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ABSTRACT:

The primary method for geo-localization is based on GPS which has issues of localization accuracy, power consumption, and unavail-
ability. This paper proposes a novel approach to geo-localization in a GPS-denied environment for a mobile platform. Our approach
has two principal components: public domain transport network data available in GIS databases or OpenStreetMap; and a trajectory
of a mobile platform. This trajectory is estimated using visual odometry and 3D view geometry. The transport map information is
abstracted as a graph data structure, where various types of roads are modelled as graph edges and typically intersections are modelled
as graph nodes. A search for the trajectory in real time in the graph yields the geo-location of the mobile platform. Our approach uses
a simple visual sensor and it has a low memory and computational footprint. In this paper, we demonstrate our method for trajectory
estimation and provide examples of geolocalization using public-domain map data. With the rapid proliferation of visual sensors as
part of automated driving technology and continuous growth in public domain map data, our approach has the potential to completely
augment, or even supplant, GPS based navigation since it functions in all environments.

1. INTRODUCTION

Autonomous navigation is an emerging technology with a huge
potential; self-driving cars are almost round the corner. This tech-
nology requires accurate geo-localization in real-time to effec-
tively navigate urban environments. Currently, navigation tech-
nologies are GPS reliant, which has multiple issues. The accu-
racy of standard GPS devices is unacceptably poor for the pur-
poses of autonomous navigation and accurate GPS sensors are
very expensive. GPS is unreliable in several environments where
transmission between the device and satellites is impeded by sur-
rounding structures, like tall buildings in an urban environment,
the so called ’urban canyons’. In addition, GPS is unavailable in-
doors, underground, in tunnels, etc. and can also be degraded or
denied in certain geographic regions. In order to be viable for a
huge consumer market, there is a need for geo-localization solu-
tion that operates with low-cost sensors and public domain data.

The DARPA grand challenge has demonstrated the effectiveness
of visual sensors in autonomous navigation by analyzing visual
information for video cameras mounted on the mobile platform.
There are arguably two main conceptual approaches for vision
based methods. One of these approaches seeks to use an ever
growing geo-tagged image database, as in Google Street View.
The images from the camera are queried to this database and
matches are used to infer the geo-location of the mobile platform
in real-time (Vaca-Castano et al., 2012). While such localiza-
tion results show promise, this approach requires a maintenance
and continuous access to very large image databases which is ex-
tremely expensive and not currently not a feasible solution (Paul
and Newman, 2010). The second approach is inspired by naviga-
tion in robotics using SLAM, which perform a localization and
mapping of the neighborhood of the robot. The key issue with
SLAM framework is the accumulation of drift error that results
in poor localization, which is more pronounced for traversals over
long distances .

This paper poses the problem of accurate geo-localization as a
combination of accurate relative localization within a very large
∗Corresponding author

spatial search space. The relative localization is computed using
Visual Odometry (VO) and the large spatial search space is ac-
quired from GIS databases. The key insight in this paper is that
the motion of the typical mobile platform is correlated to the as-
sociated topology of the spatial search space. For example, a car
moves on roads and so the trajectory of the car for a finite dis-
tance of travel is correlated to a subset of the transport network
layer of GIS in the spatial search space for that car. The use of
one or more layers of GIS based on the type of mobile platform
and sensors facilitates flexibility in our approach and the ability
to scale the solution.

The combination of Inertial Measurement Units (IMUs) and vi-
sual sensors is a crucial and useful technique for autonomous nav-
igation, particularly in unknown indoor or GPS-denied environ-
ments. Although pure monocular vision-based Extended Kalman
Filter (EKF) can achieve around meter level of the trajectory er-
ror, it is limited in a small or well constraint area in order to
avoid scale drift (Civera et al., 2010). Using sequential stereo
pairs or camera matrix is capable of handling the scaling problem
as a depth measurement based on epipolar geometry, with well-
calibrated camera interior orientation parameters (IOP) and rela-
tive exterior orientation parameters (EOP). However, the shutter
synchronization, calibration bias and other uncertainties between
camera pairs will lead to a camera trajectory drift. A robust on-
site calibration with the unknown features in the scenes is still
an unsolved problem. In this perspective, using monocular cam-
era visual odometry is more practicable than stereo pairs or other
depth measurement device.

Camera and IMU measurement have several complements than
other sensor combination, and both of them are commonly mounted
in consumer mobile devices nowadays. IMU provides continu-
ously linear accelerations and rotational velocities, which can be
integrated as the relative pose displacement. It is reliable in the
sort time period, so we can resolve the major drawback of using
monocular visual odometry: such as scale estimation, image blur
due to rapid motion, and the requirement of continuously feature
tracking. On the other hand, IMU-based pose estimation has a
critical drawback due to integrating IMUs measurements. The
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noise and bias inherent in these measurements are multiplied and
cumulative after each integration, causes the system pose drift to
become significantly unbounded over time. To overcome these
drawbacks of the IMU drifting problem, the camera is capable of
detecting feature points in the scenes and using them as a pose
constraint. In synergy, IMU provides short-term reliable system
pose for camera to measure unknown features in the scenes as 3D
landmarks.

Our contributions in this paper are: (i) we introduce a novel ap-
proach to geo-localization of mobile platforms in real-time that
combines GIS/OpenStreetMap data and visual sensors on-board
the mobile platform. We demonstrate a computationally efficient
approach at is scalable to search accurate geo-location in a very
large region of interest; and (ii) this study proposed a visual-
inertial navigation system (VINS), including monocular visual
odometry and IMU. Proposed method improved feature track-
ing and camera measurement results, providing better EKF-based
visual-inertial pose estimation.

2. RELATED WORK

Global localization is an important part of any autonomous nav-
igation system and its uninterrupted performance is crucial for
the stability and robustness of the system. To achieve this goal,
several visual odometry based approaches have emerged in re-
cent years, offering high quality localization performance even at
real-time execution speeds. The basic pipeline of these methods
includes a feature extraction stage, followed by feature match-
ing, 3D reconstruction of a sparse point cloud, and finally esti-
mation of the pose of the mobile platform. A windowed bundle
adjustment is typically run at the end. The main drawback of this
category of methods is that drift is accumulated over time. As a
result, after the mobile platform has travelled a certain distance,
the localization error becomes significant, making the localiza-
tion result unusable over longer distances (Engel et al., 2015). In
parallel to the VO approaches, there are a number of methods that
perform visual-SLAM (Lategahn et al., 2011). The vSLAM ap-
proach is similar to VO, differing in that reconstructed 3D points
are used as landmarks and their position is optimized together
with the camera pose.

There has been research towards using map information that is
already available in the form of 2D (e.g., Google Maps, Open-
StreetMaps) or 3D road maps (e.g., Google Maps 3D) for local-
ization. (Hentschel and Wagner, 2010) propose the use of Open-
StreetMap maps to facilitate robot localization and navigation. A
cadastral map with the building footprints is extracted and the
GPS position of the robot is used in an MCL framework to pro-
vide localization for the robot. Recently, (Senlet and Elgammal,
2011) have presented a system that uses Google Static Maps to
perform global localization. In particular, they perform a local
reconstruction of the scene, using stereo depth maps, which they
later compare with the 2D map. Both of the aforementioned ap-
proaches show the potential that the use of map information can
bring to the localization task. However, these systems require a
manual initial localization and have only been tested in suburban
areas where the environment is relatively simple and the paths
they have travelled are short in length.

Elaborating on VO methods, a majority focus on integrating IMU
and monocular vision using filter-based(KF, Information Filter,
particle filter), EM-based, or batch optimization (shape from mo-
tion) (Strelow and Singh, 2004) methods. Bundle adjustment is
a non-linear global optimization approach, which can produces
estimates of the sensor motion, 3D points structure of the scenes,
and other unknown variables (e.g.. biases) using measurements

from the entire observation simultaneously. But the computation
cost and complexity is to heavy, especially when the image se-
quence is long.

EM iterates two major steps, expectation step for posterior sys-
tem pose from map; and maximization step to find most likely
pose from the expectations, and finally build up a series of in-
creasingly accurate maps. EKF-based SLAM is another efficient
recursive algorithm. EKF-based approach provides optimal min-
imum mean-square Error (MMSE) estimates of the state (device
and landmark positions), and its covariance matrix seems to con-
verge strongly. However, the Gaussian noise assumption restricts
the adaptability of the EM and KF for data association and num-
ber of landmarks. Sliding Window Filter (SWF) is a keyframe-
based operating method, performing a batch optimization over a
set number of system states, which is useful for large scale opera-
tions. Multi-State Constraint Kalman Filter (MSCKF) (Mourikis
and Roumeliotis, 2007) preserve a buffer window of sensor poses
and simultaneously update each pose in the window using batch-
optimized estimates of observed landmarks across the buffer win-
dow. This study implement MSCKF for Camera-IMU trajectory
estimation, and improved a more robust landmark feature de-
scriptor for tracking process. Camera-IMU calibration and data
synchronization are the priori Information for the developed VINS.
These calibration parameters are including time scaling and off-
set, relative pose between IMU and camera, and IMU bias. (Ovrén
and Forssén, 2015) proposed a non-linear least squares minimiza-
tion method using the symmetric transfer error as cost function,
joint calibration of a wide-angle rolling shutter camera and an ex-
ternally mounted gyroscope. Calibration of camera IOP includes
principle points, focal length and lens distortion. Observed im-
ages then can correct deformation regarding IOP for higher ac-
curacy matching process. Domain-size pooling scale-invariant
feature transform (DSP-SIFT) (Dong and Soatto, 2015) improve
the robustness of point-based descriptor by pooling gradient ori-
entations across different domain sizes. This kept the dimension
remains the same but more appropriate for against photometric
nuisances.

3. METHODOLOGY

We pose the problem of accurate mobile platform geo-localization
as a combination of approximate geo-localization and accurate
relative localization. The approach requires an initial hypothesis
of region where the mobile platform can be located, which can be
arbitrarily large from size of a village to the entire globe, though
computational complexity scales with a larger search space. For
typical use cases, the region of interest would be a political state
or city sized area, which we have selected for our experiments
in this paper. Our approach is illustrated in the block diagram in
Figure 1.

The first step is to acquire map data from a public domain source
like OpenStreetMap (OSM) or Geographic Information System
(GIS) databases. OpenStreetMap data can be accessed via the
corresponding website, and the user can download the map for
the region of interest by specifying a bounding box b in terms of
longitude and latitude, b = (latmin, lonmin, latmax, lonmax).
The map is given in XML format and is structured using three
basic entities: nodes, ways and relations. The node n represents
a point element in the map and is defined by its GPS coordinates,
longitude and latitude n = (lat, lon). Linear and area elements are
represented by ways w, which are formed as a collection of nodes
w = {ni}i=1...k. The relations r are used to represent rela-
tionships between the aforementioned geometric entities to form
more complicated structures. The interesting map structures for
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Figure 1: Mobile Trajectory Geo-Localization: VO is used to compute a trajectory in real-time which is abstracted as a sub-graph and
is progressively localized by sub-graph matching in a graph abstraction of transport network map of the region of interest.

us are streets, which are modelled as ways, and can be extracted
from the XML data in to form a street graph of the region of in-
terest. Map data can also be acquired from GIS databases in the
form of ’shapefiles’ format, that is a popular geospatial vector
data format developed and regulated by Esri. Similar to OSM,
the shapefile data is used to construct a road network graph. A
example of OpenStreetMap, shapefile and computed transport
network graph is shown in Figure 2. Community contributed
data sources like OpenStreetMap are being continuously updated
whereas shapefile databases are comparatively better curated and
updated more infrequently. The choice of data source would de-
pend on the region of interest and the current state of respective
maps of that region. In addition, it should be noted that conve-
nience of data access comes with the cost of registration errors
and noise which makes the task of searching the mobile plat-
form trajectory in the graph more difficult. The second step is
to compute feature descriptors for the 3D trajectory of the mobile
platform and the transport network graph. We chose a contour
tangent angle θ as uniform sample distance, illustrated in Fig-
ure 4a for the feature descriptor as a trade-off between demands
for computational efficiency in processing and storage, robust-
ness to noise and missing data, and scalability. There exist sim-
ple to complex trajectory descriptors with inbuilt invariance and
other features, but have a corresponding high computational and
storage cost. In order to aid scalability of the solution and sim-
ple enough so it can be deployed on mobile computational plat-
forms with comparatively low processing power, we opted for a
descriptor that is both fast and good for search trajectory in the
graph. A trajectory T = {P1, P2, . . . , Pn} consists of points at
roughly uniform sampling distance. The quantization associated
with sampling distance is relevant in terms of sensitivity to the
motion of the mobile platform (for example, swerve, lane-change
and over-taking motion of a car) and also relevant to scalabil-
ity. Our choice of sampling distance was empirically determined.
The motion from point Pt to point Pt+1 is encoded in terms of
the angle θ, shown in Figure 3a, and its associated bin. We found
quantizing the contour angles to 72 bins, θ ∈ [0, . . . , 71], worked
well in our experiments. The choice of quantization level is based
on optimizing sensitivity to mobile platform motion while mini-
mizing effect of noise. Figure 4b shows a trajectory encoded in
this manner.

3.1 Trajectory Search in Graph

To find the mobile platform trajectory in the road network, we ab-
stract both to a graph data structure and pose the problem of tra-
jectory search as a sub-graph matching problem, where the graph
of the trajectory of a mobile platform travelling on the roads of

a map is a sub-graph of the entire map graph. The transport net-
work mapM has been abstracted as a graph GM, illustrated in
Figure 2c. The trajectory τ is abstracted as a graph Gτ. Graph
matching works by computing equivalent features on both map
graph GM and trajectory graph Gτ and storing these feature val-
ues at the nodes and or edges of the graph, which are then used
to compute a similarity score between trajectory graph and a path
graph GP , which is a hypothesis of a matching sub-graph of GM.

With the aim of facilitating a generalized solution that does not
require knowledge of geographic coordinates or global direction
information of the mobile platform, we assume that the trajectory
estimated by VO is in its simplistic form a sequence of points with
relative distance measure. This means the most reliable mode of
encoding the trajectory is change in angle of motion of the mo-
bile platform which is equivalent to contour angles of a spline
approximation of the acquired sequence of points. Figure 5 il-
lustrates an acquired trajectory as a set of points TV O . We com-
pute a spline approximation using these points and those points
with significant change in contour angle are selected as ’control
points’. A graph abstraction of this trajectory Gτ is created using
the control points as nodes of the graph and set of points between
control points comprise an edge of the graph, wherein are com-
puting TV O → Gτ. Since the mobile platform travels on the road
network the trajectory graph can be assumed to be a sub-graph of
the map graph, Gτ ⊂ GM. Our approach to searching for a match
in GM is to introduce ’path graph’ GP . Searching for Gτ ⊂ GM
is equivalent to search for a sub-graph GP of GM such that the
trajectory is similar to this path sub-graph Gτ ≡ GP . So, we
compute a similarity score S(·, ·) between the trajectory graph
and path graph, S(Gτ,GP) ∀ GP ⊂ GM, for all path graphs in
the map graph. The best matching path graph is

G∗P ← arg max
GP

S(Gτ,GP) ∀ GP ⊂ GM

We are considering the problem of geo-localization in real-time.
The estimated trajectory TV O continuously grows with time and
consequently the trajectory graph also grows with time. Conse-
quently we formulate our trajectory search solution accordingly,
where best matching solution at time t is given in equation 1.

G(t)∗P ← arg max
G(t)P

S(G(t)τ ,G(t)P ) ∀ G(t)P ⊂ GM (1)

In our implementation S(·, ·) is computed using a sub-string match-
ing algorithm. The trajectory G(t)τ is a sequence of quantized
edge-orientations we described earlier. Each graph path GP is
also similarly encoded as a sequence of quantized edge-orientations.
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(a) OpenStreetMap (b) GIS ShapeFile (c) Graph representation

Figure 2: Abstraction of OpenStreetMap or GIS data to a transport network Graph representation

(a) Encoding trajectory of
mobile platform and edges
on graph of transport net-
work. The motion from point
Pt at sampling interval t to
Pt+1 is measured in angle θ
which is quantized to corre-
sponding bin. (This illustra-
tion uses 8 bins for visual-
ization, though in our imple-
mentation we use 72 bins.)

(b) Features for undirected
graph are computed as angles
between each pair of edges at
each node N0 with its neigh-
bors N = {N1, N2, N3}.
The features [θ0210, θ

03
20, θ

01
30] is

stored at each node of the
graph GM

.

Figure 3: Encoding mobile platform trajectory and graph.

(a) 3D trajectory descriptor (b) Road graph descriptor

Figure 4: Feature descriptor for estimated 3D trajectory of mobile
platform and edges of graph representing roads. The descriptor
is computationally efficient and facilitates matching between the
trajectory of the mobile platform and the transport network graph.

The key benefit of using string matching is that partial matches
also produce a reasonably good similarity score. This formulation
makes S(·, ·) robust to noise, missing data, erroneous vehicle mo-
tion like swerving, map registration flaws, etc. The motivation for
this approach is derived from the popular Bag-of-Words method

Figure 5: The trajectory estimated from visual odometry TV O is
a sequence of points with relative vector information. A subset
of these points where there is significant change in contour are
selected a ’control points’, which become nodes in a trajectory
graph Gτ

in computer vision that has also been used for SLAM (Paul and
Newman, 2010).

3.2 Visual Odometry

We propose an efficient camera pose trajectory-tracking algo-
rithm combining vision-based motion estimation and IMU data.
The developed procedure for VINS is shown in Figure 6. The first
step is to decimate the IMU readings in order to synchronize with
camera frames with the same measurement frequency and smooth
IMU noise. Captured images are then processed with tracking al-
gorithm described in section 3.2.1. The camera initial pose was
given by IMU readings, and then, vision-based 3D point trian-
gulation were used to estimate feature points coordinates. After
repeated measurement, reliable feature points can be used to up-
date camera position using EKF as mentioned in section 3.2.2.
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Figure 6: Visual Odometry

3.2.1 Feature detection and tracking Feature extraction and
tracking is the essential work for vision-based mapping and tra-
jectory estimation. Scale-invariant feature transform (SIFT) is
a well-known feature point descriptor, which was designed to re-
duce variability due to illumination while retaining discriminative
power in the scale space. Each un-normalized cell of SIFT can
be written as:

hS(θ, I, σ)(x) =

∫
Eε(∠∇I(y)−θ)Eσ(y−x) ‖ ∇I(y) ‖ dy,

where I is the image window of the centred pixel x with spa-
tial pooling scale σ. θ is corresponding to orientation histogram
bin (ε), normally with 8 direction from 0 to 2π. Kernel Eε and
Esigma represents a bilinear of size ε and separable-bilinear of
size σ, respectively. The SIFT descriptor is a 128-dimensional
vector that is a concatenation of a normalized 4 × 4 cells with
8 bins. DSP-SIFT is a modified form of the standard SIFT, ob-
tained by pooling gradient orientations from different scaled do-
main sizes, instead of spatial space. The formula is given by:

hDSP (θ, I)(x) =

∫
hS(θ, I, σ)(x)εs(σ)dσ, (2)

where E is an exponential unilateral density function and s is
the size-pooling scale. DSP-SIFT kept the same descriptor di-
mension but more suitable for searching correspondence in the
presence of occlusions.

After extracting feature points and their DSP-SIFT descriptors
between subsequent images, a perspective homography constrain
was applied to filter outliers by mapping one image to another.
’Inliers’ are considered if the co-planar feature points between
subsequent images are fully matched or within a small displace-
ment. The Random sample consensus (RANSAC) algorithm was
applied to optimize the homography transformation under the
over-constrained degree of freedom problem. RANSAC uses iter-
ative calculations to estimate optimal parameters of homography
matrix (8 DOF) from observations, and removed outliers from the
matching process.

3.2.2 Visual-inertial trajectory estimation We implemented
a multi-state constraint Kalman filter to combine the IMU and

monocular vision-based measurements. Tracked pose of the Camera-
IMU sensor are presented based on the Earth-Centered, Earth-
Fixed (ECEF) coordinates. Initial camera poses were given by
the EKF propagating state and covariance, updated from multi-
observed feature points, assuming that N camera poses are in-
cluded in the EKF state at each time step k. The state and error-
state vector are:

X̂k = [X̂T
IMU,k q̂

T
C1Gp̂

T
C1G q̂TCNGp̂

T
CNG]T , (3)

X̃k = [X̃T
IMU,k δΘ

T
C1
p̃TC1G · · · δΘ

T
CN

p̃TCNG]T , (4)

XIMU,k = [qTIG,k b
T
g,k b

T
a,k p

T
IG,k]T , (5)

X̃IMU = [δΘT
I,k b̃

T
g,k b̃

T
a,k p̃

T
IG,k]T , (6)

where qIG,k is the unit quaternion representing the rotation from
global frame G to the IMU frame I at time k. pIG,k is the
IMU position with respect to global frame. bg and ba are the bi-
ases of gyroscope and accelerometer measurements, respectively.
δΘ described the attitude errors is a minimal representation. To
sum up, at time k, the full state of the KF consists of the 13-
dimensional IMU state andN×7-dimensional past camera poses
in which active feature tracks were visible. In the propagation
step, the filter propagation equations are derived by discretiza-
tion of the continuous-time IMU system model, the linearized
continuous-time model is formulated:

ẊIMU = FX̃IMU +GnIMU , (7)

F =


−ω̂x −I3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

−ĈTIGv̂x 03×3 −ĈTIG 03×3

 , (8)

G =


−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 03×3 I3
03×3 03×3 −ĈTIG 03×3

 , (9)

where nIMU is the system noise. The covariance matrix of nIMU

is computed off-line during sensor calibration. The matrices F
and G are the Jacobians; I3 is 3× 3 identity matrix; ω and v are
3× 3 rotational velocity and linear velocity matrix, respectively;
CTIG is the rotation matrix corresponding to qTIG.

Every IMU readings are used for the state propagation in the EKF.
Moreover, the EKF covariance matrix has to be propagated every
k+1 steps. State covariance is a (12 + 6N)× (12 + 6N) matrix
and state covariance propagation is given by:

Pk|k =

[
PIIk|k PICk|k

PTICk|k
PCCk|k

]
, (10)

Pk+1|k =

[
PIIk|k Φ(tk + T, tk)PICk|k

PTICk|k
Φ(tk + T, tk)T PCCk|k

]
,

where Φ(tk + T, tk) is the state transition matrix. PII is the
12 × 12 covariance matrix of the current IMU state; PCC is the
6N × 6N covariance matrix of the camera poses; and PIC is the
12× 6N correlation between the errors in the IMU state and the
camera pose estimates.

When capturing a new video frame, the camera pose estimation
is computed from the IMU pose estimation. This camera pose
estimate is appended to the state vector, and the covariance matrix
of the EKF is augmented as:

P̂k ←
[
I12+6N

Jk

]
P̂k

[
I12+6

Jk

]T
, (11)
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Figure 7: The trajectory estimated by our method from 3D point cloud

Jk =

[
ĈCI,k 03×6 03×3 03×6N

(ĈTIG,kP
CI
I,k )× 03×6 I3 03×6N

]
, (12)

where Jk is the Jacobian matrix, fj is a feature point that has
been observed from a set of Mj camera poses. We use an in-
verse depth least-squares Gauss-Newton optimization method to
estimate three-dimensional location of fj . The residual for each
measurement is independent of the errors in the feature coordi-
nates, and thus EKF updates can be performed based on it. HXi

and Hfi are the Jacobians of the measurement zi with respect
to the state and the feature position, respectively. Kalman gain
can then be calculated as K = PTTH (THPT

T
H + Rn)( − 1),

where TH is an upper triangular matrix from QR decomposition
of the matrix HX . Finally, the state covariance matrix is updated
according to

Pk+1|k = (Iξ−KTH)Pk+1|k(Iξ−KTH)T +KRnK
T . (13)

4. EXPERIMENTS

In our experiments we evaluate our visual odometry pipeline in 4.1
and demonstrate our geo-localization approach in 4.2 using maps
acquired from OpenStreetMap and GIS from different urban and
semi-urban regions in different parts of the world.

4.1 Visual Odometry

The IMU data provided in this dataset was recorded by OXTS
RT 3003, containing acceleration and angular rate around three
axes with 100 Hz sampling rate. Video frames were captured us-
ing Point Grey Flea 2 (FL2-14S3M-C) in gray-scale with 1242
× 375 pixels resolution (after calibration). Shutter time adjusted
dynamically (maximum shutter time: 2 ms) and triggered at 10
Hz frequencies. This dataset provides well-calibrated camera in-
trinsic parameters and camera-IMU rotation and translation ma-
trix. The synchronized IMU and video frames are at 10Hz for
this study.

Figure 7 demonstrated the trajectory estimated for a long term
tracking case. The translational average root mean squared error
(ARMSE) is 4.154m, rotational ARMSE is 0.026m, and final
translational error is 12.149m. The accuracy for the estimated
is capable for proposed GIS path searching algorithm. Figure 8
demonstrated the comparison between proposed method, IMU in-
tegration and MSCKF implemented by (Clement et al., 2015) on
case no. 0051. Table 1 quantified the error ARMSE with two
other visual-initial approaches, MSCKF and SWF.

4.2 Geo-localization

We found that abstraction of trajectory and map to graph struc-
ture should we based on the scale and frequency of occurrence of
significant features. To improve efficiency of the implementation

Dataset ID 0001 0005 0035 0051 0095
IMU Tra. ARMSE 0.784 0.965 0.263 2.255 1.945

Rot. ARMSE 0.003 0.015 0.009 0.008 0.007
Final Tra. Err. 2.532 3.109 0.469 6.335 7.592

MSCKF Tra. ARMSE 0.449 1.217 0.268 2.310 1.324
Rot. ARMSE 0.007 0.023 0.009 0.028 0.046
Final Tra. Err. 1.130 2.453 1.879 9.294 3.628

SWF Tra. ARMSE 0.432 0.968 0.279 1.178 1.900
Rot. ARMSE 0.007 0.023 0.006 0.016 0.010
Final Tra. Err. 1.136 3.712 0.719 2.167 7.579

Our Tra. ARMSE 0.342 1.115 0.269 2.875 1.885
Rot. ARMSE 0.009 0.011 0.011 0.032 0.146
Final Tra. Err. 1.797 3.053 1.577 4.742 5.738

Table 1: Comparison of translation ARMSE, rotation ARMSE,
and final translation error of proposed method, MSCKF, and SWF
on KITTI dataset. (units: m)

20 40 60 80 100 120 140 160 180 200 220

x

-70

-60

-50

-40

-30

-20

-10

0

y

SURF + KLT + MSAC
DSP-SIFT + KLT
IMU integration
Ground Truth

Figure 8: The comparison between proposed method, IMU inte-
gration and MSCKF on case no.0051.

we begin with an analysis of the topology of map data acquired
from OpenStreetMap, described in 4.2.1. There results were used
to tune the parameters of our geo-localization pipeline which is
evaluated on several instances of regions from different parts of
the world in 4.2.2.

4.2.1 Map Features The number and location of nodes and
edges of GM abstracted from the OSM map should be based on
the degree of quantization that reduces the computational com-
plexity while preserving the uniqueness of different edges and
subsequently path graphs GP so that the search and converge to
the best matching G∗P as quickly as possible. In Figure 9, we show
an example of two cities, Washington DC and Karlsruhe, Ger-
many, which have different types of transport network topologies.
Washington DC, in Figure 9c, shows a regular lattice grid struc-
ture, where edge lengths ` and orientations θ have similar across
several nodes in the graph. In comparison, Karlsruhe, Germany
has a semi-urban type of transport network seen in Figure 9a with
a spaghetti structure. The graphs in Figures 9b and 9d show the
(`, θ)-histogram for Karlsruhe and Washington DC respectively,
where the different between the transport network topologies is
evident.
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(a) GM of Karlsruhe, Germany
(b) (`, θ)-histogram for map of
Karlsruhe, Germany

(c) GM of Washington DC
(d) (`, θ)-histogram for Wash-
ington DC

Figure 9: Analysis of GM of urban and semi-urban cities of
Washington DC and Karlsruhe, Germany. The graphs shows the
(`, θ)-histogram of the length ` and orientations θ of the edges of
GM (columns correspond to edge lengths ` and rows correspond
to edge orientations θ). The lattice structured urban and spaghetti
structured semi-urban graphs show different histograms reflect-
ing the inherent difference in these two types of maps.

4.2.2 Trajectory search We acquired maps for regions of in-
terest from OpenStreetMap and GIS database to evaluate the per-
formance of our approach for different types of transport net-
work topologies including urban, semi-urban and country roads,
and scale of the search region. We selected maps for: ’Franklin
county, Ohio’ which provides a typical U.S. county sized map;
’Washington DC’, which is a highly urban region with a lattice
grid structured road network; and ’Montpellier, France’, which
is a semi-urban and country spaghetti shaped road network of a
state sized region. Some of the results of our experiments for
each of these regions is illustrated in Figure 10. Initially, the esti-
mated trajectory Gt0τ is short as the mobile platform begins mov-
ing. We compute GP and associated similarity score S(Gt0τ ,GP)
and there are several matching paths, shown in the first column of
the figure for each region. As the estimated trajectory grows Gtnτ
the number of candidate paths reduce based on our empirically
determined threshold, shown in the center column in the figure.
Subsequently, a single path with the highest similarity score re-
mains, which is our matched path in the map graph. The right
column for each region in the figure shows the matched path in
the graph for the corresponding mobile platform trajectory. In our
experiments we found that quick search depends on the unique-
ness of the trajectory and the nature of the map graph.

5. CONCLUSION

We have presented a novel approach for geo-localizing position
of a mobile platform. We have proposed a modified approach to
classical visual odometry pipeline with map data from public do-
main sources like OpenStreetMaps and GIS databases in a unified

framework. We have described the algorithmic and implementa-
tion details of our method and demonstrated it on several differ-
ent types of maps from different regions of the world. We have
demonstrated excellent results on our proposed visual odometry
pipeline on benchmark KITTI dataset. Our results show that the
proposed system is able to provide fully automatic global local-
ization at a low infrastructural cost. Building on this work, we
plan to further investigate the use of maps, especially different
layers of a GIS database such as building, hydrology, relief maps,
etc. We also plan to integrate outdoor and indoor GPS-denied
navigation for seamless uninterrupted geo-navigation in all loca-
tions and environment conditions.
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Figure 10: Geo-localization of mobile platform trajectory, from top to bottom for the geographic regions of ’Franklin County, Ohio’,
’Washington DC, US’, and ’Montpellier, France’. The estimated trajectory of the mobile platform is shown on the top left; the histogram
on the top right shows the match score of each candidate path; and the map shows the current candidate paths. In the first column,
the initial trajectory TV O is small and several candidate paths GP are spawned. The similarity match score is shown in the histogram
graph. As TV O grows several GP are pruned since S(Gτ,GP) ≤ threshold. Finally, the best matching path G∗P remains, shown in the
right column, which is used for inferring geo-location of the mobile platform.
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