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ABSTRACT: 

 

Improving the matching reliability of low-altitude images is one of the most challenging issues in recent years, particularly for 

images with large viewpoint variation. In this study, an approach for low-altitude remote sensing image matching that is robust to the 

geometric transformation caused by viewpoint change is proposed. First, multiresolution local regions are extracted from the images 

and each local region is normalized to a circular area based on a transformation. Second, interest points are detected and clustered 

into local regions. The feature area of each interest point is determined under the constraint of the local region which the point 

belongs to. Then, a descriptor is computed for each interest point by using the classical scale invariant feature transform (SIFT). 

Finally, a feature matching strategy is proposed on the basis of feature similarity confidence to obtain reliable matches. Experimental 

results show that the proposed method provides significant improvements in the number of correct matches compared with other 

traditional methods. 
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1. INTRODUCTION 

In recent years, comprehensive low-altitude remote sensing 

platforms, such as unmanned aerial vehicle (UAV), have 

provided new possibilities for high-resolution image acquisition 

and have been extensively used in many applications (Bulatov 

et al., 2011; Choi et al., 2011; Colomina et al., 2014; Wallace et 

al., 2014a, 2014b; Goncalves et al., 2015; Zhou et al., 2015). 

Compared with traditional approaches (e.g., satellite remote 

sensing and aerial photogrammetry), low-altitude remote 

sensing platforms have the following inherent advantages: first, 

the work mode is flexible, efficient, and less affected by weather, 

and they can take off any time as tasked; second, they are able 

to obtain large-scale and high-precision remote sensing images; 

and third, the overlapping degree between images is relatively 

large. It can enhance the reliability of the subsequent processing. 

The cost of platform construction, maintenance, and operation 

is also low. Although low-altitude remote sensing platforms 

have many advantages in image acquisition, the image 

processing technology is still unable to meet the needs of many 

applications. Therefore, investigating automatic low-altitude 

remote sensing image processing technology, in which robust 

image matching is a fundamental issue, is necessary. 

 

Image matching is a key component of many tasks in 

photogrammetry and remote sensing, which is extensively used 

in many applications, such as image registration (Song et al., 

2010; Gruen et al., 2012; Cheng et al., 2013; Chen et al., 2014; 

Li et al., 2014), stitching (Brown et al., 2007), and 3D 

reconstruction (Kratochvil et al., 2010). Image matching 

methods can be mainly classified into two categories, namely, 

intensity-based methods and feature-based methods (Xiong et 

al., 2010). In intensity-based methods, many approaches are 

based on cross-correlation (Zhao et al., 2006; Karna et al., 

2008), which is a simple concept and easy to implement. The 

main problem with cross-correlation is that it is difficult to deal 

with image deformations except for shift transform. Therefore, 

cross-correlation-based methods are usually used to match 

epipolar images. Many matching frameworks, such as the least 

squares (Gruen et al., 2005) and relaxation matching techniques 

(Zhang et al., 2007), have been proposed to improve the 

reliability of remote sensing image matching. In addition to 

cross-correlation, researchers have proposed a class of 

frequency domain matching methods based on Fourier spectrum 

(Zitova et al., 2003). This type of method searches the best 

match by using image frequency domain information. 

Compared with the cross-correlation-based methods, the 

frequency domain matching methods based on Fourier spectrum 

can obtain better matching results under image illumination 

change and noise interference. Other well-known intensity-

based matching methods adopt mutual information to find 

matches (Viola et al., 1997; Thevenaz et al., 1998). The basic 

idea of mutual-information-based matching methods is to keep 

moving the target window in the search area. When the mutual 

information between the target window and the search window 

achieves a maximum value, the target window center and the 

search window center are regarded as one pair of match. 

Therefore, the matching problem can be converted into the 

computation of the mutual information maximum value. In 

image matching, the number of feature-based methods far 

exceeds that of intensity-based methods. In feature-based 

methods, those based on local invariant feature descriptor are 
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the most well-known. In general, the framework of such 

methods includes three steps, namely, feature detection, 

description, and matching. In the field of computer vision and 

pattern recognition, researchers have proposed many well-

known local invariant feature detectors (Harris et al., 1988; 

Smith et al., 1997; Lowe, 1999; Matas et al., 2004; Mikolajczyk 

et al., 2004) and descriptors (Belongie et al., 2002; Mikolajczyk 

et al., 2005; Bay et al., 2008; Calonder et al., 2010; Rublee et 

al., 2011). One of the most well-known methods is the scale 

invariant feature transform (SIFT) (Lowe, 2004). The SIFT 

method has been extensively used in many applications because 

of its robustness for image rotation, scale change, and a certain 

degree of viewpoint and illumination change. In addition to 

investigating invariant descriptors, researchers have enhanced 

image matching performance by improving the matching 

strategy (Morel et al., 2009; Yu et al., 2012). Given that feature-

based methods have made remarkable achievements in 

computer vision and pattern recognition, they are used to match 

remote sensing images (Li et al., 2009; Lingua et al., 2009; 

Huang et al., 2010; Sedaghat et al., 2011; Wang et al., 2012). 

 

The characteristics of low-altitude platforms, i.e., bumpy and 

low height, result in failure of the commonly used matching 

methods to match low-altitude remote sensing images. Although 

many methods can solve image rotation and scale change well, 

they cannot obtain satisfactory results when large viewpoint 

change exists, as shown in Figure 1. 

 

    
(a)                                             (b) 

Figure 1. Low-altitude images with viewpoint change: (a) 

reference image. (b) test image. 

 

A robust matching method is proposed in this study to improve 

the matching performance of low-altitude remote sensing 

images, particularly for those images with large viewpoint 

change. First, multiresolution local regions are extracted from 

the whole image, and a geometric transform is implemented on 

the extracted regions. Based on this transformation, the 

viewpoint change between images is converted into rotation and 

scale change. Second, point features are detected inside and 

outside of the local regions. Then, the viewpoint invariant 

feature area is computed for each interest point based on the 

constraint of local regions. In this procedure, the size of the 

feature area is determined according to image resolution instead 

of feature scale value. Then, the SIFT method is adopted to 

calculate the descriptor. Finally, feature similarity confidence is 

defined and a matching strategy based on it is presented to find 

feature correspondences. 

 

The remainder of this paper is organized as follows: Section 2 

presents the overall methodological consideration of how the 

proposed algorithm will improve the matching performance. 

Section 3 presents the proposed low-altitude remote sensing 

image matching algorithm in detail. The experimental results, 

along with the detailed analysis and discussion, are presented in 

Section 4. The final section concludes the paper by discussing 

the advantages and disadvantages of the proposed method and 

further improvements that can be made. 

 

2. OVERALL METHODOLOGICAL CONSIDERATION 

Projection transformation between different pixel pairs is 

different because of the large object depth variation in low-

altitude remote sensing images. All the pixel pairs within the 

whole images do not meet the same affine transformation. We 

divided the images into local regions to overcome this problem. 

The transformation between the pixels in the corresponding 

regions can be approximated to an affine transform because the 

depth variation in the local region is small (see Figure 2). 

 

 

(a) transformation between the whole images 

 

 

(b) transformation between local regions 

Figure 2. Image geometric transformation. 

 

Based on the previously presented analysis, the proposed 

matching method is conducted through the following three steps: 

First, the local regions are extracted from the input images and 

are normalized based on a transformation. Second, the interest 

points are detected and described based on the local region 

constraint. Third, descriptor similarity confidence is defined and 

a matching strategy is proposed based on the concept. The 

procedure is summarized in Figure 3. 

 

Reference image Test image

Local regions extraction and transformation

Point feature detection and description under the constraint 

of local regions

Feature matching based on descriptor similarity confidence

Matching result
 

Figure 3. Flowchart of the proposed method. 
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3. THE PROPOSED IMAGE MATCHING METHOD 

3.1 Local Regions Extraction and Transformation 

Region detectors are adopted to obtain the local regions. In this 

study, given that local regions are used to constrain the 

subsequent different viewpoint image matching, the selected 

region detector should be robust to image viewpoint change. In 

the study conducted by Mikolajczyk et al. (2005b), they 

demonstrated that the maximally stable extremal region (MSER) 

detector (Matas et al., 2004) is more robust than other region 

detectors for image viewpoint change. Therefore, the MSER 

detector is adopted in this study to extract the local regions. The 

initial irregular regions extracted by using the MSER detector 

have been fitted to elliptical regions based on the region 

second-order moment to facilitate the subsequent processing. 

 

The original MSER detector is not scale invariant. In this study, 

we improved the multiresolution strategy (Forssen et al., 2007) 

and integrated it with MSER to obtain multiresolution local 

regions. To do this, a Gaussian scale pyramid is constructed by 

image blurring and subsampling with a series of Gaussian 

kernels. Then, local regions are detected separately at each 

resolution image by using the original MSER detector. Finally, 

duplicate regions from different scale images are removed by 

eliminating fine-scale MSERs. The following three criteria are 

used to distinguish duplicate MSERs: 

 

1) Distance between the centroids of the two MSER elliptical 

regions should be smaller than 4 pixels. 

 

2) The value of    1 2 1 2max ,abs S S S S  should be less 

than 0.2, where 
1S  and 

2S  are the sizes of the two regions. 

 

3) The value of    1 2 1 2max ,abs L L     should be less 

than 4, where 
1  and 

2  are the directions of the major axis of 

the two elliptical regions and 1L  and 2L  are the perimeters of 

the two ellipses. 

 

The transformation between corresponding local regions is 

approximated to affine transform. In this study, a transform is 

proposed to map the affine change into rotation and scale 

change to improve the feature repeatability rate. 

 

We assume that EAp  is the local elliptical region, l  is the 

length of the major axis, w  is the length of the minor axis,   

is the orientation of the major axis, and CAp  is the circular 

region transformed from EAp . The radius of CAp  is 

r l w  . If matrix T  denotes the transformation between 

EAp  and CAp , then T  satisfies the following equation: 

 

    2T

c c r         T X X T X X ,             (1) 

 

where X  is a point on the ellipse and cX  is the region center. 

Since X is located on the ellipse, we obtain the following 

equation: 

 

   1 1
T

c c

  X X μ X X ,                   (2) 

 

where  20 11 11 02, ; ,   μ  is the second-order moment of 

EAp . Matrix T  can be calculated from Equations (1) and (2) 

as follows: 

 

 
 

1 2
2

20 02 11

1 2
2

11 2020 20 02 11

0r   

    

  
 
       

T

 (3) 

 

Then, the local elliptical region can be transformed to a circular 

region based on the following equation: 

 

p pCA EA T .                                (4) 

 

The affine transformation between the elliptical regions has 

been converted into the scale and rotation transformation after 

the aforementioned processes: 

 

If the transformation between the corresponding transformed 

regions is B , then we obtain the following equation (Hartley et 

al., 2000): 

 
' 'T

L Rμ B μ B ,                                  (5) 

 

where 
'

Lμ  and 
'

Rμ  denote the second-order moment of the 

corresponding transformed regions. For the two transformed 

regions, we derive the following expression: 

 

'

'

L L

R R





 




μ E

μ E
.                                    (6) 

 

where E  denotes an identity matrix. From Equations (5) and 

(6), we can derive the following equation: 

 

  T

L R  E B B .                             (7) 

 

where L  and R  are scale factors. B  is a matrix including 

scale and rotation factors. Therefore, only rotation and scale 

change exist between the corresponding transformed regions. 

The transformation between the transformed regions can be 

expressed as follows: 

 

 '

'

1
B H R .                              (8) 

 

where 'H  denotes a scale transformation.  1 'R  denotes a 

rotation transformation. 

 

3.2 Point Feature Detection and Description 

Considering the rotation and scale change between the 

transformed local regions, the difference of Gaussians (DoG) 

detector is adopted to extract the point features from the local 

regions. In practical applications, the resolution of the inputted 

low-altitude remote sensing image is known. Therefore, for 

each extracted point feature, the feature area size is determined 

based on the image resolution instead of the feature scale value. 
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We assume that the resolution of the two inputted images is 
1  

and 
2  (

1 2  , unit: meter). The feature area radius of all the 

features in the image with resolution 
1  is set as follows: 

 

1

1

1

1

1

16, 2

24, 1 2

32, 0.2 1

64, 0.2

r












 
 

 
 

                             (9) 

 

The feature area radius of all features in another image with 

resolution 
2  is set as follows: 

 

2 1 1 2r r                                   (10) 

 

This strategy can overcome the unreliability of feature scale 

computation. After point feature detection, the well-known 

SIFT method is adopted to compute the feature descriptor. 

 

Given that the extracted local regions cannot cover the whole 

image, the point features from the outside area of local regions 

should be detected and described. In this study, the following 

approach is proposed: 

 

1) The DoG detector is used to find interest points and obtain 

feature coordinates from the outside area of the local regions. 

 

2) The detected interest points are clustered into local 

regions. The distances between each interest point to all local 

region centers are computed. If the ratio between the smallest 

distance 
1d  and the second smallest distance 

2d  is less than a 

threshold t , then the interest point will be clustered into the 

local region corresponding to the smallest distance 
1d . 

Otherwise, the interest point is regarded as two features and 

they are clustered into the nearest two regions, as shown in 

Figure 4. 

 

 

Figure 4. Interest points clustering rule. 

 

3) The feature area of each interest point is computed 

according to the elliptical parameters of the region in which the 

interest point is clustered. Then, the SIFT method is adopted to 

describe each feature. The flowchart of the feature area 

computation is summarized in Figure 5. 

 

 

Figure 5. The flowchart of feature area computation. 

 

3.3 Feature Matching Based on Similarity Confidence 

In this paper, the similarity confidence is defined as follows: 

 

For a feature p  with descriptor pD  on the reference image, we 

compute the Euclidean distance between pD  and the 

descriptors of all the features ( 1, , nq q ) on the test image. We 

find the closest feature iq  and the second closest feature jq , 

and their descriptors are qiD  and qjD , respectively. Then, the 

similarity confidence C  between feature p  and 
iq  is 

expressed as follows: 

 

     , 1 , ,
i ji p q p qC p q dist d d dist d d  ,   (11) 

 

where  dist  is a function used to compute the Euclidean 

distance between two descriptors. 

 

From the previously presented definition, the similarity 

confidence is only computed between each feature on the 

reference image and its closest feature on the test image. 

 

Based on the similarity confidence, a robust feature matching 

method is proposed in this study, which is implemented as 

follows: 

 

Step 1: A set used to save final matches is marked as SetFinal , 

which is initially an empty set. 
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Step 2: The Euclidean distance between all the features on the 

reference image and all the features on the test image are 

computed. 

 

Step 3: For each feature on the reference image, its 

corresponding closest feature on the test image is determined. 

These feature pairs are regarded as candidate matches and are 

saved into another set SetAll . Meanwhile, the similarity 

confidence of each feature pair is computed. 

 

Step 4: A threshold 
cT  is set. Those feature pairs with similarity 

confidence conforming to 
cC T  are saved into a set SetC . 

 

Step 5: An affine transformation H  is estimated in SetC  by 

using the random sample consensus (RANSAC) algorithm. In 

SetC , those feature pairs conforming to H  are saved into sets 

SetCfitH  and SetFinal  at the same time. Then, we reset 

SetC , such that SetC SetC SetCfitH  . 

 

Step 6: The affine transformation H  is adopted to verify the 

feature pairs in SetAll . Those pairs conforming to H  are 

saved into sets SetAllfitH  and SetFinal  at the same time. 

Then, we reset SetAll , such that 

SetAll SetAll SetAllfitH  . 

 

Step 7: An iteration algorithm is implemented for Steps 5 and 6 

until the following expression is true: 

 

setAll   or   4Num setC   or   5Num iteration  , 

(12) 

 

where  Num setC  denotes the number of feature pairs in 

SetC  and  Num iteration  denotes the number of iterations. 

 

Step 8: All matches in SetFinal  are outputted as initial 

matching result. 

 

In the initial matching result, there are several outliers 

inevitably. In traditional methods, the RANSAC algorithm is 

used to estimate the affine transform between images. Those 

matches that do not conform to this transform will be eliminated 

as outliers. The algorithm performs well for middle- or low- 

resolution remote sensing images because the transformation 

between all pixels of the whole inputted images can be 

approximated to an affine transform. However, for low-altitude 

remote sensing images, several correct matches are eliminated 

because the transformation between the whole inputted images 

cannot be approximated to an affine transform. An epipolar 

constraint based on the fundamental matrix is used to eliminate 

outliers with the RANSAC algorithm to overcome this problem. 

 

4. EXPERIMENT 

4.1  Experimental Data 

In the experiments, the three pairs of low-altitude remote 

sensing images shown in Figures 6 to 8 were used to evaluate 

the performance of the proposed method. We compared the 

proposed method with traditional methods by using the DoG 

(Lowe, 1999), HarAff (Harris-Affine) (Mikolajczyk, 2004), 

HesAff (Hessian-Affine) (Mikolajczyk, 2004) and MSER 

(Matas, et al., 2004) detectors combined with the most well-

known SIFT descriptor (Lowe, 2004). The proposed method 

was also compared with the state-of-the-art Affine-SIFT 

(ASIFT) (Morel et al., 2009) and iterative SIFT (ISIFT) (Yu et 

al., 2012) methods. 

 

    

Figure 6. Dataset1: low-altitude UAV images. Image size is 

1024×1024 pixels. Image resolution is 0.05m. 

 

    

Figure 7. Dataset 2: low-altitude oblique images. Image size is 

1024×1024 pixels. Image resolution is 0.08m. 

 

    

Figure 8. Dataset 3: low-altitude oblique images. Image size is 

1024×1024 pixels. Image resolution is 0.08m. 

 

4.2 Matching Results 

In the experiments, parameters of all the aforementioned 

methods in our experiments were set according to their 

recommended values in the original references. Table 1 

summarizes the performance of each method in terms of number 

of correct matches. In Table 1, the four methods that combined 

the HarAff, HesAff, MSER, and DoG detectors and SIFT 

descriptor obtained fewer correct matches than those methods 

that improved the matching framework, namely, ASIFT, ISIFT, 

and the proposed method. More specifically, in all the three 

group experiments, the proposed matching method obtained 

more correct matches than all the other methods. Although the 

proposed method is based on MSERs, it detects and matches 

features from the whole images rather than MSER matches. 

Therefore, the proposed method performs well when the correct 

matches of the MSER method are few. 
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Matching 

methods 

Experimental data 

Dataset 1 Dataset 2 Dataset 3 

HarAff 71 19 158 

HesAff 34 13 163 

MSER 19 7 38 

SIFT 48 4 165 

ASIFT 274 45 532 

ISIFT 144 4 222 

Proposed 750 352 865 

Table 1. Number of correct matches of different methods on the 

three datasets. 

 

The performance of the ISIFT method is better than that of the 

SIFT method because the ISIFT method is an iterative method. 

The ISIFT method estimates the transformation between images 

and builds a simulation of one of the inputted images. Then, 

feature detection and matching are conducted between another 

inputted image and the simulated image based on the original 

SIFT method. However, in low-altitude remote sensing image 

matching, the transformation between the whole inputted 

images cannot be approximated to an affine transform. The 

simulation of one image generated in the iteration of the ISIFT 

method can only correspond to a partial area of another image. 

Therefore, its performance improvement relative to the SIFT 

method is limited. 

 

The ASIFT method performs generally well (only ranking 

behind the proposed method). The method improves the view 

invariance of the SIFT method by simulating and building the 

affine space of inputted images. For image viewpoint variation, 

several images in the affine space of one inputted image have a 

pose similar to the images in the affine space of another 

inputted image. Good matching results can be obtained between 

these simulated images. Although the ASIFT method can 

improve the matching performance under view change, its 

application is limited because the transformation between the 

inputted images is not considered and an exhaustive strategy is 

needed for the feature search. Thus, the time efficiency of the 

ASIFT method is an issue of concern. The simulated affine 

space in the ASIFT method is discontinuous, and the matching 

result can be improved by decreasing the sample interval. For 

low-altitude remote sensing images, several regions cannot be 

covered in the affine space because of the topographic relief, 

which is why the number of correct matches generated by the 

ASIFT method is less than that of the proposed method in the 

experimental results. 

 

Similar to the ASIFT and ISIFT methods, the proposed method 

also improves the matching performance by simulating images. 

The differences are as follows: 

 

(1) The ASIFT method simulates images without considering 

the transformation between images. In our proposed method, 

each local image region corresponds to a simulated circular 

image area. It can avoid detecting and matching features in a 

mass of useless images (images without correspondence). 

Besides, the proposed method simulates each region with 

different transform. These regions can cover the input image 

better and facilitate more matches. 

 

(2) The ISIFT method simulates the whole image with one 

transformation. In our proposed method, the simulation process 

is implemented to local regions. The transformation between the 

local regions can be approximated to an affine transform 

whether the transformation between the whole images conform 

to an affine transform or not. Thus, the proposed method can 

obtain satisfactory matching results when the ISIFT method 

fails. 

 

Some matching results in our experiments are shown in Figures 

9 to 11. In the results, matches are linked with white lines. 

 

       

(a) HarAff           (b) HesAff          (c) MSER           (d) SIFT 

 

     

      (e) ASIFT       (f) ISIFT   (g) Proposed method 

Figure 9. Matching results based on Dataset 1. 

 

       

 (a) HarAff           (b) HesAff          (c) MSER           (d) SIFT 

 

     

         (e) ASIFT        (f) ISIFT    (g) Proposed method          

 Figure 10. Matching results based on Dataset 2. 
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(a) HarAff           (b) HesAff         (c) MSER            (d) SIFT 

 

     

       (e) ASIFT       (f) ISIFT     (g) Proposed method 

Figure 11. Matching results based on Dataset 3. 

 

5. CONCLUSION 

In this study, we proposed a novel point feature matching 

method for low-altitude remote sensing images based on the 

analysis of image geometric transformation. The contribution of 

this study lies in the following aspects: 

 

(1) A new matching framework for low-altitude remote sensing 

images is proposed based on the local region constraint and 

feature similarity confidence. The proposed method can 

effectively match images with large viewpoint difference. 

 

(2) Compared with the state-of-the-art matching method ASIFT, 

only one geometric transformation is implemented in our 

method for each local region, ensuring satisfactory results and 

time efficiency. 

 

The experimental results showed that the proposed method 

performs better than the other methods for low-altitude remote 

sensing images with viewpoint variation. However, the local 

region extraction in the proposed method highly depends on the 

image content, which indicates that the proposed matching 

method works better for structured images. A possible future 

work is to improve the local region extraction method and make 

the proposed matching method perform well in structured and 

textured areas. 
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