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ABSTRACT: 

 

Airborne Light Detection And Ranging (LiDAR) data is widely used in remote sensing applications, such as topographic and land-

water mapping. Recently, airborne multispectral LiDAR sensors, which acquire data at different wavelengths, are available, thus 

allows recording a diversity of intensity values from different land features. In this study, three normalized difference feature indexes 

(NDFI), for vegetation, water, and built-up area mapping, were evaluated. The NDFIs namely, NDFIG-NIR, NDFIG-MIR, and NDFINIR-

MIR were calculated using data collected at three wavelengths; green: 532 nm, near-infrared (NIR): 1064 nm, and mid-infrared 

(MIR): 1550 nm by the world’s first airborne multispectral LiDAR sensor “Optech Titan”. The Jenks natural breaks optimization 

method was used to determine the threshold values for each NDFI, in order to cluster the 3D point data into two classes (water and 

land or vegetation and built-up area). Two sites at Scarborough, Ontario, Canada were tested to evaluate the performance of the 

NDFIs for land-water, vegetation, and built-up area mapping. The use of the three NDFIs succeeded to discriminate vegetation from 

built-up areas with an overall accuracy of 92.51%. Based on the classification results, it is suggested to use NDFIG-MIR and NDFINIR-

MIR for vegetation and built-up areas extraction, respectively. The clustering results show that the direct use of NDFIs for land-water 

mapping has low performance. Therefore, the clustered classes, based on the NDFIs, are constrained by the recorded number of 

returns from different wavelengths, thus the overall accuracy is improved to 96.98%. 
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1. INTRODUCTION 

The spectral vegetation, water, or built-up index is a single 

number derived for each pixel from an arithmetic operation on 

two spectral bands. An appropriate threshold of the index is 

then established to contrast the reflectance of one feature from 

other land cover features (e.g., vegetation from built-up area) 

based on the spectral characteristics. The selection of bands for 

any spectral index is based on the interaction of features with 

different wavelengths. Following are examples to existing 

indexes that have been used to extract different features using 

multi-spectral bands. 

 

The Normalized Difference Vegetation Index (NDVI) was first 

proposed by (Rouse et al., 1974) as following: 

 

 
 

where ρNIR and ρred are the reflectance from the NIR and red 

bands, respectively. 

 

The basic idea of the NDVI is that the chlorophyll in green 

plants absorbs red light portion of the spectrum, while NIR light 

portion is reflected or scattered. As a result, vegetation has low 

reflectance from red light and high reflectance from NIR light, 

and hence high NDVI values. The NDVI is used for vegetation 

extraction (Chen et al., 2009), tree canopy mapping (MacFaden 

et al., 2012), and objects classification into vegetation and built-

up areas (Thanapura et al., 2007; Zhou et al., 2009; Hartfield et 

al., 2011). 

 

The Normalized Difference Water Index (NDWI) was first 

defined by McFeeters (1996) as following: 

 

 
 

where ρgreen is the reflectance from the green band. 

 

McFeeters (1996) has selected the green wavelength to 

maximize the reflectance from water bodies, and the NIR 

wavelength to minimize the low reflectance from water bodies 

as well as take the advantage of high reflectance from 

vegetation and soil features. Based on that, the NDWI has been 

calculated to discriminate water bodies from vegetation and soil 

features. Xu (2006) has used the shortwave-infrared (SWIR) 

instead of NIR to enhance McFeeters’s NDWI in distinguishing 

water bodies from built-up features as well as vegetation and 

soil features. Xu’s MNDWI is defined as following: 
 

 
 

where ρSWIR is the reflectance from the SWIR band. 

(1) 

(2) 

(3) 
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Gao (1996) has suggested a new NDWI that should be 

considered as an independent vegetation index for estimating 

water content of vegetation canopy. Although vegetation 

canopies have high reflectance from NIR and SWIR  

wavelengths between 900–2500 nm, liquid water absorption in 

SWIR region (1500–2500 nm) is significantly stronger than that 

in NIR region (900–1300 nm). Gao’s NDWI is defined as: 
 

 
 

Also, the aforementioned equation (Eq.4) has been defined as 

normalized difference built-up index (NDBI) (Zha et al., 2003; 

Xu, 2007) and normalized difference soil index (NDSI) (Rogers 

and Kearney, 2004) to extract built-up areas and soil features, 

respectively. 

 

Over the past years, remotely sensed satellite data have been 

employed to extract boundaries of water bodies, vegetation, and 

built-up areas. Few studies attempted to use NIR band from 

LiDAR data with red band from aerial images to derive NDVI 

for vegetation classification (trees and/or grass) in urban areas 

(Huang et al., 2008; Guan et al., 2013). Recently, the NDVI is 

calculated for vegetation applications using multispectral 

LiDAR data obtained from either laboratory-based multispectral 

LiDAR systems or terrestrial laser scanning (TLS). Woodhouse 

et al. (2011) used laboratory-based measurements from a 

tunable laser, operates at four wavelengths (531, 550, 660, and 

780 nm). The NDVI and photochemical reflectance index (PRI) 

were then used to measure plant physiology. Shuo et al. (2015) 

used a laboratory-based prototype of multispectral LiDAR, 

designed by (Wei et al., 2012), to record intensity values at four 

wavelengths (556, 670, 700, and 780 nm). The physiology of 

the canopy was then studied using three vegetation indexes, and 

achieved classification accuracy above 90%. Puttonen et al. 

(2015) used a TLS from the Finnish Geodetic Institute (FGI), 

called Hyperspectral LiDAR system (HSL). The system was 

tested in an outdoor experiment using seven wavelength bands 

ranging from 500 to 980 nm to detect man-made targets from 

vegetation based on their spectral response. Four vegetation 

indexes were used in classification and the results achieved an 

overall accuracy up to 91.0%. 

 

In 2014, Teledyne Optech has launched the world’s first 
airborne multispectral LiDAR sensor “Optech Titan”. The 

sensor operates simultaneously at three wavelengths and 

collects data in three channels: NIR (1064nm) in C2 at 0° nadir 

looking, MIR (1550nm) in C1 at 3.5° forward looking, and 

green (532nm) in C3 at 7° forward looking. Specifications of 

Optech Titan sensor are provided in Table 1.  Wichmann et al., 

(2015) analysed a dataset, acquired by Optech Titan, covering 

the city of Oshawa. Conventional geometrical classification and 

mapping procedures were used to classify the terrain into four 

classes: ground, buildings, mid vegetation, and high vegetation. 

Spectral patterns for different classes were analysed and showed 

that the intensity values could be potentially used in 

classification.  

 

Parameter Specification 

Wavelength Channel 1 = 1550 nm, 

Channel 2 = 1064 nm,  

Channel 3 = 532 nm 

Altitude Topographic: 300-2000 m, all channels 

Bathymetric: 300-600 m, channel 3 

Scan Angle  Programmable; 0 - 60° max 

Beam Divergence Channel 1 & 2 = 0.35 mrad , 

Channel 3 = 0.7 mrad 

Pulse Repetition 

Frequency (PRF) 

50 - 300  kHz/channel;  

900 kHz total 

Scan Frequency Programmable; 0 - 210 Hz 

Swath width 0 - 115% of AGL 

Point Density Bathymetric: >15 pts/m2 

Topographic: >45 pts/m2 

Table 1. Optech Titan sensor specifications 

 

This paper aims to evaluate the use of different spectral indexes, 

as an automatic unsupervised classification method, derived 

from airborne multispectral LiDAR data, for land-water, 

vegetation, and built-up area mapping. In this study, three 

different indexes: 1) the NDFIG-NIR, 2) NDFIG-MIR, and 3) 

NDFINIR-MIR are tested based on the three different wavelengths 

(green (532 nm), NIR (1064 nm), and MIR (1550 nm)) 

produced by Optech Titan. An automatic 3D point clustering 

based on spectral indexes is presented, and the recorded returns 

from different wavelengths are used with the NDFIs for land-

water mapping. 

 

 

2. STUDY AREAS AND DATASETS 

An urban study area, located near Lake Ontario in Scarborough, 

Ontario, Canada, was used in this paper. The study area covers 

variety of land features, such as built-up areas (buildings, roads, 

and parking lots), high vegetation (trees) and low vegetation 

(shrubs and grass), as well as part of Lake Ontario. A flight 

mission, to acquire LiDAR data for three strips (L1, L2, and 

L3), was conducted on September 3rd, 2014. Two subsets of 

LiDAR data were clipped from L1 (Site I), Figure 1, and L3 

(Site II), Figure 2, with the dimension of 600m x 200m each, 

for the experimental testing. Site I includes land features and 

the water body so that the NDFIs could be evaluated for 

land/water mapping, while Site II includes different land 

features to evaluate the NDFIs for vegetation and built-up area 

discrimination. 

 

 

 
Figure 1. LiDAR point clouds from C2 for Site I (upper: height 

and lower: intensity) 
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Figure 2. LiDAR point clouds from C2 for Site II (upper: height            

and lower: intensity) 

 

Optech Titan sensor acquired LiDAR data for L1and L3 in the 

three channels at ~420m altitude, ±15° scan angle, 200 

kHz/channel PRF and 40 Hz scan frequency. The tested LiDAR 

data of Site I contains about 1755530, 2013832, and 2256815 

points from C1, C2, and C3, respectively, while Site II contains 

about 1874916, 2022127, and 2036271 points from C1, C2, and 

C3, respectively. The difference in number of points depends on 

the interaction of each feature with different wavelengths (e.g., 

reflection from water surface and/or seabed, and greenness of 

the vegetation). A Google® image was used to validate the 

classification results using number of reference points, obtained 

from selected polygons for different land covers, Figure 3. 

 

 
Figure 3. Google image showing Site I and Site II 

 

Since the number of points is not the same from each channel, 

the maximum number of points of the two input channels per 

each index was used in processing and displaying, in order to 

obtain highest point density. The points from green channel 

were used for NDFIG-NIR and NDFIG-MIR, while the points from 

NIR channel were used for NDFINIR-MIR. The number of 

reference points for results validation, for each feature and total 

number, per each index are provided in Table 2 for the two 

sites. 

 

Site I 

Index Land Water Total 

NDFIG-NIR / NDFIG-MIR 90151 63885 154036 

NDFINIR-MIR 99018 28792 127810 

Site II 

Index Vegetation Built-up Total 

NDFIG-NIR / NDFIG-MIR 58769 29999 88768 

NDFINIR-MIR 64544 29950 94494 

Table 2. Reference points for Site I and Site II 

3. METHODOLOGY 

The overall workflow of this study is shown in Figure 4. The 

intensity values from the green, NIR, and MIR wavelengths of 

multispectral LiDAR sensor were employed to form NDFIG-NIR, 

NDFIG-MIR, and NDFINIR-MIR as following: 

 

 
 

 
 

 
 

where Green, NIR and MIR are the intensity values  from the 

green, NIR and MIR wavelengths, respectively.  

 

 
Figure 4. The overall workflow 

 

To be able to calculate different NDFIs, each point from any 

channel should have a corresponding point from other channels. 

Although, Optech Titan operates simultaneously at the three 

wavelengths, it acquires LiDAR points in the three channels at 

different angles. Consequently, points from different channels 

do not coincide at the same GPS time. Another method could be 

used to find corresponding points, called “3D spatial join”, 

where a search of the nearest neighbours for each point within a 

sphere of defined radius, using geometric information (x, y, z), 

is conducted. This method may result in wrong match between 

points, shown in Figure 5. For example, case (1) indicates the 

perfect point matching from two channels, C2 and C3. In case 

(2), a point from C2 could be matched twice with two different 

points from C3, as this point is the nearest neighbour to both 

points. Case (3) shows two possible neighbour points from C2 

which have the same distance to a point from C3, thus two 

points could be wrongly matched. Case (4) indicates that no 
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neighbour points from C2 to a point from C3 within a defined 

sphere. Therefore, for each channel, a grid was created with 1m 

cell size and the mean intensity value of each cell was 

calculated. The grid cell size is selected as 1m in order to 

guarantee two conditions for each cell; the first is to have 

sufficient number of points and the second is not to contain any 

points from different features. Then, the mathematical operation 

of NDFIs was conducted using grid cells. Based on the point’s 
location, a NDFI value was assigned to each point using 

bilinear interpolation, where the adjacent cell centres were used 

in calculation. The whole process is shown in Figure 6. 

 

 
Figure 5. 3D spatial join between C2 and C3 points 

 

A threshold value is required to cluster LiDAR data based on 

NDFI values, which range from –1 to 1, into two different 

features. McFeeters (1996) and Xu (2007) set zero as the 

threshold value for NDWI and NDBI to extract water bodies 

and built-up areas, respectively, while Chen et al. (2009) 

adjusted manually a threshold value for NDVI to extract 

vegetation. The manual adjustment of the threshold could 

achieve more accurate results among different datasets or sites 

(Xu, 2006; Lacaux et al., 2007; Li et al., 2013). Therefore, a 

dynamic threshold adjustment method is required (Ji et al., 

2009). 

 

In this study, the Jenks natural breaks optimization method was 

used to determine the threshold values for discriminating water 

from land in Site I and vegetation from built-up areas in Site II 

(Jenks, 1967). This optimization is a data clustering method 

designed to minimize within-class deviations and thus leads to 

maximize the between-classes variance (σ2), which can be 

obtained from: 

 

 
 

Now, assume that the NDFI points range from [a, ⋅⋅⋅, b], where 

−1 ≤ a < b ≤ 1. Using the Jenks natural breaks optimization, the 
(M) is first calculated. Then, the points are divided into two 

classes with ranges [a, ⋅⋅⋅, t] and [t, ⋅⋅⋅, b], where (t) is the 

threshold value. For each range, M1 and M2 are calculated. The 

optimal (t) is obtained by minimizing variation within classes, 

and intuitively maximizing the between-class variance of the 

two classes, using the following equation: 

 

 
 

For land-water mapping of Site I, it is noticed that the water 

body has high variation in intensity values, especially the 

intermediate part. A radiometric correction model, developed by 

(Yan et al., 2012), was applied. The model is based on radar 

equation and the correction is mainly for the range and the scan 

angle. Since the high variation of intensity values is at nearly 

the same range and very small scan angles, the results are 

insufficient. Therefore, a low pass filter was applied to the 

intensity data as a pre-processing step before NDFIs calculation, 

thus making water intensity values more consistent. However, 

the radiometric correction should be applied in case of 

processing of overlapped strips (Yan and Shaker, 2015). In 

addition, the intensity values of water points from the green 

channel are lower than intensity values from NIR and MIR. 

Moreover, for each channel, vegetation and water points have a 

close range of intensity values. As a result, parts of vegetation 

area and water body could have the same range of NDFIs, thus 

affecting the classification results of NDFIs for land-water 

mapping. Therefore, the clustered classes from NDFIs were 

constrained by the recorded number of returns from different 

features at the green, NIR, and MIR channels, shown in Table 

3. 

 

Feature Green NIR/MIR 

Built-up areas single single 

Water  single/double single 

Vegetation  double or more double or more 

Table 3. Recorded returns from different feature in green, NIR, 

and MIR channels 

 

 
Figure 6. NDFIs calculation for 3D points 
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4. RESULTS AND DISCUSSIONS 

The histogram of each NDFI was first created and studied for 

both sites. NDFI histograms give an indication of how many 

classes could be distinguished from the dataset based on 

number of modes. After that, the Jenks natural breaks 

optimization method was used to determine the threshold values 

for each NDFI. The accuracy assessment was conducted using 

the labeled reference points from the Google image. The 

confusion matrix was created and the accuracy measures 

(overall, producer’s, and user’s accuracies), as well as Kappa 
statistic were calculated. 

 

4.1 Site I Results  

 

Site I is located at Lake Ontario and covers different land 

features, such as building, roads, parking lots, trees, grass, and 

shrubs, as well as water body. Therefore, Site I was tested to 

extract water body from land features. Figure 7 shows the three 

histograms, created from the three NDFIs, for Site I. NDFIG-NIR 

histogram shows two modes in the histogram indicating two 

distinguishable classes, while NDFIG-MIR and NDFINIR-MIR 

histograms show skewed distributions to left and right, 

respectively, indicating that two classes might be distinguished 

with difficulty. However, a threshold value was applied to 

cluster the dataset based on each NDFI into two classes. So that 

if the NDFIG-NIR ≤ -0.45, NDFIG-MIR ≤ -0.41, or NDFINIR-MIR > 

0.1, the cover type is water body; otherwise, it is land. 

 

 

 

 
Figure 7. NDFI histograms of Site I 

Figure 8 shows the labeled points, as water, land and 

unclassified, based on NDFIG-NIR and NDFIG-MIR, as well as 

NDFINIR-MIR. The results show that most of water points are 

misclassified as vegetation points. The overall accuracies are 

40.31%, 32.19%, and 35.49% using NDFIG-NIR, NDFIG-MIR, and 

NDFINIR-MIR, respectively. The results are not promising for 

land-water mapping from airborne multispectral LiDAR data 

using NDFIs only. This could be due to the transmitted signal 

power of the green wavelength which is lower than the 

transmitted signal of the NIR and MIR wavelengths. As a result, 

the intensity values from the green channel are lower than NIR 

and MIR channels, and hence intensity range values of 

vegetation and water are very close from each channel. In 

addition, the water surface has intensity variation, especially in 

the intermediate part (scan angle near zero).  

 

 

 

 
Figure 8. Labelled LiDAR points of Site I from: a) NDFIG-NIR, 

b) NDFIG-MIR, and c) NDFINIR-MIR 

 

The intensity variation of the water surface was first reduced 

using a low pass filter. After that, the NDFI calculation was 

conducted, and a threshold value was applied. The cover type is 

vegetation and water when the NDFIG-NIR ≤ -0.51 or NDFIG-MIR 

≤ -0.53; otherwise, it is built-up area. The output “vegetation 

and water” class was then constrained by recorded number of 

returns as shown in Table 3, to extract water points. The cover 

type is water if the number of returns of the examined point 

equals 1 or 2 from green channel and 1 from NIR/MIR channel 

when using NDFIG-NIR or NDFIG-MIR, respectively. The 

NDFINIR-MIR is not applicable in this case because it is based on 

(a) 

(b) 

(c) 
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the NIR and MIR channels, while the green channel should be 

used to detect water points. Figure 9 shows the labelled points, 

as water, land and unclassified, based on number of returns 

added in with the NDFIG-NIR/NDFIG-MIR. The confusion matrix, 

overall accuracy, and kappa statistics for the results of the two 

NDFIs are provided in Table 4 and 5.  

 

 

 
Figure 9. Labelled LiDAR points of Site I from number of 

returns with a) NDFIG-NIR / b) NDFIG-MIR 

 

Classification 

data 

Reference data  

 Water       Land    

Total row User’s  
Acc. (%) 

Water 61645 3666 65311 94.39 

Land 2239 86486 88725 97.48 

Total column 63884 90152 154036  

Producer’s 
Acc. (%) 

96.50 95.93  
 

Overall accuracy: 96.17%, overall Kappa statistic: 0.921. 

 

Table 4. Confusion matrix of labelled point based on NDFIG-NIR 

and number of returns in Site I 

 

Classification 

data 

Reference data  

 Water       Land    

Total row User’s  
Acc. (%) 

Water 61696 2468 64164 96.15 

Land 2188 87684 89872 97.57 

Total column 63884 90152 154036  

Producer’s 
Acc. (%) 

96.58 97.26 
  

Overall accuracy: 96.98%, overall Kappa statistic: 0.938. 

 

Table 5. Confusion matrix of labelled point based on NDFIG-MIR 

and number of returns in Site I 

 

Despite the high overall accuracy, some vegetation areas are 

misclassified as water points and vice versa. Some low 

vegetation points (e.g., grass) could not be filtered out. This is 

because that those points and water points have a close range of 

intensity values, especially after applying the low pass filter. 

Also, they have a single return from green, NIR, or MIR 

channels. Hence, these vegetation points were misclassified as 

water points.  

 

4.2 Site II Results  

 

Site II covers an urban area mixed with vegetation (includes: 

trees, grass, and shrubs) and built-up areas (includes: building, 

roads, and parking lots). Site II was used to discriminate 

vegetation from built-up areas. Figure 10 shows the three 

histograms, created from the three NDFIs, for Site II. NDFIG-NIR 

and NDFINIR-MIR histograms show two normal distributions, 

indicating two distinguishable classes, while NDFIG-MIR 

histogram shows a skewed distribution to left, indicating that 

two classes might be distinguished with difficulty. A threshold 

value was applied to cluster the dataset based on each NDFI 

into two classes. It is considered that the cover type is 

vegetation when the NDFIG-NIR ≤ -0.48, NDFIG-MIR ≤ -0.42, or 

NDFINIR-MIR > 0.13; otherwise, it is built-up area. 

 

 

 

  
Figure 10. NDFI histograms of Site II 

 

Figure 11 shows the labeled points, as vegetation (V), built-up 

areas (B) and unclassified (U), based on NDFIG-NIR and NDFIG-

MIR, as well as NDFINIR-MIR. The confusion matrix, overall 

accuracy, and kappa statistics for the results of the three NDFIs 

are provided in Table 6, 7 and 8. The NDFIG-MIR achieved the 

highest overall accuracy of 92.51%. In particular, the same 

index, NDFIG-MIR, achieved the highest vegetation detection rate 

of 93.17%, while the NDFINIR-MIR achieved the highest built-up 

areas detection rate of 93.79%. 

(a) 

(b) 
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Figure 11. Labelled LiDAR points of Site II from: a) NDFIG-NIR, 

b) NDFIG-MIR, and c) NDFINIR-MIR 

 

Classification 

data 

  Reference data 

 U         V           B 

Total 

row 

User’s 

Acc. (%) 

U 0 2980 2133 5113 0 

V 0 52773 31 52804 99.94 

B 0 3016 27835 30851 90.22 

Total column 0 58769 29999 88768  

Producer’s 

Acc. (%) 

 
89.80 92.79 

  

Overall accuracy: 90.81%, overall Kappa statistic: 0.812. 

 

Table 6. Confusion matrix of labelled point based on NDFIG-NIR 

in Site II 

 

Classification 

data 

  Reference data 

 U         V           B 

Total 

row 

User’s 

Acc. (%) 

U 0 1163 1942 3105 0 

V 0 54756 696 55452 98.74 

B 0 2850 27361 30211 90.57 

Total column 0 58769 29999 88768  

Producer’s 

Acc. (%)  
93.17 91.21  

 

Overall accuracy: 92.51%, overall Kappa statistic: 0.841 

 

Table 7. Confusion matrix of labelled point based on NDFIG-MIR 

in Site II 

 

Classification 

data 

  Reference data 

 U         B           V 

Total 

row 

User’s 

Acc. (%) 

U 0 1484 1061 2545 0 

B 0 28091 12533 40624 69.15 

V 0 375 50950 51325 99.27 

Total column 0 29950 64544 94494  

Producer’s 

Acc. (%) 
 93.79 78.94   

Overall accuracy: 83.65%, overall Kappa statistic: 0.668. 

 

Table 8. Confusion matrix of labelled point based on NDFINIR-

MIR in Site II 

 

 

5. CONCLUSIONS AND FUTURE WORK 

This paper discusses the use of airborne multispectral LiDAR 

data for land-water, vegetation, and built-up area mapping. 

Three NDFIs namely, NDFIG-NIR, NDFIG-MIR, and NDFINIR-MIR 

were evaluated using intensity values from green, NIR, and 

MIR wavelengths of the new airborne sensor “Optech Titan”. 

The Jenks natural breaks optimization was used to determine 

the threshold values of each NDFI, in order to avoid the manual 

adjustment of threshold values and cluster the 3D point data. 

The results show low performance of using NDFIs only in land-

water mapping. The low performance may be due to the 

variation of the transmitted signal power at different 

wavelength. Hence, the recorded intensity for an object (e.g., 

water) is high at NIR and MIR wavelengths compared to green 

wavelength. Consequently, water points are misclassified as 

vegetation points. The land-water mapping results were 

significantly improved by using two steps before and after 

NDFIs calculation. A low pass filter was applied to intensity 

data as a pre-processing step before NDFIs calculation to 

reduce the intensity variation in the water surface. The output 

“vegetation and water” class from clustering was constrained 

using recorded number of returns from different channels. On 

the other hand, the direct use of the three NDFIs succeeded to 

discriminate vegetation from built-up areas. Based on the results 

achieved, we suggest using the NDFIG-MIR and NDFINIR-MIR for 

vegetation and built-up areas extraction, respectively, from 

airborne multispectral LiDAR data. The discrimination of roads 

from buildings and low from high vegetation will be further 

investigated by incorporating the LiDAR height data. Also,   

other factors will be introduced to distinguish water from land 

features. 
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