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ABSTRACT: 
 
Nowadays many cities and countries are creating their 3D building models for a better daily management and smarter decision making. 
The newly created 3D models are required to be consistent with existing 2D footprint maps. Thereby the 2D maps are usually combined 
with height data for the task of 3D reconstruction. Many buildings are often composed by parts that are discontinuous over height. 
Building parts can be reconstructed independently and combined into a complete building. Therefore, most of the state-of-the-art work 
on 3D building reconstruction first decomposes a footprint map into parts. However, those works usually change the footprint maps 
for easier partitioning and cannot detect building parts that are fully inside the footprint polygon. In order to solve those problems, we 
introduce two methodologies, one more dependent on height data, and the other one more dependent on footprints. We also 
experimentally evaluate the two methodologies and compare their advantages and disadvantages. The experiments use Airborne Laser 
Scanning (ALS) data and two vector maps, one with 1:10,000 scale and another one with 1:500 scale.

1. INTRODUCTION 

1.1 Motivation 

Height data is necessary for reconstructing 3D building models. 
The height data could be one or several of them including DSM 
(Lafarge et al., 2008; Vallet et al., 2011), photogrammetric point 
cloud (Xiong et al., 2014a), lidar points (Kada and McKinley, 
2009; Lafarge and Mallet, 2012; Sohn et al., 2008; Xiong et al., 
2014b), and SAR (Thiele et al., 2010). On the other hand, the 
footprint maps of buildings are used as well (Kada, 2009; Oude 
Elberink et al., 2013; Suveg and Vosselman, 2004). The reasons 
to use footprint maps are twofold. First, the footprint maps 
provide accurate building boundaries for inferring the inner 
structure. Second, the 3D building models is an extension of 2D 
maps. Most authorities and users want the two data sets to have 
consistent outlines on the ground level. While we have already 
spent a big effort to maintain and update 2D maps, it is reasonable 
and easier to require the newly made 3D building models to 
match with the 2D maps. 
 
A building often has multiple parts that are separated by height 
jumps. Each building part can be reconstructed independently 
and the reconstruction complexity will be decreased 
significantly(Haala and Kada, 2010). For example, in the model-
driven method, the searching of building primitives are decreased 
to the local area of one partition (Kada and McKinley, 2009; 
Oude Elberink and Vosselman, 2009). On the other hand, the 
partition improves model details with little costs. In the OGC 
definition (Kolbe et al., 2009), an LoD1 building model is just a 
block that extrudes the footprint map onto a certain height. This 
building model is too coarse to satisfy many applications like the 
calculation of volume, shadow and line-of-sight. While it is still 
challenging to reconstructing LoD2 models fully automatically. 
A simple trade-off is to decompose a building footprint into parts 
and model each part as a block, see Figure 2. The extended LoD1 
model is called LoD1+, and is a good trade-off between LoD1 and 
LoD2 models.  
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(a)                                (b)                                  (c) 

Figure 1. A building in different Level of Details (LoD). (a) The LoD1 
model; (b) the LoD1+ model; (c) the LoD2 model. The extended LoD1+ 
models is a good trade-off between LoD1 and LoD2 models. 
 
Map partitioning has been done by inferring from maps only or 
by combining maps with height data. Footprint maps give hints 
about inner structures thereby some parts can be derived with the 
footprint only. However many parts, especially the parts not 
touching the footprint, can only be inferred by taking height data 
into account. But even when the height data is applied, many 
problems need to be considered, including detection of all 
partitions, constraining of dominant directions, and maintenance 
of small structures. 
 
In this paper, we analyse difficulties in map decomposition and 
define minimum requirements that we need to meet for the 
decomposition task. We thereby introduce two novel map 
decomposition methodologies. Both use the footprint map and 
lidar point cloud. The lidar points are decomposed into layers 
according to their height differences. The first one derives 
contours for roof layers and snaps them to footprint maps. The 
second one detects steps edges between roof layers and combine 
them with footprint maps for decomposition. 
 
1.2 Related Works 

Haala et al. (2006) assume that all buildings have one or more 
dominant directions with small extensions, and assume that all 
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partitions can be derived from footprint outlines. The dominant 
directions are derived by averaging closely parallel outlines. 
Small extrusions are merged to those dominant directions, 
thereby the footprint is generalized. Partitioned cells are achieved 
by extending and intersecting all outlines. Haala et al. (2006) take 
all partitioned cells as final result without merging. Because some 
of those cells may be actually belonging to one building part, 
Commandeur (2012) merge them into groups by combining lidar 
point segments. As the footprints are generalized, they do not 
keep consistent. This type of methods only infers partitions from 
footprint map, the parts that are fully inside the building cannot 
be detected. 
 
Vosselman and Suveg (2001) observe that footprint maps are not 
enough to derive building partitioning. They first detect jump 
edges between roof components that are discontinuous over 
heights. The jump lines are then used to split footprint maps by 
combining with concave line extensions of footprint maps. Those 
partitioned cells are merged to building parts by grouping cells 
that have same lidar segments. The problem is that only one step 
line is detected from a pair of adjacent building parts. In fact, in 
many cases, they have two or more step lines, resulting badly 
partitioned building parts. Meanwhile, because the boundary 
points are usually noisy and incomplete, the partition lines are not 
precise, and do not match well with footprint corners. 
 
In order to find building parts inside footprint maps, Vallet et al. 
(2011) use push-broom lines instead of step edges. By sweeping 
all dominant directions across the building, a set of candidate 
partition lines can be achieved. The one whose buffer area with 
largest DEM difference is kept as a partition line. The push-
broom lines follow dominant directions of the footprint to avoid 
trivial partitions. One line will split a footprint into two parts. By 
recursively decomposing, a building is segmented into several 
sub-parts, which are greedily merged by minimizing the partition 
energy. Odd partitions will be created because this method cannot 
guarantee global optimization. 
 
Van Winden (2012) grids the lidar points inside the footprint and 
clusters the interpolated grids according to height differences. 
The partition lines are derived by tracking boundaries between 
clusters. Improvements are made by merging small clusters and 
simplifying the boundaries with Douglas and Peucker method. 
The disadvantage of this method is that the pre-gridding step 
decreases the boundary precision, and the derived boundaries are 
not well repaired to follow building dominant directions and 
footprint corners. 
 
The rest of the paper is organized as follows. In Section 2, we 
discuss requirements and difficulties of footprint map partitions. 
In Section 3 we show a partitioning algorithm by snapping roof 
contours to footprint map. In section 4 we introduce a partition 
algorithm by combining step edges and footprint maps. The 
experimental results are shown in Section 5. The conclusion is 
given in Section 6. 
 
 

2. REQUIREMENTS & DIFFICULTIES 

Suppose a footprint map polygon P is decomposed into a set of 
sub-polygons Pi. The input polygon P and decomposed sub-
polygons Pi ang. In order to keep the partition results consistent 
with the input footprint, the union of all partitions Pi equals to the 
input polygon P: 

ࡼ ൌ  (1)                                       ࢏ࡼ⋃

With no loss of quality, LoD1 and LoD2 buildings can be 
assumed to have no overlapping between parts. It is noted as: 

∅ ൌ  (2)                                       	࢏ࡼ⋂

The combination of equation 1 and 2 are the minimum 
partitioning requirements, which are illustrated in Figure 2. In this 
paper, one sub-polygon is called a partition cell, or cell for short. 
An interface between two partition cells are called a partition line. 
 

 
                      (a)                             (b)                              (c) 
Figure 2. Partition requirements. The planar partition of a polygon is a 
sub-division of a region into non-overlapping polygons. (a) a building 
from perspective view; (b) top view of the building; (c) partition results 
of the building region according to roof layers. 
 
Except the minimum requirements, there are several difficulties 
that need to be solved for achieving perfect partition results. 
Those questions are still open for the literature: 
 
1. Dominant directions. Restricting partition lines to dominant 

directions makes the partition results beautiful, and regular. 
However, many buildings have no dominant directions, and 
some buildings has more than one dominant directions. Some 
directions are very close and it is very hard to decide which 
direction to follow. 
 

2. Small structures. Small structures create many close 
candidate partition lines, resulting in lots of trivial partition 
cells, which increase the difficulties to merge them. Some 
methods in the state-of-the-art generalize the footprint and 
erase small structures. The generalization operation however 
changes footprint polygons, and is not recommended. 
 

3. Inner building parts. A sub-building may touch the border 
of a footprint map, but may lie fully inside the footprint map 
as well. The later sub-building cannot be inferred by only 
considering the footprint map. Even if the height data is taken 
into consideration, careful efforts should be taken to detect 
inner building parts and to derive step edges. 

  
4. Partition along wall or eave? The LoD1 and LoD2 models 

of buildings do have overhangs even though they can be 
generalized to have no overlap between layers. Footprints 
usually follow the walls while the acquired data follows 
roofs. Because the sensors look down, walls and lower roofs 
are not well observed. We can only relay on one of them 
where walls and eaves conflict. This question is actually the 
question that should we rely more on map or height data. 

 
Considering the complexities of footprint map partitioning, we 
propose two algorithms in section 3 and section 4. The 
requirements defined by Equation 1 and Equation 2 are achieved 
as minimum conditions. We maintain footprint outlines but do 
not always partition along dominant directions.  
 
 
3. METHOD1: PARTITIONING BY ROOF CONTOURS 

In this section we introduce a partitioning method based on 
contours of roof layers. This is done by decomposing a building 
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into layers at different height, deriving contours for each layer, 
and snapping those contours to footprint maps. This method 
relies more on height data than footprint maps. 
 
Roof layers are derived by a component analysis of an input point 
cloud. The input lidar points are segmented into planar patches 
by a segmentation algorithm (Vosselman, 2012), and only the 
points on roof segments are kept by picking segments whose slop 
is smaller than 75°. This operation is to filter out wall points. The 
Triangulated Irregular Network (TIN) of the points is constructed 
and its long edges which exceed a certain length are deleted, 
afterwards the connected TIN nodes are grouped into 
components, each one presents a roof layers. The length criteria 
is determined by detail level and quality requirements. In the 
experiments, 2m are taken as the threshold. 
 
The contour of a roof layer is derived by the 2D α-shape 
algorithm (Edelsbrunner and Mücke, 1994) and then generalized 
by Douglas-Peucker algorithm (Douglas and Peucker, 1973). The 
points of one roof layer are projected onto the X-Y plane, and the 
α-shape algorithm is applied. The points may have holes inside 
thereby one or more inner contours will also be derived. We only 
keep the outer contour for each roof layer. The Douglas-Peucker 
algorithm is designed to simplify open polylines. The start and 
end points are automatically marked to be kept. A line segment 
is constructed with the start and end points. The furthest point 
from the line segment is chosen as a new node if its distance is 
larger than a given threshold. Thereby the polyline is partitioned 
into two parts. Each part is iteratively partitioned in the same way 
until no further simplification can be applied. In our case, 
however, a contour is closed. We need to choose the initial start 
and end nodes to start simplification. This is done by picking two 
nodes with largest curvatures. The contour is accordingly divided 
into two parts, each one is simplified by the Douglas-Peucker 
algorithm. The points with largest curvature may not be the ideal 
result, therefore the initial start and end nodes are re-checked. 
The start or end node will be removed if it is not far enough to 
the line segment that is formed by its two neighbouring nodes. 
Figure 3 illustrates the polygon simplification algorithm. 
 

(a) (b)

(d)(c)
 

Figure 3. Polygon simplification by modified Douglas-Peucker algorithm. 
(a) The input polygon; (b) The initial start and end nodes with maximum 
curvatures; (c) Simplified polygon after first round; (d) Final simplified 
polygon. 
 
The regions defined by the layer contours may have overlaps and 
gaps in between. The conflicts are solved by snapping contours. 
The contour snapping is done in a way similar to Ledoux et al. 
(2012). Figure 4 illustrates the snapping algorithm of layer 
contours. By taking the footprint polygon and roof layer contours 
as constraints, a Delaunay Triangulation is constructed by the 
Constrained Delaunay Triangulation (CDT) algorithm (Chew, 

1989), see Figure 4 (b). Each triangulation facet is one region cell. 
A region growing algorithm tags all the cells of the building 
regions uniquely. Each cells is ensured to only belonging to one 
roof layer, see Figure 4 (c). Because the input point cloud is 
discrete and points are not always on the footprint map, the 
simplified contours have small gaps with the footprint map in 
most situations. In order to avoid trivial triangle facets in the TIN, 
the roof layer contours are refined before constructing the CDT. 
The contour nodes are snapped to nearby nodes or line segment 
of the footprint polygon. 
 

(a) (b)

(c) (d)  
Figure 4. Snapping of roof layer contours. (a) The footprint map and the 
roof layer contours (with coloured nodes); (b) The derived Constrained 
Delaunay Triangulations; (c) The tagged roof regions; (d) The output of 
snapped contours. 
 
The region growing algorithm guarantees the derived roof 
regions are continuous and gap-free. Meanwhile, it applies two 
growing rules: 1) The overlapped cells are set to the highest roof 
layer; 2) The empty cells are set to the lowest roof layer. The two 
rules are based on the observation that the top roof facets have 
higher probability to be well observed than bottom ones. 
Therefore the overlapped cells belong to the good data, which is 
the higher roof region. And the empty cells come from occlusions, 
therefore are set to the lost layer. On contrary to the typical 
polygon snapping methods, which is processed line by line, this 
one is done globally. It effectively guarantees the validity of 
resulting polygons. 
 
 

4. METHOD2: PARTITIONING BY STEP EDGES 

In this section, we introduce the second footprint map 
partitioning method by combining step edges with footprint 
maps. The footprint map often reveals building structures. By 
extending the footprint lines that cross concave corners, an initial 
partition will be created. Detected step edges are integrated for 
finer partitions. Figure 5 illustrates the pipeline of the partition 
algorithm.  

Roof layers are detected by the component analysis algorithm 
introduced in Section 3. Step edges are detected from the 
boundaries points between each pair of adjacent roof layers. The 
lidar points that connect the two roof layers are identified as 
boundary points. And the Hough Transform algorithm is taken to 
detect step edges by fitting lines to the boundary points. In order 
to snap the partition lines to building directions, the dominant 
directions of a building are derived and used as constraints in the 
Hough Transform. 
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(a)                                              (b) 

  
(c)                                              (d) 

Figure 5. Footprint map decomposition by combining footprint map and 
step edges. (a) Footprint map; (b) Lidar points (coloured in height) with 
step edges; (c) Partition lines (in red) from footprint map with step edges; 
(d) Partition result. 
 
The step edges are combined with footprint maps for finer 
partition. By extending footprint lines that intersect at concave 
corners a building ground plan can be segmented into regions. In 
order to avoid trivial partitions, the step edges are firstly aligned 
with footprint maps and their extensions, if they are close enough. 

The alignment includes snapping the step edges onto footprint 
lines if they are close and parallel, otherwise snapping them onto 
footprint corners if close to them. The distance threshold is 0.5m, 
and angle threshold is 15°. Finer partitions are achieved by 
extending step lines to intersect with partition cells. The partition 
cells are merged according to layers of lidar points. The adjacent 
partition cells are merged if they are covered by a same roof layer. 
A partition cell may have lidar points from more than one roof 
layer. In this case, the cell will tagged to the roof layer with 
largest number of lidar points in the winner-take-all strategy. 
 
 

5. EXPERIMENTS 

In this section we experimentally test the improvements of 
partition quality by applying the two partitioning methods. 
Airborne lidar data and footprint maps are combined for the 
partitioning. The lidar data is acquired by airborne lidar systems 
with an average point density of 20 points/m2. Two 2D footprint 
data sets are tested. The first one is a large scale base map with a 
scale of approximately 1:500 (called MAP1). The second one is 
an object oriented topographic dataset with scale 1:10,000 (called 
MAP2). The reference data is created by manual operation with 
an interactive tool. Operators create partition lines along jump 
edges by visually checking the lidar points. 
 
In order to evaluate the partition results, the test data are 
overlapped with reference data. An overlapping part is 
considered to be correct if it is the biggest part of the belonging 
polygons. For example, see Figure 7, the reference data and test 
data have four overlapping parts. Cell a of test data overlaps with 
both cell 1 and cell 2 of reference data, resulting in cell 1a, and 
cell 2a. Because cell 1a has larger area than cell 2a, cell 1a is 
considered to be the correct partition, and cell 2a is wrong. The 
partition accuracy is defined as the ratio of area of all correct 
partitions with the total area of input maps. 

     
(1a)                                                                      (1b)                                                                   (1c)  

 

      
(2a)                                                                      (2b)                                                                   (2c)  

Figure 6. Map partition results. Row (1)  Footprint map of MAP1 and partition results; Row (2) Footprint map of MAP2 and partition results; 
Colum (a) Footprint maps; Colum (b) Partition results by Method1; Colum (c) Partition results by Method2. 
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Figure 6 shows two footprint maps and partition results by the 
two proposed methods. Row (1) presents footprint map of MAP1 
and partition results. Row (2) presents footprint map of MAP2 
and partition results. Colum (a) presents footprint maps; Colum 
(b) presents partition results by Method1. Colum (c) presents 
partition results by Method2. The partition accuracies are 89%, 
96%, 91% and 90% for 1b, 1c, 2b, and 2c, respectively. The 
second partitioning method creates better results on MAP1 
footprint maps. While the partition accuracies have no big 
difference on MAP2 footprint maps. 
 

1

2

a
b

2a
2b

1a 1b

 
(a)                             (b)                              (c) 

Figure 7. Evaluation of partition. (a) Reference data; (b) Test data; (c) 
Comparison. 
 
The zoom in views in Figure 8 show partition results of three 
buildings. Partitioning method1 can identify small structures and 
inner structures. While partitioning method2 forces partition 
lines to follow building dominant directions and footprint corners. 
Another large difference between the two methods is the area 
with no data or with data from several roof layers. The conflicting 
parts are classified to the highest roof layer by method1, but are 
classified to lowest roof layer by method2. The partitioned map 

can be used to reconstruct building LoD1 and LoD2 model. The 
reconstructed 3D models are illustrated in Figure 9, showing that 
the partition accuracy are good enough for the tasks of 3D 
modelling. Method1 is applied for the partitioning for Figure 9. 
 

6. CONCLUSIONS 

In this paper, we proposed two footprint map partition algorithm 
and evaluated their effects. The partition algorithms decompose 
a footprint map into parts, each presents an independent building 
part. The two proposed algorithm both apply airborne lidar data 
and footprint maps. The first one is more dependent on lidar data 
and the second one more dependent on footprint maps.  
 
Experiments show both partition algorithms achieve up to 90% 
for 1:500 footprint maps and 1:10000 footprint map. In one test 
area the partition accuracy even reaches 96%. The partition 
results provide well defined polygons for detailed LoD1 
modelling and LoD2 modelling. Method 1 is able to partition 
small roof layers, and to work in the noisy parts. Method 2 snaps 
partition line to dominant directions and corners, thereby the 
results are regular and well aligned with footprint map. 
 
The future work is to combine the advantages of the two methods. 
The partitioning should work well for all situations, even for the 
situations where height data is noisy. Meanwhile the partitions 
should snap to dominant directions and footprint corners, if those 
constraints can be met. Lidar points in recent years are still 
expensive to acquire. The photogrammetric points are a cheap 
alternative and will also be used to decompose footprint maps 
and to reconstruct 3D models in the following work. 

 
(1a)                                                 (1b)                                                  (1c)                                                  (1d)  

 

 
(2a)                                                 (2b)                                                  (2c)                                                  (2d)  

   
(3a)                                                 (3b)                                                  (3c)                                                  (3d)  

Figure 8. Map partition results. Row (1) Building 1 from MAP1; Row (2) Building 2 from MAP1; Row (3) Building 3 from MAP2; Colum (a) 
lidar points; Colum (b) Reference partitions; Colum (c) Partition results by Method 1; Colum (d) Partition results by Method 2. 
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