 

width of 4 ns was employed. The relative height values are 

calculated by subtracting the digital terrain model from the point 

cloud. Further information regarding sensor settings and pre-

processing are given in Höfle et al. (2012). 

 

Family Sample 

Number  

Deciduous  

Fagaceae (beeches) 24 

Malvaceae (mallows) 43 

Platanaceae (plane trees) 21 

Sapindaceae (soapberries) 45 

Coniferous  

Pinaceae (pines) 27 

Total 160 

Table 1. Number of trees per family used for classification. 

 

3. METHODS 

The workflow consists of data pre-processing, the exploration 

and derivation of features, followed by the classification, feature 

selection and validation. The main strategy of the classification 

procedure aims to assess the influence of interfering objects, the 

difference between the tree families in derived features and the 

evaluation of the applicability of geometric and radiometric 

features. The workflow is summarized in Figure 1. 

 
Figure 1. Workflow to classify tree families using derived 

geometric and radiometric features from FWF point cloud data. 

3.1 Pre-processing 

In contrast to closed forest stands, urban trees are characterized 

by large species diversity within small areas, a complex (typically 

anthropogenic, managed) shape and artificial objects beneath the 

tree crown. The usage of commonly available 2D-based tree 

detection methods leads to the presence of points caused by 

interfering objects in the tree segment’s point cloud. Height 

threshold (Hthresh) is used to exclude most of the interfering points 

lower than 2 m (Hollaus et al., 2010). To evaluate and avoid the 

influence of further interfering points, the single trees are 

explored visually and in case of such points a manual cleaning 

process is achieved (Figure 2). Based on this pre-processing 

work, two datasets are used for further processing: i) “cleaned” 

and ii) “uncleaned” data. 

 

Figure 2. Point clouds before height threshold calculation for a 

Platanaceae tree segment, colored by relative height: 

“uncleaned” (left) and “cleaned” (right). The left point cloud 

comprises a Christmas market booth beneath the crown (black 

box). 

 

To enhance the comparability of the trees, the relative height 

values in meter are converted to percentage of the tree height 

(TH), assuming a similar and characteristic shape within each 

family. The tree height is defined as the relative height (RH) of 

the highest point in the tree segment. 

 

3.2 Feature Derivation 

Trees can be parameterized by several features in order to 

distinguish different tree families. Full-waveform data offer the 

possibility to describe trees by using their geometric (e.g. crown 

length-width-ratio) and radiometric properties (e.g. backscatter 

cross-section). Based on two types of geometric and radiometric 

features, seven sets of features (F1-F7) are derived from the 

single tree segments (dataset 1 and 2). Two feature sets (F1, F2) 

are of geometric type and are deduced from the XYZ coordinates, 

whereby F1 considers all points and F2 relates to the metrics of 

the previously detected crown. The third feature set (F3) 

comprises the radiometric features echo width (EW), backscatter 

coefficient (γ), backscatter cross-section (σ) and the ratio of EW 

and σ (EW-σ-ratio). A distinction is made between the feature 

classes: "object" and "height layer" (Table 2). The former class 

features are calculated for the whole segmented tree object. The 

latter class related to different height layers within the single tree 

object. Height layers are limited to various extent within the tree 

object. The F4-F7 feature sets combine F1, F2 and F3 differently 

(Figure 1). The derived features are set-wise given in Table 2 and 

explained in detail in the following. 
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Type Class  

 Object Height Layer 

1. Geometric Features [#47] 

Point  

Distributi

on [#41] 

 Pulse 

penetration 

ratio between 

defined height 

thresholds 

(PPRHtresh) 

 Relative 

height 

statistics (RH) 

 Pulse penetration 

ratio between 

ground points and 

height percentiles 

(PPRperc) 

 Point density per 

height layer (Hperc) 

 Relative height 

percentiles (RHperc) 

Tree 

Crown 

[#6] 

 Crown length 

(CL) 

 Crown width 

(CW) 

 Crown length-

width-ratio 

(CL-CW ratio) 

 Tree height-

crown width 

ratio (TH-CW 

ratio) 

 Crown volume 

(CV) 

 Height of 

crown bases 

(CB) 

 

2. Radiometric Features[#100] 

(EW, γ, 

σ, σ-

EW-

ratio) 

 

 Descriptive statistics  

(EWstat, γstat, σstat,σ-

EW-ratiostat) 

 Statistics per height 

layer  

(EWstat_htresh, σ-EW-

ratiostat_htresh,γstat_htre

sh,σstat_htresh) 

Table 2. Calculated features categorized by the feature types 

‘geometric’ and ‘radiometric’ and by the feature classes ‘object’ 

for single tree segment and ‘height layer’ within the single tree 

object. The statistical measures are: minimum, maximum, mean, 

standard deviation, range and coefficient of variation. The total 

number of features (#) is given in brackets. 

 

The features in this study were chosen based on a literature 

research, selecting the most frequently and successfully applied 

features for tree species classification (Vauhkonen et al., 2014). 

The derived geometric features are the pulse penetration ratio 

(PPR), basic statistics of relative tree height (RH), the point 

density within the different height layers (Hperc) and features 

related to the crown (Cao et al., 2014; Yu et al., 2014). The PPR 

is defined as the ratio of number of points between the defined 

height layer and the remaining layers. At this, four different PPR 

are derived: i) ground vs. non-ground (PPRground); ii) mean tree 

height (PPRmH); iii) Hthresh (PPRHthresh) vs. all tree segment points; 

and iv) PPR between ground points and each height percentiles 

(PPRperc). The amount of points per height layer and their 

distribution over tree height is reflected in the height percentiles 

statistics (Hperc). The statistics measures of relative height 

(minimum, maximum, mean, standard deviation, range and 

coefficient of variation) are calculated for the whole tree segment 

(RHstat) and for the height percentiles (RHperc). Furthermore, a 

differentiation is made between “all” and “only first” returns, 

which is indicated by the suffix (“_all” and “_f”) in the feature 

abbreviation. 

The different tree species and families show specific 

characteristics in crown shape (e.g. round, conical, cylindrical or 

large spreading crowns) which in turn can be used for 

classification. The derivation of the crown-based features relies 

on the prior detection of the crown base height. The crown base 

(CB) is detected by the method described in detail in Section 3.3. 

Subsequently, crown length (CL), crown width (CW) and crown 

volume (CV) are calculated as well as the ratios of CL and CW 

and of TH and CW. The CL is defined as the height difference 

between the CB height and TH (Allouis et al., 2013; Holmgren 

and Persson, 2004). The CW is derived by the convex hull of the 

tree segment and its maximum diameter (Yu et al., 2014). Three 

cases can be expected for the ratios: i) ratios tending to zero, 

representing conical/cylindrical crowns, ii) ratios around 1 for 

more rounded crowns, and iii) ratios larger than one indicating 

large spreading crowns. The CV is determined by 3D Delaunay 

triangulation and defines the total volume of each tetrahedron in 

relation to the height of the tree (Fernández-Sarría et al., 2013). 

 

Radiometric features comprise the object and height layer 

statistics of EW, γ, σ and the ratios between σ and EW(Yu et al., 

2014). The derived statistical measures are the minimum, 

maximum, mean, standard deviation, range and coefficient of 

variation. These statistical measures are calculated for the single 

trees objects and the height layers within the single trees objects  

defined as being: i) above CB ii) the upper 20% of tree height, 

and within the height percentiles of iii) 25th to 50th and iv) 50th to 

75th. 

 

3.3 Crown Base Detection 

In this study, crown base is defined as the height from the ground 

to the tree’s crown bottom. The crown bottom is determined by 

comparing the extent of point distribution (area) per height 

interval (slice) and detecting the first high increase/decrease in 

area (Allouis et al., 2013). A distinction is made between trees 

having a constant decrease with increasing tree height (e.g. more 

conical crown shape of pines) and trees, having an increase 

followed by a decrease in area over height (e.g. more rounded 

crown shapes of maples).  

 
Figure 3. Derivation of the local extrema and the crown base, by 

differentiating two cases: a.) trees having a more rounded crown 

shape and b.) trees having a more conical crown shape. 

 

The following steps are applied for the CB determination: i) 

vertical slicing of the point cloud by intervals of 2.5% of the 

normalized height values; ii) calculation of the convex hull of all 

points contained in each slice (i.e. area); iii) linear regression of 
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the vertical profile of the area values and iv) derivation of local 

extrema within the vertical profile, depending on the coefficient 

of linear regression. A local extremum is defined as the 

maximum or minimum of the profile function within the given 

range of four neighbouring points. In case of a positive 

coefficient (m>0), a more rounded tree is given and the minimum 

is selected prior to the first maximum, when the ratio of both 

extrema is greater than 2.5 (cf. Figure 3a). This threshold is 

examined by a first explorative analysis of a subset of trees. A 

negative coefficient (m<0) represents a more conical tree and the 

largest maximum is chosen if it is followed by local minima, 

searching top down of tree height (cf. Figure3b).  

 

3.4 Classification 

The classification aims to evaluate the derived features in order 

to classify the target tree families. The Random Forest (RF) 

classifier is applied considering the different input features sets 

(Pedregosa et al., 2011). The approach is selected based on 

similar applications of RF for tree species classification (Ko et 

al., 2012; Yu et al., 2014). RF is robust to outliers and gives 

internal estimates of feature importance (Breiman, 2001). 

Furthermore, the Recursive Feature Elimination with 10-fold 

Cross Validation (RFECV) is applied on RF to evaluate the 

accuracy with respect to the number of selected features (Guyon 

et al., 2002). The feature subset achieving the best scoring is used 

as input data set in a second classification step with RF classifier. 

The accuracy measure is used to score in the RFECV in order to 

select the best subset for features. 

 

Data classification is performed using the feature sets F1 to F7. 

The training data is portioned relatively with a ratio of 0.7 by 

random sampling, based on Gini Index Weighting. 70% of the 

data is used in the training sub-process (model learning) and 30% 

in the testing sub-process (model testing).The number of trees in 

the applied RF is set to 20, having balanced family classes within 

each tree. This number of trees is chosen with respect to two 

aspects: i) selection of the optimum model based on a comparison 

of accuracy-confidence-ratio of a series of RF models with 

increasing number of trees; and ii) the fact that if the number of 

trees is greater than the number of features, the RF tends to use 

every feature in some of the trees and thus often leads to a 

decrease in accuracy. Furthermore, the minimum number of 

samples required to split an internal node is set to 5 and the 

minimum number of samples in newly created leaves to 2. 

 

The accuracy of the resulting models is assessed by calculating 

the measures of overall accuracy (OA), precision (producer’s 

accuracy), recall (user’s accuracy) and Cohen Kappa. To explain 

the feature importance for classification, the Gini Index as a 

measure of inequality of the features is used. 

 

4. RESULTS AND DISCUSSION 

A first exploratory analysis of the derived features is performed 

on the “uncleaned” and “cleaned” data sets and is discussed in 

Section 4.2. The discussion of the subsequently applied RF 

classification on both data sets and usage of the seven feature sets 

is given in Section 4.3. 

 

4.1 Crown base detection 

The crown base detection is evaluated by the calculation of the 

coefficient of determination (R²) between the manually detected 

CB and the automatically detected CB. The automatic CB 

detection worked best for Platanaceae (R2: 0.94), whereas 

Pinaceae and Sapindaceae revealed low R² of 0.54 and 0.59. 

Intermediate R² is reached for Fagaceae (0.70) and Malvaceae 

(0.69). In particular a lack of points in the lower tree layers due 

to lower penetration rate hampers the detection of the CB, like it 

occurs for Pinaceae more often. Furthermore, the visual 

detection of CB is biased and may reduce the R².  

 

4.2 Feature exploration 

The exploration of features comprises the analysis of histograms 

and box plots of single features, differentiated according to tree 

family. 

 

The comparison of both data sets for single features points out 

the influence of interfering objects on feature characteristics, in 

particular for object-based and radiometric features. The 

interference in radiometric features is due to the different 

reflectance properties of e.g. the artificial objects under the tree 

crown. For example, the distribution of the mean backscatter 

cross-section is shifted towards higher values and has higher 

variance (multi peaks) for uncleaned tree point clouds (Figure 

4).Furthermore, the derivation of the CB is difficult and failed for 

a large number of trees in the “uncleaned” data set. Thus, the 

comparison of the performance of the classification of the two 

data sets is done for the features sets F1, F3 and F4, whereby F4 

comprises F1 and F3. The crown-based feature set F2 and its 

combination with other feature sets are only applied for 

classifying the “cleaned” data. 

 
Figure 4. Histogram of mean backscatter cross-section (σmean) of 

uncleaned and cleaned data, coloured by tree family. 

 

Comparing the families using the features of the “cleaned” data 

set reveals on one hand separability between single families for 

some features, but on the other hand similar characteristics of 

features as well. For example the pulse penetration ratio seems to 

be appropriate for differentiating the coniferous family Pinaceae 

and the deciduous families Malvaceae and 

Sapindaceae(Figure5). This might be due to the fact, that during 

leaf-off condition the canopy of the deciduous families is sparser 

and thus the number of echoes in the lower height layers is higher. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-185-2016

 
188



 

 
Figure 5. The pulse penetration ratio (PPR) differentiated by tree 

family and related to the three levels i) ground (PPRGround), ii) 

mean tree height (PPRmH) and iii) Hthresh of 2 m (PPRHthresh). 

 

The comparison of the crown length-width-ratio reflects the 

typical crown shape of the present tree families. The assumed low 

ratio of conical shapes is given for the Pinaceae, showing values 

less than 0.6. The family of Fagaceae shows values between 0.6 

and 1, whereby values close to 0.6 can be assigned to the species 

Fagus sylvatica and values close to 1 represent species of 

Quercus sp.. The ratios of Malvaceae, Sapindaceae, Platanaceae 

show a high range of values (0.6 to 1.6). 

 

Associated with this issue a higher mean EW of Pinaceae and 

Fagaceae (>4.4 ns) can be noticed compared to the other families 

(<4.4 ns) (Figure 6). The small height variations caused by small 

scatterers like needles or the finer bifurcation of beeches tend to 

broaden the echo width. 

 
Figure 6. The mean echo width differentiated by tree family and 

related to different height intervals 

 

4.3 Classification 

In order to achieve the best accuracy and to test the power of the 

derived feature types, the seven subsets of features F1-F7 are 

evaluated. Furthermore, the influence of interfering objects on 

classification is analysed, comparing the results of the used 

“uncleaned” and “cleaned“ data sets for the sets F1, F3 and F4. 

 

 “uncleaned” 

data set 

“cleaned” 

data set 

Geometric Features (F1)   

Overall Accuracy 73.5% 76.4% 

Cohen Kappa 56.9% 61.6% 

Radiometric Features (F3)   

Overall Accuracy 38.2% 44.1% 

Cohen Kappa 11.5% 18.4% 

Table 3. Results of the classification (overall accuracy and Cohen 

Kappa) for the derived geometric (F1) and radiometric (F3) 

feature sets of the “uncleaned” and “cleaned” data sets of the 

given tree families.  

 

The effect of interfering objects on classification accuracy is 

greater for the radiometric features (-5.9 %) than for features 

considering only the point distribution (-2.9 %) (Table 3). In 

particular, the different reflectance properties of tree elements 

and artificial objects have a great influence on object-based 

statistics. Consequently and in conjunction with the feature 

exploration, a prior elimination of interfering objects and the 

application of advanced tree object detection methods are 

recommended, especially when using radiometric features. Due 

to varying types and sizes of interfering objects, the usage of a 

general height threshold for all trees is only possible to a limited 

extent, whereby more advanced tree detection methods are 

necessary. However, both data sets achieved higher accuracy 

when using only geometric features. 

 

[%] 
Feature Set 

F1 F2 F3 F4 F5 F6 F7 

Overall 

Accuracy 
78.4 65.9 86.3 87.5 81.8 84.0 84.0 

Precision 78.9 65.6 86.3 88.8 80.9 84.6 84.1 

Recall 78.4 65.9 86.4 87.5 81.8 84.1 84.1 

Cohen’s 

Kappa 
60.7 41.1 75.8 78.0 65.0 71.6 71.6 

Table 4. Results of classification for the “cleaned” data set, 

differentiated by the seven feature sets (F1-F7) of the given tree 

families. 

 

The most reliable classification at tree family level of “cleaned” 

data is achieved by using the combination of geometric and 

radiometric features, resulting in a total of 87.5% overall 

accuracy (Table 4). The higher accuracy when using combined 

feature sets is comparable with the results of earlier studies, e.g.:  

Lindberg et al. (2014), who achieved an OA of 71% compared to 

60% using solely geometric features. The usage of features 

related to the crown is only possible to a limited extent. The 

derived crown shape feature of the single species of one family 

varied widely. A greater difference in crown shape can only be 

found between coniferous and deciduous trees, which is reflected 

in an OA of 95.4% classifying at tree class level. Furthermore, 

the anthropogenic influence on tree growth is high in urban areas 

and therefore affects the classification accuracy. For example, Ko 

et al. (2014) achieved an OA of 91.2% when using geometric 

crown features when classifying in forested area. Adding 

geometric features to F3 leads to an increase of 1.2% in overall 

accuracy. Already the radiometric features enable reliable 

classification accuracy of 86.3% at tree family level and of 97.7% 
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at tree class level. This higher accuracy of radiometric features in 

comparison to solely using geometric features is also shown by 

Reitberger et al. (2008), who’s study showed a difference in OA 

up to 10% for the various feature sets. 

 

A detailed analysis of the five families reveals differences in the 

applicability of the single feature sets for classification (Table 5). 

The single usage of features related to point distribution or 

radiometric features classified the Fagaceae with high precision 

(~100%), whereas the Malvaceae achieved  high precision and 

recall when using the combination of geometric and radiometric 

features (F4). This higher precision of the Fagaceae compared to 

the other families is also showed by Heinzel and Koch (2011). In 

particular, the Pinaceae can be already differentiated from the 

other (deciduous) tree families with high recall. For example the 

higher proportion of returns at the top height layers, which is 

shown by Ko et al. (2014), can be seen for the given pines as well. 

The Malvaceae reached higher misclassification and is often 

wrongly classified as Sapindaceae and Platanaceae.  

 

[%] 
Feature Set 

F1 F2 F3 F4 F5 F6 F7 

Fagaceae 

(#7) 

       

Recall 71.4 42.9 71.4 71.4 57.1 77.8 71.4 

Precision 100.0 50.0 100.0 100.0 100.0 100.0 100.0 

Malvaceae 

(#10) 
       

Recall 20.0 10.0 66.7 83.3 20.0 70.0 70.0 

Precision 25.0 9.10 72.7 71.4 40.0 63.6 70.0 

Pinaceae 

(#8) 
       

Recall 100.0 100.0 100.0 100.0 100.0 75.0 100.0 

Precision 66.7 66.7 81.8 81.8 72.7 100.0 80.0 

Platanaceae

(#8) 
       

Recall 50.0 25.0 50.0 33.3 50.0 50.0 50.0 

Precision 100.0 40.0 75.0 100.0 100.0 80.0 66.7 

Sapindaceae 

(#55) 
       

Recall 90.9 81.0 94.4 94.4 98.2 90.9 90.9 

Precision 84.7 80.0 89.5 91.1 84.4 87.7 87.7 

Table 5. Recall and precision differentiated by feature set and tree 

family. The total number of trees is added in brackets. 

 

4.4 Feature Importance 

The applied Random Forest is used together with Recursive 

Feature Elimination with Cross Validation method in order to 

extract the feature implicit importance and ranking of the features 

based on Gini Index. Table 6 highlights the top five features of 

the seven feature sets used for classification. In particular, 

features of the upper crown parts showed higher importance and 

are ranked most frequently in the top five. This is associated with 

the fact that the major structural difference among tree species 

occurs at the top crown layers (Vauhkonen et al., 2014). For 

example, Lindberg et al. (2014) show a higher proportion of 

single returns at the top layers for pines trees compared to 

deciduous trees under leaf-off condition. However, a direct 

comparison of the feature importance with other studies and their 

ranking is possible only to a limited extent, since most studies do 

not perform a separate feature importance test. 

 

 

 

Rank Feature Set 

F1 

[#41] 

F2 

[#5] 

F3 

[#35] 

F4 

[#53] 

1 RHperc50 

(0.080) 

CV 

(0.332) 

γmean_u20 

 (0.094) 

σstd_all 

(0.087) 

2 PPRa2m_f 

(0.056) 

CL 

(0.229) 

γstd_u20 

(0.091) 

γrange_u20 

 (0.063) 

3 RHmean_f 

(0.055) 

CL-CWratio 

(0.177) 

γstd_all 

(0.052) 

γmax_crown 

(0.054) 

4 RHstd 

(0.054) 

TH-CWratio 

(0.141) 

σ-EWmean_u20 

(0.052) 

γrange_50-75 

(0.047) 

5 PPR 

(0.041) 

CB 

(0.119) 

γstd_crown 

(0.052) 

γmax_u20 

 (0.039) 

     

Rank F5  

(#48) 

F6 

(#74) 

F7 

(#81) 

 

1 RHperc80 

(0.057) 

EWmax_all 

(0.062) 

σ-EWmean_u20 

 (0.064) 

2 RHperc90 

(0.050) 

σcoeffvar_u20 

(0.055) 

EWcoeffvar_all 

(0.061) 

3 RHmean 

(0.050) 

σcoeffvar_all 

 (0.054) 

σmean_u20 

(0.048) 

4 RHperc10 

(0.048) 

γmax_50-75 

(0.048) 

γmean_50-75 

(0.043) 

5 RHstd 

(0.045) 

γmean_all 

(0.048) 

γmean_25-50 

(0.041) 

Table 6. Feature importance for the given feature sets at tree 

family level. The top five features are ranked by the Gini 

Coefficient. The total number of features (#) and the Gini 

coefficient of the single features is given in brackets. 

 

 

5. CONCLUSION 

Our study shows the potential of FWF ALS to classify trees at 

family level in urban environments (e.g. city centers). The 

comparison of the derived geometric and radiometric features 

demonstrates their applicability for taxonomic tree family 

classification. Possible limitations due to interfering objects are 

presented by the analysis of uncleaned and cleaned data sets and 

their influence on the feature characteristics. In particular, the 

object-based and radiometric features are affected by such 

artificial objects and require precise detection of the tree in the 

point cloud using more advanced tree detection methods 

(Reitberger et al., 2009). 

Moreover, our study revealed that radiometric features indicate 

the potential of classifying different tree families and are less 

influenced by crown shape differences. The most reliable 

classification is achieved by using the combination of geometric 

and radiometric features, resulting in 87.5% overall accuracy. 

The usage of features related to the crown is only possible to a 

limited extent due to our approach to detect the crowns, high 

intra-family variance of crown shape and high anthropogenic 

influence in urban areas. In order to differentiate between 

coniferous and deciduous trees, features related to different 

shapes are applicable. With respect to intra-family variance, 

investigations on species-specific feature derivation and analysis 

of the effect of the changing seasons are necessary.  
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