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ABSTRACT: 

 

This study aims to extract automatically building roof planes from airborne LIDAR data applying an extended 3D Randomized 

Hough Transform (RHT). The proposed methodology consists of three main steps, namely detection of building points, plane 

detection and refinement. For the detection of the building points, the vegetative areas are first segmented from the scene content 

and the bare earth is extracted afterwards. The automatic plane detection of each building is performed applying extensions of the 

RHT associated with additional constraint criteria during the random selection of the 3 points aiming at the optimum adaptation to 

the building rooftops as well as using a simple design of the accumulator that efficiently detects the prominent planes. The 

refinement of the plane detection is conducted based on the relationship between neighbouring planes, the locality of the point and 

the use of additional information. An indicative experimental comparison to verify the advantages of the extended RHT compared to 

the 3D Standard Hough Transform (SHT) is implemented as well as the sensitivity of the proposed extensions and accumulator 

design is examined in the view of quality and computational time compared to the default RHT. Further, a comparison between the 

extended RHT and the RANSAC is carried out. The plane detection results illustrate the potential of the proposed extended RHT in 

terms of robustness and efficiency for several applications. 
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1. INTRODUCTION 

The automatic plane detection from a 3D point cloud is a 

research topic of high interest as it is very useful for 

applications such as 3D modelling, cadastre, etc. The quality of 

the plane detection results using LIDAR point clouds is 

significantly depended by noise, position accuracy, local under-

sampling, very large amount of data (having impact on the 

computational time), low point density, etc. These point cloud 

characteristics in combination with the challenge of the 

automatic tuning of the parameters of each algorithm to be used 

as well as with the automatic selection of the primitive type, the 

size of the smallest foreseeable plane surface and the fitting 

tolerance create the need for the development of automatic, 

efficient and rapid algorithms. In the literature, two types of 

approaches called bottom-up data driven (also known as generic 

of polyhedral) and top-down model driven (also known as 

parametric) are proposed for the building roof reconstruction. 

However, a combined approach called structural or hybrid that 

exhibits model and data driven characteristics is applied (Satari 

et al., 2012; Awrangjeb and Fraser, 2013). The model driven 

approaches (Oude Elberink and Vosselman, 2009), search the 

most appropriate model among primitive building models using 

a predefined catalogue of roof forms. In the context of data 

driven approaches, a common assumption is that the building 

roof is a polyhedron that is reconstructed from planar patches 

derived from plane detection techniques. The mostly used plane 

detection techniques from 3D point clouds are region growing, 

RANSAC and Hough methods. Vosselman et al. (2004) and 

Sun and Salvaggio (2013) proposed region growing for the 

segmentation of LIDAR point clouds. Furthermore, interesting 

and efficient studies have been implemented that segment 

building roofs (Lafarge et al., 2010; Sampath and Shan, 2010; 

Kada and Wichmann, 2012; Awrangjeb and Fraser, 2013; 

Verdie et al., 2015) and man-made scenes (Lafarge and Alliez, 

2013; Monszpart et al., 2015). Also, sophisticated techniques 

have been applied that accurately assign every LIDAR point to 

its best plane in one global optimization eliminating 

simultaneously the use of many thresholds (Wang et al., 2012; 

Lin et al., 2013; Pham et al., 2014; Yan et al., 2014; Golbert et 

al., 2014). The main advantage of the aforementioned 

techniques is that they can effectively be applied at city blocks 

or varying areas unlike to the Hough and RANSAC methods. 

On the other hand, RANSAC has been effectively applied for 

the automatic plane detection from a 3D point cloud, especially 

its efficient variations (Schnabel et al., 2007; Tarsha-Kurdi et 

al., 2008). A detailed review of the 3D Hough methods applied 

in a terrestrial interior environment can be found in Borrmann 

et al. (2011). In the context of the accuracy vs. computational 

time tradeoff, Randomized Hough Transform (RHT) seems to 

achieve outstanding performances compared with the other 3D 

Hough methods, like the mostly applied Standard Hough 

Transform (SHT). Although SHT has been effectively applied 

(Huang and Sester, 2011), it suffers from its large 

computational time (Tarsha-Kurdi et al., 2007). Further 

evidence that RHT yields notably satisfactory results for 

terrestrial implementations can be found in Kotthäuser and 

Mertsching (2012) and Dumitru et al., (2013). Also, interesting 

studies have been implemented using a combination of the 

aforementioned plane detection techniques (Oehler et al., 2011; 

Vosselman, 2013). 
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In this paper, an extended RHT is applied for the automatic 

extraction of building roof planes from airborne LIDAR data. 

Since aerial cases contain often buildings with complex 

architectural complexity, techniques that aim to the optimum 

adaptation of the building roofs as well as to the accurate, 

reliable and rapid detection of the prominent planes are 

required. In this context, additional constraint criteria during the 

random selection of the 3 points associated with the angle 

between the normal vectors and the height difference as well as 

a simple design of the accumulator that eliminates noisy planes 

are proposed. To overcome the over-segmentation problem and 

to eliminate spurious planes, a refinement process is proposed 

based on the relationship between neighbouring planes, the 

locality of the point and the use of additional information such 

as intensity.  

 

As test site an urban area named Kalochori in northern Greece, 

close to the city of Thessaloniki, is used. The application area 

has a complex building structure with sloping roofs, chimneys, 

small extensions of larger buildings, solar water heaters, solar 

energy panels, etc (Figure 2 bottom left). The type of the 

vegetation is characterized as moderate. However, long arrays 

or groups of dense trees between the buildings, high vegetation 

beside the boundary of buildings as well as buildings 

surrounded or occluded by high trees exist. A LIDAR point 

cloud covering the area with a density of 9 pts/m2 is used. 

 

2. METHODOLOGY 

Figure 1 illustrates the flow chart of the proposed methodology 

based on three main steps. 

 

 

   Figure 1. Workflow of the proposed methodology. 

 

Firstly, the detection of the building points from the LIDAR 

point cloud is carried out (Maltezos and Ioannidis, 2015). Then, 

the plane detection on each building is individually performed 

applying the extended RHT. A refinement process is conducted 

to optimize the extracted building roof planes. The results, 

either of the building detection or of the plane detection, are 

qualitatively and quantitatively evaluated using an existing 

orthoimage as reference applying the method of Rutzinger et al. 

(2009). The implementation of the proposed methodology is 

made using the MATLAB computing environment. A desktop 

computer (CPU with 2.27 GHz and 4G Memory) is used to 

process the test data set.  

 

2.1 Detection of building points 

A scan line smooth filtering technique at the values of the z-

coordinate of the normal vector (Nz) is used to segment 

vegetative areas from the scene content. Surfaces that are 

perpendicular to the vertical direction present normal value of 

Nz equal (or very close) to the value 1 (e.g., building rooftops). 

On the contrary, vegetation presents in majority disorderly 

dispersion of the value Nz presenting significantly different 

value from the value 1. However, incorrect entries may be 

observed at complex sloping roofs, chimneys, solar water 

heaters, etc, as well as in vegetation of level canopies; for 

example, dense arrays of trees or foliages. Hence, a filtering 

technique is quite capable to enhance the correct entries and to 

absorb simultaneously the incorrect entries. Figure 2 top right 

and top left show the effect of the scan line smooth filtering of 

the Nz values compared to the initial Nz values respectively 

visualized at the open-source software CloudCompare 

(http://www.danielgm.net/cc/). 

 

    
 

     
Figure 2. The LIDAR point cloud coloured by the initial Nz   

values (top left); the filtered Nz values by the scan line smooth 

filtering technique (top right); the orthoimage of the area of 

interest (bottom left) and the evaluation of the building 

detection results (bottom right). 

 

In this study, a small neighbourhood (3 points) during the scan 

line smooth filtering was selected to avoid an excessive filtering 

which may cause deformations to the boundaries of the 

buildings. Then, a thresholding process is carried out removing 

the points that represent the vegetation whose Nz values were 

lower than 0.85. The threshold value 0.85 corresponds to the 

maximum allowable value of a roof slope according to the 

Greek Urban Planning authority for typical cases of buildings. 

In a second phase, the roughness is calculated on the 

thresholded point cloud in order to eliminate cases of possible 

remaining vegetation. Since this study aims to detect even small 

extensions (of up to 5 m2) on large buildings, strict criteria such 

as the use of a search area with a radius of 1 m for the 

calculation of roughness as well as the removal of points whose 

roughness values are higher than 0.10 m are used. Since the 

urban scenes rarely present intense topographic ground surface, 

a morphological operator is suitable for the extraction of the 

bare earth of the cleared from vegetation point cloud. Hence, 

the deepest point inside a window of a certain size which is 

moved along the scan line is selected to obtain a sparse point 
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cloud of the bare earth. Τhe size of the window was selected 

equal to 40 m associated with the size of the maximum 

building. Next, a densification process via meshing and 

resampling (with the same point density of the raw LIDAR 

point cloud) at the sparse point cloud is carried out to obtain an 

integrated and comprehensive point cloud of the bare earth. 

Then, the point cloud of the initial buildings using a closest 

point technique with a distance threshold of 1.5 m is extracted. 

Finally, possible remaining isolated points or tiny blobs of 

points with small number of neighbours (less than 20) are 

removed using a search area with a radius of 2 m.  

 

Figure 2 (bottom right) shows the evaluation of the building 

detection results.The achieved success rates of completeness, 

correctness and quality were 93%, 91% and 85% respectively. 

The omission error mostly comes from the powerful filtering of 

the scan line smooth filtering technique. Thus, although the 

vegetation was almost completely removed, local complex 

cases of small extensions or small additions of major buildings 

were incorrectly, also, removed increasing the false-negatives 

(FN). The false-positives (FP) that were observed are associated 

with remaining cases of dense and high trees as well as with 

cars and fences. To absorb possible distortions of the 

boundaries of the extracted point cloud of buildings or point 

gaps due to the thresholding process, the mask of the final point 

cloud of the buildings is dilated and is used to clip the raw 

LIDAR point cloud. The dilation threshold was selected as 2.5 

m empirically. Then, each building is manually isolated and 

cleaned from vegetation that possibly exists beside the 

boundary of buildings as well as from bare earth surface. 

 

2.2 Plane detection using the Randomized Hough 

Transform 

The principle of the SHT is the representation of a 3D point set 

at the parametric Hough space (O’ θ φ ρ). In this case, one point 

p of the 3D point set in the (O x y z) space with coordinates     

(x, y, z) can be represented as a sinusoidal surface in the 

parametric Hough space using the form: 

 

cos sin sin sin cos       x y z                  (1) 

 

where θ is the azimuth (angle of the normal vector on the xy-

plane), φ is the angle of elevation and ρ the normal distance 

from the origin to the plane. The θ, φ and ρ are the parameters 

of the plane normal passing through the origin. Thus, a plane 

can be presented as a point in the parametric Hough space. The 

intersection of 3 sinusoidal surfaces in the parametric Hough 

space corresponds to the polar coordinates (i.e., θ, φ and ρ) of 

the plane that the three points define. Implementing the 

Equation (1) at each point p of the 3D point set using a 

predefined angle step of θ and φ in an angle range, many 

intersections in the parametric Hough space will occur. 

However, the desired prominent planes are these that occur in 

concentration regions of points in the parametric Hough space. 

These prominent planes are associated with the common plane 

that the corresponding points of the 3D point set in the (O x y z) 

space belong to. Theoretically, coplanar points in the (O x y z) 

space should share one point in the parametric Hough space. 

However, in practice, this is not valid ideally due to the vertical 

positional error of the LIDAR data. For this reason, the 

common plane has to be searched at the regions with the highest 

degree of concentration of points as the more points 

(intersections of the sinusoidal surfaces) in the parametric 

Hough space, the more points of the 3D point set in the           

(O x y z) space lie on this detected plane. A discretized data 

structure called accumulator is needed to store all the points that 

occur in the parametric Hough space. The cells that include 

more points over a predefined threshold represent the most 

prominent planes that cover the majority of the points of the 3D 

point set in the (O x y z) space.  

 

RHT is one of the most effective Hough methods for detecting 

planes, however, differs significantly from STH, while both 

transform the 3D point set in the (O x y z) space into the 

parametric Hough space and detect planes by counting the 

number of points that lie on one plane represented as one cell in 

the accumulator. In the beginning, the default RHT, randomly 

picks 3 points, p1, p2 and p3, from the 3D point set that fulfill a 

3D Euclidean distance constraint criterion (D_cns) between 

them. The parameters θ, φ and ρ of the plane that the 3 points 

define are calculated and they stored at the accumulator 

increasing the corresponding cell. If the number of points in a 

cell at the accumulator is greater than a predefined threshold, a 

prominent plane is detected. Then, the points of the 3D point set 

that are close to the detected plane are removed using a 

predefined tolerance threshold (S_thr). Thereafter, the 

accumulator is reset. The above procedure continues for a 

predefined number of iterations (M_iter) until no points (or few 

points using a predefined stopping rule (Stop_rule)) at the 3D 

point set will remain. SHT uses a pure mathematical principle 

in order to detect the most prominent planes from the 3D point 

set without taking account their signification in the building 

point cloud or using the least square theory (Tarsha-Kurdi et al. 

2007). Borrmann et al. (2011) highlighted the advantages of the 

RHT in comparison with SHT. Using RHT not only there is no 

need to process the total number of the points of the 3D point 

set but also for those points it is not necessary the calculation of 

the complete Hough transform. Thus, the prominent plane is 

reliably searched in the accumulator which consists of few 

points. Also, once the prominent plane detected, all points of 

the 3D point set lying on that plane are removed. These 

principles have a dual effect as the algorithm is speeded up 

(decreasing the number of points whenever a prominent plane is 

detected) and also the accuracy as well as the reliability for the 

next prominent plane are increased.  

 

In this study, two additional constraint criteria as well as an 

efficient and simple design of the accumulator are proposed and 

described at the following sections. The predefined tolerance 

S_thr was selected as 40 cm or 2*sigma, where sigma is the 

vertical positional error of the LIDAR data, which is equal to 20 

cm in this data set. The number of iterations and the stopping 

rule were selected as M_iter = 1,000,000 and Stop_rule = 10 

respectively. 

 

2.2.1 Constraint criteria: Although the randomize selection 

of the 3 points using only the D_cns is suitable for terrestrial 

applications, it seems that in aerial cases containing complex 

building structures is inadequate. Additional critical constraint 

criteria during the random selection of the 3 points in each 

iteration are required for the optimum adaptation to the building 

roofs and therefore for the accurate, reliable and rapid detection 

of the prominent planes. 

 

In this study, two additional constraint criteria associated with 

the angle γ between the normal vectors (Angle_cns) and with 

the height difference (HD_cns) are proposed. The Angle_cns 

ensures the selection of 3 points that they share the same 

orientation of normal vectors while the HD_cns is particular 

useful and effective at cases of horizontal multiple planes with 
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small height differences. Since the computation of the normal 

vectors becomes unstable when a small neighborhood is defined 

or noise points exist, the value of the Angle_cns should be such 

that to absorb the selection of noisy normal vectors. The use of 

Angle_cns and HD_cns enables the selection of a relatively 

large value of the D_cns. This means that the search of the 

prominent plane is facilitated giving priority to the points of 

larger surfaces decreasing the computational time. Hence, the 

combination of the three constraint criteria relieves greatly the 

accumulator from unnecessary planes associated with the 

selection of the 3 points in cases of: (a) horizontal planes with 

small height differences, (b) structures (e.g., chimneys, solar 

water heaters, etc) and the major plane that are lying on it and 

(c) near the building ridge. In this study, the first two constraint 

criteria selected as D_cns = 7 m and Angle_cns = 15o. For the 

vast majority of the buildings the HD_cns was selected as 2.5 

m. However, for cases of buildings with roofs that consist of 

horizontal planes with small height difference (e.g., 1 m) the 

HD_cns was selected as 0.5 m to avoid erroneous detected 

planes. The automatic tuning of the HD_cns (according to the 

above values) may be even performed considering the number 

of clusters of the normal variation on the Gaussian sphere that 

are formed. 

 

2.2.2 Accumulator: A detailed description and analysis of 

various designs of the accumulator is described by Borrmann et 

al. (2011). In our study, a simple design of the accumulator that 

efficiently detects the prominent plane is proposed. The 

accumulator is essentially a table of values that consists of three 

columns θ, φ and ρ containing the candidate prominent planes. 

Each plane occupies a row at the accumulator with its polar 

coordinates θ, φ and ρ. In each iteration three main steps are 

applied: 

 

1) The density of each point at the accumulator is examined 

using a spherical neighborhood with a predefined radius 

(r_sphere). If a group of points larger or equal to a 

predefined threshold (Np_density), presents larger or equal 

value to a predefined threshold of density (Density_thr) the 

permission to access to the accumulator is given by the 

algorithm for the search of the prominent plane. Points that 

fulfill the Density_thr proceed to the next step.  

2) A statistical analysis is performed to discard the remaining 

noisy planes considering the assumption that the values of 

each column of θ, φ and ρ follow the normal (Gaussian) 

distribution. For each column of θ, φ and ρ the residuals 

(U) and the standard deviation (σ) are calculated. The 

selected values that proceed to the next step are the values 

that fulfill the condition U < |σ·zp|, where zp is the 

corresponding parameter of the defined confidence 

interval.  

3) The prominent plane is detected selecting the median of 

each column of θ, φ and ρ in order to absorb possibly 

remaining values with partial local dispersion. 

 

The gradually filtering of the noisy planes using the density, the 

statistical analysis and the median value (instead of using the 

mean value) enables the reliable and rapid detection of the 

prominent plane. The parameters of the accumulator associated 

with the best results were selected as r_sphere = 2, Np_density 

= 3, Density_thr = 4 and zp = 1, which corresponds to a strict 

confidence interval of 68.27%. For cases of buildings that 

consist of purely by horizontal planes, a less strict tuning with 

Np_density = 1 and Density_thr = 2 was implemented in order 

to decrease the computational time while preserving accuracy. 

As previously proposed, the automatic tuning of the Np_density 

and Density_thr may be performed considering the normal 

variation on the Gaussian sphere.  

 

2.2.3 Experimental comparison between the extended 

RHT and SHT: A selected building roof plane of the LIDAR 

point cloud that consists of 336 points (red polygon in Figure 

3a) is used to confirm and highlight the comparative advantage 

of the proposed extended RHT to the SHT concerning the 

computational time for the detection of the prominent plane. 

 

  
 

  
 

  
 

Figure 3. Experimental comparison between the extended RHT 

and SHT  

 

Figure 3b depicts the sinusoidal surface of 1 point from the 

selected building roof plane using the Equation (1) with angle 

step of θ_step = 1o and φ_step = 1o for the case of the SHT, 

where θ ϵ [0o, 180o] and φ ϵ [0o, 180o]. The cyan circle in Figure 

3c depicts the intersection of 3 sinusoidal surfaces using θ_step 

= 1o and φ_step = 1o for the case of the SHT. The dashed 

ellipse in magenta in Figure 3d shows the region with the 

highest degree of concentration of points for the case of the 

SHT associated with the prominent plane of the intersection of 

336 sinusoidal surfaces coloured by the density in grayscale. 

The computational time of the extraction of the 1, 3 and 336 

sinusoidal surfaces was 2.1 sec, 2.5 sec and 58.9 sec 

respectively. The dashed ellipse in yellow in Figure 3e shows 

the candidate planes stored in the accumulator for the case of 

the RHT coloured by the density in a scale blue to red. Figure 

3f depicts the candidate planes of the RHT superimposed at the 

intersection of the 336 sinusoidal surfaces of the SHT. The 

computational time for the detection of the prominent plane of 

the 336 sinusoidal surfaces of the SHT was 91.2 sec (i.e. 150.1 

sec overall) while the overall computational time of the RHT 
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was 0.52 sec. It is obvious that the computational complexity of 

the SHT which in general is Ο(|P| · Nθ · Nφ), where Nθ is the 

number of cells in direction of θ and Nφ in direction of φ, may 

has significant impact at the computational time. The operations 

for the 336 points from the selected building roof plane were 

Ο(336 · 181 · 181) = 11,007,696 while the accumulator of the 

RHT consists of few points. Thus, the clear predominance of 

the RHT compared to SHT for the detection of the prominent 

plane as far as the runtime concerned is verified. It should be 

noted that a larger angle step applying SHT could be used 

decreasing the processing time and the needed memory but this 

would had impact at the quality of the detected prominent 

plane.  

 

2.3 Refinement of the plane detection 

A refinement process is conducted to improve the quality of the 

planes of each building extracted by RHT based on the 

relationship between of the neighbor planes and the locality of 

the point as well as using additional information such as 

intensity. The refinement process consists of four steps which 

were applied in the following order: 

 

1) Removal of LIDAR points associated with solar energy 

panels whose intensity value is lower than 35.      

2) Elimination of spatially separated points. To achieve this, 

the density of each point of each detected plane is 

examined using a search area with a radius of 1 m. The 

density threshold was selected equal to 5 neighbours. In 

this context, spurious planes caused by remaining points 

may be removed. 

3) Assignment of the points to a better plane in order to 

overcome the over-segmentation problem. Initially, the 

optimization of each detected plane by RHT is performed 

by fitting a new plane to the corresponding points. Then, 

similar to Demir and Baltsavias (2012), the 3D Euclidean 

distance between each point and to all optimized planes is 

calculated. The absolute difference between DA and DB is 

calculated, where DA is the 3D Euclidean distance of the 

point pA (which belong to the plane A,) and the plane A, 

and DB is the 3D Euclidean distance of the point pA to each 

other plane B. The angle γ between the normal vectors of 

the plane A and each other plane B is also calculated. 

Points that fulfill the strict condition |DA – DB| ≤ sigma and 

γ < α (where α is a predefined angle threshold selected as 

4o) are assigned to the corresponding plane A associated 

with the larger number of points. 

4) Removal of planes which consist of very few points. The 

minimum number of points which belong to one planar 

surface was set equal to 4 points. 

 

3. QUALITY ASSESSMENT AND RESULTS 

For comparison reasons, the RANSAC method (Schnabel et al., 

2007) was applied in order to extract the building roof planes of 

the same data set considering the same assumptions, such as the 

max deviation of the angle γ, tolerance, etc. In order to assess 

the performance of each method, the inaccurate planes are 

classified similar to Yan et al. (2012) into the categories of non-

segmented, under-segmented, over-segmented and spurious. 

 

The non-segmented and under-segmented planes are assigned 

as FN entries associated mainly with planes which never 

detected and incorrect merge of two or more planar surfaces 

into one plane respectively. On the other hand, the over-

segmented and spurious planes are assigned as FP entries 

associated with planar surfaces that segmented into more than 

one plane and planes that are purely incorrect respectively. 

Typical cases of non-segmented planes are these of small planar 

surfaces which are partly described due to the available density 

of the LIDAR point cloud (and so the random selection process 

of the 3 points fails) and cases of remaining corrupted planar 

surfaces (due to incorrect detection of neighbor planes) whose 

detection is difficult because of its deformed morphology. The 

under-segmented planes may occur either between neighbor 

planar surfaces (due to the use of an excessive tolerance) or 

between spatially isolated planar surfaces (cases of buildings 

with complex structure including multiple coplanar surfaces). 

The over-segmented planes are mainly caused by unstable 

detected planes as well as by using unsuitable (either larger or 

smaller than the appropriate value) tolerance. The spurious 

planes are false planar surfaces caused by remaining points of 

planar surfaces. Since algorithms such as RHT, RANSAC, etc, 

tend to detect first larger planar surfaces, few remaining points 

possibly as noise are segmented into spurious planes.  

 

The sensitivity of the use of the constraint criteria as well as the 

elements (statistical analysis and use of the median value) of the 

proposed accumulator concerning the accuracy and the 

computational time is examined. Two representative kinds of 

buildings are used; one with several horizontal planes that have 

small height difference between each other consists of 1,735 

points (named Building 1) and one with multiple sloped 

surfaces consists of 1,351 points (named Building 2). Variations 

of the RHT using different combination of parameters as well 

as RANSAC were applied at Buildings 1 and 2. 

 

The selected parameters (using the selected values that were 

discussed at the sections 2.2.1 and 2.2.2) of each variation of 

the RHT are depicted to the Table 1 coloured in green. 

RHT_var_1 is the proposed extended RHT and the 

RHT_var_1+Refinement is its refined version. RHT_var_2(a) 

and RHT_var_2(b) represent the default RHT that uses only the 

D_cns. RHT_var_3 and RHT_var_4 represent variations of the 

RHT_var_1. 

 
 Constraint Criteria Accumulator 

Variation D_cns Angle_cns HD_cns 
Statistical 

analysis 

Mean 

value 

Median 

value 

RHT_var_1       

RHT_var_2(a) 

(with D_cns=2 m) 
      

RHT_var_2(b) 

(with D_cns=7 m) 
      

RHT_var_3       

RHT_var_4       

RHT_var_1 + 

Refinement 
      

Table 1. The applied variations of the RHT.  

 

Figures 4 and 5 depict the plane detection results of each 

variation of the RHT and RANSAC as well as the 

corresponding raw point cloud (coloured by the point height in 

grayscale) for Buildings 1 and 2 respectively. The 

corresponding computational time is illustrated in Figure 6.  

 

Concerning Building 1, relative small differences between the 

computational time of the variations of the RHT were observed, 

except the RHT_var_2(b) due to the selected D_cns. However, 

the performance of each variation differs significantly. Many 

over-segment and spurious planes were observed using the 

RHT_var_2(a) and RHT_var_2(b) due to the lack of the 

additional constraint criteria. 
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Figure 4. Plane detection of Building 1 using the variations of 

the RHT and RANSAC. 

       
 

       
 

        
Figure 5. Plane detection of Building 2 using the variations of 

the RHT and RANSAC. 

 

 
Figure 6. The computational time of each variation of the RHT 

and RANSAC applied at Buildings 1 and 2.              

 

The absence of the statistical analysis as well as the use of the 

mean value at the RHT_var_3 caused a relative instability to the 

accumulator allowing noisy planes to vote for the detection of 

the prominent plane. Under-segment planes using the 

RHT_var_4 were observed due to the absence of the statistical 

analysis; however, the RHT_var_4 yielded clearly better results 

compared to the RHT_var_2(a) and RHT_var_2(b). The 

substantial contribution of the additional criteria as well as of 

the statistical analysis and the use of the median value is 

demonstrated comparing the RHT_var_1 with the 

RHT_var_2(a) and RHT_var_2(b). Also, the results were 

improved using the refinement process at the RHT_var_1 

(without burdening particularly the computational time) 

absorbing detected over-segmented and spurious planes. 

Finally, although the computational time of RANSAC is very 

short, considerable distortions at the boundaries of each plane 

as well as over-segmented and spurious planes were observed. 

 

Concerning Building 2, the computational time between the 

variations of the RHT vary significantly highlighting more than 

in the case of Building 1 the utility of the proposed 

interventions at the RHT. Although Building 2 consists of fewer 

points than Building 1, the computational time was longer due 

to the complex building structure. The implementation of the 

RHT_var_2(a) and RHT_var_2(b) not only increases 

processing time but also the results are not satisfactory. 

Concerning the implementation of the RHT_var_3 and 

RHT_var_4, the use of the mean value and the absence of the 

statistical analysis had significant effect to the results as over-

segmented and spurious planes were observed. Similarly with 

the case of Building 1, although the processing time of 

RANSAC is very short, non-segmented and spurious planes 

were observed. The use of the additional constraint criteria of 

the RHT_var_1 does not diminish but rather improves the 

quality of the results and decreases the computational time, 

approaching to the corresponding computational time of the 

simplest case of Building 1 (either using the RHT or the refined 

RHT). However, under-segmented planes and local distortions 

at the boundaries of small planes occurred, which is challenge 

for further improvement of the refinement process. 

 

Figure 7 depicts the plane detection results of the overall 

buildings superimposed on the orthoimage of the area of 

interest applying the RHT, RANSAC and refined RHT. The 

quality assessment results as well as the corresponding success 

rates of completeness, correctness and quality are depicted in 

Figure 8 and Table 2 respectively. Although RANSAC detected 

slightly more correct planes compared to RHT, many over-

segmented and spurious planes were detected decreasing 

significant its rate of correctness (lower than 40%). The 

unstable detection of the prominent planes may increases the 

over-segmented planes but also may increases the spurious 

planes as remaining points of the planar surfaces may occur. 

However, slightly less FN entries compared to RHT were 

observed and so a rate of completeness equal to 76% was 

achieved. RHT exhibited more balanced results compared to 

RANSAC achieving rates of completeness and correctness 

equal to 70% and 60% respectively. 

 

The proposed additional constraint criteria as well as the 

filtering of the noisy planes at the accumulator via the statistical 

analysis and the use of the median value contributed to the 

adaptation on each building rooftop and therefore to the 

efficient detection of the prominent planes. However, RANSAC 

detected less under-segmented planes as embodies a connected 

component labeling process segmenting properly cases of 

coplanar surfaces, etc. The observed non-segmented planes 

were associated mainly with small planar surfaces, which are 

RHT_var_1 RHT_var_2(a) RHT_var_2(b) 

RHT_var_4 RANSAC 

RHT_var_1 + Ref. Raw LIDAR point 

cloud 

RHT_var_3 

Orthoimage 

RHT_var1 RHT_var_2(a) RHT_var_2(b) 

RHT_var_4 RANSAC 

RHT_var_1 + Ref. Raw LIDAR point 

cloud 

RHT_var_3 

Orthoimage 
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insufficiently described due to the available density of the 

LIDAR point cloud. 

 

 
 
 

 
 
 

 

Figure 7. Plane detection results. 

 

Method Completeness Correctness Quality 

RHT 70% 60% 48% 

RANSAC 76% 38% 34% 

Refined RHT 81% 84% 70% 

Table 2. Evaluation of the automatic extraction of the building 

roof planes. 

 

Figure 8. Quality assessment results. 

 

The refinement process improved greatly the rates of 

completeness and correctness of the RHT with values equal to 

81% and 84% respectively. This means that the assignment of 

the points to a better plane was successfully executed as well as 

the spurious planes were absorbed. The under-segmented planes 

slightly improved. A region growing technique and a 

connectivity criterion may overcome the under-segmentation 

problem, improving the corresponding success rates. The 

implementation of the refinement process at the RANSAC 

plane detection results could also improve the corresponding 

success rates. 

4. CONCLUSIONS 

This study aims to extract automatically building roof planes 

from airborne LIDAR data applying an extended RHT. The 

proposed additional constraint criteria during the random 

selection of the 3 points as well as the gradually filtering of the 

noisy planes from the accumulator contribute not only to the 

optimum adaptation to the building rooftops but also to the 

reliable and rapid detection of the prominent planes. The 

comparison to SHT, default RHT and RANSAC shows that the 

extended RHT satisfies greatly the accuracy vs. computational 

time tradeoff. The refinement process improved significantly 

the rates of completeness and correctness (larger than 80%) 

showing promising results which can be used for several 

applications, such as 3D city modelling in terms of Level of 

Detail 1 (LoD 1) and 2 (LoD 2). 
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