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ABSTRACT:

Pedestrian traffic flow estimation is essential for public place design and construction planning. Traditional data collection by human
investigation is tedious, inefficient and expensive. Panoramic laser scanners, e.g. Velodyne HDL-64E, which scan surroundings
repetitively at a high frequency, have been increasingly used for 3D object tracking. In this paper, a simultaneous detection and
tracking (SDAT) method is proposed for precise and automatic pedestrian trajectory recovery. First, the dynamic environment is
detected using two different methods, Nearest-point and Max-distance. Then, all the points on moving objects are transferred into a
space-time (x, y, t) coordinate system. The pedestrian detection and tracking amounts to assign the points belonging to pedestrians
into continuous trajectories in space-time. We formulate the point assignment task as an energy function which incorporates the point
evidence, trajectory number, pedestrian shape and motion. A low energy trajectory will well explain the point observations, and
have plausible trajectory trend and length. The method inherently filters out points from other moving objects and false detections.
The energy function is solved by a two-step optimization process: tracklet detection in a short temporal window; and global tracklet
association through the whole time span. Results demonstrate that the proposed method can automatically recover the pedestrians
trajectories with accurate positions and low false detections and mismatches.

1 INTRODUCTION

It is common that public places, e.g. squares and concourses,
need to be renovated, expanded or redesigned. One of the main
factors to be considered is the pedestrian traffic flow. Usually,
field data for the flow estimation are collected by human visual
counting. The process is expensive and inefficient. In this paper,
we investigate the potential of using laser scanning techniques
for automatic pedestrian trajectory estimation. The objective is
to detect the moving pedestrians and recover their trajectories.
Pedestrian, or in general, moving object detection and tracking
has been studied in both computer vision and robotics for various
applications, e.g. surveillance, autonomous driving. Here, we
aim for large scale long term monitoring in order to study the
general moving patterns. Accurate geo-located moving patterns
can be incorporated into GIS platforms for precise agent-based
modelling.

Moving object detection and tracking (MODAT) have been tra-
ditionally studied using image sequences and video. Objects are
detected in the camera reference frame or 2D world coordinate
system (Milan et al., 2014). Stereo matching enables us to detect
and reconstruct objects in 3D, then their 3D trajectories can be
reconstructed (Schindler et al., 2010). Whereas the field of view
(FOV) is still limited by the stereo cameras. Panoramic image
stereo-based tracking is still not largely investigated (Koyasu et
al., 2001). With the development of laser scanning technology,
especially panoramic laser scanners (360◦ horizontal FOV, e.g.
Velodyne HDL-64E), 3D moving object detection and tracking
using laser range data has become increasingly popular (Shack-
leton et al., 2010, Kaestner et al., 2012, Moosmann and Stiller,
2013).

A panoramic laser scanner is usually composed of a number of
∗Corresponding author.

vertically configured laser sensors covering a wide enough verti-
cal FOV (depending on the number of sensors). It rotates around
the vertical axis such that it generates a panoramic view of the
surroundings. The rotation frequency ranges from 6 to 15 Hz.
Same as other types of laser scanners, the Velodyne range data
are directly recorded in 3D in the form of 3D point clouds. The
measurement distance ranges from 2 m to 100 m, and the range
accuracy is about 2 cm. The Velodyne scanner constantly scans
the full surroundings hence it is an ideal technique for MODAT,
especially when the area of interest is located around the sensor
(Moosmann and Stiller, 2013). It can be mounted on a mobile
mapping system (MMS), together with optical cameras, for the
purposes of environment perception, and simultaneous localiza-
tion and mapping (SLAM) (Moosmann and Stiller, 2011).

A popular MODAT method is tracking-by-detection, where the
moving objects are detected first in each frame, then the trajec-
tories are reconstructed by associating plausible candidates (An-
driluka et al., 2008, Wu and Nevatia, 2007). Objects are typically
detected by extracting discriminative features from pixels or seg-
ments generated from segmentation methods, then they are classi-
fied into objects of interest. However, the detection results can be
affected by many factors, such as occlusion, miss-classification.
To avoid miss detections using classification, some try to track
generic objects without knowing the specific classes, which, how-
ever, can have limited applications (Kaestner et al., 2012). In both
cases, the detection accuracy will limit the overall tracking per-
formance.

In this paper, we aim to reconstruct the pedestrian trajectories
without specifically detecting the objects in each frame. As for
panoramic laser scanning data, usually a full turn (360◦ view) is
treated as a frame. So in our case, the data actually do not have to
be partitioned into frames. We support the idea that incomplete
object instances, which are commonly caused by self-occlusion
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and limited FOV, should be retained for better trajectory recov-
ery. Instead of detecting the individual object, we detect its tra-
jectory directly by assigning the point data to a trajectory hypoth-
esis. The data assignment is formalized as an energy function
which incorporates the point evidence, trajectory number, pedes-
trian shape and motion. First, points belonging to moving ob-
jects are separated from the static environment/background (Sec-
tion 3.1). Then pedestrians and their trajectories are detected si-
multaneously from the moving points which include false alarms
and points on other moving objects, e.g. cars (Section 3.2). Ex-
periments are carried out on two datasets, one of which is publicly
available. Both qualitative and quantitative results are illustrated
(Section 4). Discussions (Section 5) are followed by the conclu-
sion (Section 6) in the end.

2 RELATED WORK

MODAT is a classical topic in various research domains. Imagery
is still the primary data source for object tracking in computer vi-
sion, whereas laser scanning technology is, in general, getting
more and more popular in robotics. Thus pedestrian tracking us-
ing images in computer vision and using laser scanning data are
reviewed respectively.

2.1 Pedestrian tracking in computer vision

Object tracking using optical cameras has been studied in both
camera reference frame (2D) and world coordinate system (2D
and 3D), and it is applied to many applications, e.g. surveillance,
collision prevention, driving assistance. The general pipeline is
first to detect the moving object in each frame, then their fu-
ture positions are predicted and updated for online tracking, or
their complete trajectories are recovered by data fitting for offline
tracking.

Tracking-by-detection is a popular strategy for multi-target track-
ing. 3D tracking has been investigated by Schindler et al. (2010)
who detect and track pedestrians from a moving stereo rig. First,
pedestrians are detected from each stereo pair in 3D. Then trajec-
tory candidates are generated by an Extended Kalman Filter tak-
ing into account the object motion and appearance. An optimal
subset of the trajectories are selected by maximizing a quadratic
binary expression using multi-branch optimization (Schindler et
al., 2006). Milan et al. (2014) track multi-targets by continuous
energy minimization. The energy function linearly combines six
terms: data association, appearance, motion, exclusivity, track
persistence and regularization term. Six types of jump moves,
namely grow, shrink, merge, split, add and remove, are used to
minimize the energy function.

Tracking can be improved by preserving weak detections. Mi-
lan et al. (2015) enhance the tracking-by-detection method by
investigating low-level information from the video. They argue
that important information have been ignored during the detec-
tion process. Thus they propose to retain the ID information of
each super-pixel in the entire sequence which help to bridge the
trajectory gap caused by absence of detections and occlusions.
A similar investigation of pixel-level segmentation has also been
proven beneficial for pedestrian tracking by Aeschliman et al.
(2010). They propose to use an implicit fine level segmenta-
tion instead of a simple mask such as a rectangle or an ellipse.
The segmentation and tracking are jointly solved in a probabilis-
tic framework.

One major component of tracking is connecting objects’ pres-
ences over time to reconstruct their trajectories, which is nor-
mally referred to as data association. Instead of bipartite match-
ing, Zamir et al. (2012) propose a tracker that associates object

detections globally taking into account both motion and appear-
ance using clique graphs. Plausible association are taken as nodes
for a global graph. Each node is weighted by the association cost,
e.g. motion continuity, appearance consistency. Then the best
trajectories are composed by the subgraph whose nodes have the
minimal cost. The tracker has been improved by Dehghan et al.
(2015).

In the same spirit as Milan et al. (2015) and Aeschliman et al.
(2010), we preserve all the original acquired information with-
out explicit object detection to prevent information loss. Graph
clique is also chosen, in our case, for tracklet association because
it guarantees one-to-one node connection. The optimal clique is
governed by data explanation.

2.2 Pedestrian tracking using laser scanning data

MMSs are mostly using both cameras and laser scanners. Cam-
eras provide richer information besides the 3D locations gener-
ated from stereo matching. They are much cheaper than laser
scanners, which, however, deliver more accurate 3D geometry.
They are both used for SLAM and autonomous driving. Here we
focus on object tracking using laser range data.

Moving object detection and tracking using a mobile laser scan-
ner has been studied earlier on by Lindström and Eklundh (2001).
A laser scanner is mounted on a moving robot. Points on the sin-
gle moving object is detected by checking the violation of the
static environment. Then points from each scan is tracked by
matching with the nearest neighbour. Other approaches can also
be found using 2D laser scanning data for pedestrian tracking
(Schulz et al., 2003, Arras et al., 2008).

Indoor moving people tracking has been studied by shackleton et
al. (2010) using a Velodyne laser scanner. A Classical tracking
pipeline has been used. Points from each frame are segmented
first, and then the segmented object hypotheses are classified so
that moving people are identified. At last, the trajectories are esti-
mated and verified by an extended Kalman filter. Reported results
are promising, whereas the tested scene is rather simple. Clearly,
the object detection step can be enhanced. Spinello et al. (2011)
detect people in 3D using a bottom-up top-down approach. The
results of a conventional classification method, i.e. voting based
classification after segmentation (bottom-up), are improved by a
predefined volume which represents the 3D features of people
(top-down). The detection is compared with spin images and
template-based method, and is reported to outperform them. The
detected objects are then applied to a standard multi-hypothesis
tracking (MHT) procedure (Reid, 1979). Detected tracks can also
facilitate object recognition by track classification (Teichman et
al., 2011, Himmelsbach and Wuensche, 2012).

Sometimes, all types of moving objects can be of interest for cer-
tain purposes. Thus some intent to track all detected moving
object without identifying their classes. Kaestner et al. (2012)
focus on generic object detection without explicit classification.
Static and dynamic observations/points are segmented through a
probabilistic interpretation. Then all the detected dynamic ob-
ject hypothesis are tracked by optimizing the standard MHT us-
ing oriented bounding box and track splitting and merging. The
tracking results are comparable to aforementioned discriminative
detections (Spinello et al., 2011). Moosmann and Stiller (2013)
also track generic objects from Velodyne data. Normal and flat-
ness features are precomputed for each points, then they are seg-
mented based on the local convexity. A tracklet is generated for
each segment/object hypothesis. And new tracklets are connected
by counting the overlapping pixels in their range images.
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Since we only need trajectories from pedestrians, the points on
pedestrians have to be distinguished from those on static and
other moving objects. One drawback using laser scanning points
other than images is the lack of color information, i.e. appear-
ance, which is important evidence for object discrimination. The
point’s intensity attribute is, however, affected by various factors,
e.g. object material, incidence angle, hence it is not consistent
across time. Hosseiny-Alamdary and Yilmaz (2014) color the
points by projecting them on to corresponding images. Whereas
since the camera FOV is limited, only a part of points are used
for tracking.

3 METHODOLOGY

Since only moving objects are of interest in our case, we first dis-
tinguish them from the static background. First, the moving ob-
jects are detected at point-level. Next, all the moving points are
transferred into a space-time (x, y, t) coordinate system. Object
tracking amounts to cluster all the points belong to the same ob-
ject in such space time cube. Points belonging to the same pedes-
trian are clustered regarding the shape and structure of a pedes-
trian in (x, y, t) in a short temporal window. Since the pedestrian
points are clustered over time, pedestrians are simultaneously de-
tected and tracked from all the moving points. We formalize the
simultaneous detection and tracking (SDAT) of pedestrian as an
energy minimization problem, which is solved by a two-step op-
timization process (Section 3.2).

3.1 Moving object detection

Two methods are proposed to detect points on moving objects.
One straightforward method is to evaluate the number of nearest
points. The laser scanner constantly scans the same locations,
hence points will be accumulated on static objects over a period
of time. However points on moving objects will locate along the
moving trajectories. Note that these object instances are normally
overlapped because of the high scanning frequency. So the num-
ber of nearest point is assessed within a certain temporal window
(Equation 1) during which the moving object should have moved
out of its original occupied volume, meaning no overlapped in-
stances are taken. Moreover, the same volume will most proba-
bly be occupied again by other objects, so the target frame should
be compared within a short temporal window from the time that a
typical pedestrian has moved out of its original volume until a cer-
tain time that the space is still assumed to be empty. The average
speed sp and size sz (planimetric 2D diameter) of a pedestrian
are assumed to be 1.5 m/s, 0.5 m respectively. Given the time t
of current frame, the temporal window T is as follows:

sz

sp
< |T − t| < sz

sp
+ ∆t (1)

in which ∆t is the minimal time gap between two objects occu-
pying the same space, e.g. 0.5 s. This method is referred to as
Nearest-point.

Another method is based on the laser range distance. The laser
beam is not supposed to pass through the static environment scene.
Thus the furthest points of each of the i laser sensors over a cer-
tain period are taken as the static environment. There will be i
scanning circles and each circle is partitioned into j parts depend-
ing on the proper angular resolution. Then the static environment
is represented by a distance map Dmax ∈ Ri×j . Points between
the laser center and the furthest reachable locations (Di×j <
Di×j

max) are on moving objects. This method is referred to as Max-
Distance.

Now the movement of individual point is detected, meaning mov-
ing objects are detected at point level. Next sections will discuss
the clustering of individual points and the estimation of trajecto-
ries for pedestrian tracking. It is worth mentioning that at this
stage, points are labelled as moving or static, the object moving
patterns can be visually interpreted from the moving points. A 2D
density map/image can be generated by accumulating the moving
points on to a horizontal 2D plane.

3.2 Simultaneous detection and tracking of pedestrian

The state-of-the-art tracking method, i.e. tracking by detection,
has to detect the targets in each frame in the first place. Then the
targets are associated across the time so that the full trajectory is
recovered. In our case, moving objects’ points are detected, but
are not yet clustered into structured objects. These points come
from all types of moving objects. We aim to simultaneously de-
tect the moving pedestrians and recover their moving trajectories.
The moving points are translated into space-time (x, y, t) coordi-
nate system. Then the detection and tracking are solved together
as an energy minimization problem.

Notations To ease reading, the notations are introduced first for
the problem formulation.

• X = {xi = (x, y, t)i}, xi ∈ R3, i ∈ {1, ..., n}: the n
points of detected moving objects.

• P(X ) the set of partitions of X , including points belonging
to the same object:

P(X ) = {{S1, ..., Sm}|Si 6= ∅ and
⋃
Sj = X}

• tmin = mini ti, tmax = maxi ti the start and end times of
the acquisition.

• P : [tmin, tmax] → R3|S| a trajectory as a function of time
computed from each P(X ).

• In this paper, we will work with trajectories interpolated
piecewise through a set of control times t0 = tmin < t1 <
... < tNc−1 < tNc = tmax. For practical reasons, we can
choose the control times as:

tc = tmin +Nc∆t ∆t =
tmax − tmin

Nc

• A trajectory P will thus be defined by a start and end time
tmin and tmax and a set of control points {Pc}c=0...Nc :

P (t) =
(tc+1 − t)Pc + (t− tc)Pc+1

∆t
(2)

• A simple 2D pedestrian model will be given by a disk of ra-
dius r centred at the trajectory point. Based on this model,
we define the (adimensional) distance from a point to a pedes-
trian trajectory as:

D(xi, P ) = max

(
dist ((xi, yi), P (ti))

r
− 1, 0

)
(3)

• Given a set {P j} of trajectories, we call j = minD(xi, P
j)

the index of the closest trajectory to xi.
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Figure 1: Data attachment energy regarding the 2D point to tra-
jectory distance d.

Global formalization We formalize the simultaneous detection
and tracking problem as finding an unknown number Ntraj of
trajectories P j and an association of the points x to these trajec-
tories defined by a trajectory index ji for each points i, with the
convention j = 0 for points not associated to a trajectory (out-
liers). These unknowns will be determined by minimizing the
following energy:

E(P j , ji) =
∑

i|ji>0

λoutD(xi, P
ji) +λtrack

∑
j

tmax− tmin

+ λtrajNtraj + λrigid

∑
j

∑
c=1...Nc

||
−−−−→
Pc−1Pc −

−−−−→
PcPc+1||

(4)

This energy has following terms sequentially:

1. Adimensional data attachment term. r controls the radius
size of pedestrian and the number of inlier points, and λout

(adimensional) penalizes outliers (points not associated with
a trajectory).

2. Density term. λtrack (in s−1) gives the minimum rate of
inliers per second required to track an object. It defines the
sensitivity of the detector, i.e. a higher value will favour
clusters with high point densities, and a low value will allow
to detect more clusters, especially those that are far from the
laser center.

3. Model selection term. The data are to be explained by a
minimum number of trajectories to penalize over complex-
ity. A high λtraj will favour the connection of trajectory
pieces and discard trajectories associated with few points.

4. Smoothness term. It minimizes pedestrian acceleration. A
high λrigid will smooth the trajectories whereas a low one
will overfit them to the data.

Now the outliers can have extremely large energy if the 2D dis-
tance to the trajectory d = dist ((xi, yi), P (ti)) is large. So the
distance is truncated to be more robust. We define a maximum
energy Em that a point can have, an outer radius rout bigger than
which the point is surely an outlier, and an inter radius rin smaller
than which the point is an inlier. The energy of a point Exi is il-
lustrated as in Figure 1.

E(xi) =


0 if d ≤ rin,
Em( d−rin

rout−rin
)2 else if rin < d ≤ rout,

Em else.
(5)

The energy can be reformed as:

E(P j) =
∑
i

(Exi − Em) + λtrack

∑
j

tmax − tmin

+ λtrajNtraj + λrigid

∑
j

∑
c=1...Nc

||
−−−−→
Pc−1Pc −

−−−−→
PcPc+1||

(6)

This gives a simple interpretation to λout in terms of maximum
distance of a point on a pedestrian to the pedestrian center.

3.3 Optimization

The problem is solved in two steps: (i) detect pedestrian track-
lets by RANSAC (RANdom SAmple Consensus (Fischler and
Bolles, 1981)) in each [tc, tc+1] time window; (ii) connect de-
tected tracklets by a clique graph.

3.3.1 RANSAC tracklet detection The first step is to extract
trajectory segments, i.e. tracklets, of length ∆t, corresponding to
the detection of all the points belonging to a pedestrian through-
out this time window. For such a short time interval, e.g. 0.5 s,
the trajectory can be approximated by a line segment follow-
ing the interpolation of Equation 2. Noting δt the time for the
laser scanner to acquire the 360◦ frame, RANSAC is used to find
tracklets with starting time in [tc, tc + δt] and ending time in
[tc+1, tc+1 + δt]. Two points xa and xb are randomly selected as
seed points of the segment in each of these intervals, then the im-
pact ∆E on the energy of adding this segment P ab is computed
as follows:

∆E(P ab) =
∑
i

(Exi − Em) + λtrack∆t (7)

neglecting the last two terms that determine the tracklect associ-
ation in next step. Two endpoints of the tracklet are extrapolated
by the segment seed points at the starting and ending time of the
interval. The tracklet with lowest ∆E is added to the solution set,
and the corresponding inliers are removed from the point cloud.
This process is iterated until the lowest ∆E gets positive, mean-
ing adding the best tracklet does not reduce the energy any more.

3.3.2 Clique graph tracklet association Let us callP ab
c , P kl

c+1

the tracklets extracted within temporal windows ∆tc and ∆tc+1 .
We will now connect P ab

c tracklet with P kl
c+1. Because endpoints

do not coincide exactly, they are connected by merging the end-
points xb and xk of the two tracklets at their middle position
xbk = (xb +xk)/2. The corresponding energy variation is com-
puted from Equation 6 for each possible connection.

Each one of the m tracklets from P ab
c is possibly connected with

all the n tracklets from P kl
c+1. And each connection will have

its energy change ∆E . Only the connections with ∆E < 0 are
kept. The connections can form a graph of m × n dimensions.
Each plausible connection is a graph node. Since an endpoint
can only move a short distance between two time windows, far-
away endpoints can be pre-filtered out by verifying the distance.
Thus majority of the hypothetical connections will be discarded,
hence the graph is sparse. Two nodes can be linked by an edge if
they are compatible, i.e. they do not contain the same endpoint,
so that the track is not split or merged. Then the tracklet asso-
ciation amounts to select one set of edges such that the overall
selected energy reduction is maximum. It means to find the max-
imum clique with the lowest energy. The optimal clique is solved
using a clique-searching algorithm called Cliquer (Niskanen and
Östergård, 2003, Vallet et al., 2014).
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Table 1: Accuracy assessment of moving object detection at point
level using different methods. Better values are in bold.

Method R% P% F1%

Max-Distance 96.2 20.9 34.3
Nearest-point 60.1 70.1 64.7

Now, the tracklets are connected successively. After a few con-
nections, a semi-global optimization can be implemented to po-
tentially connect tracklets that are not closely adjacent due to oc-
clusions or under detections. Here, the connection candidates can
be of a larger distance. Since in the first step the data are par-
titioned into parts by a small temporal interval, the algorithm is
inherent scalable. A long time-span dataset can be processed sep-
arately in multi-thread and on many machines. The first step will
extract the tracklets from each subset. Since a tracklet is only
composed of two points (start and end) in space-time cube, com-
plete trajectories can be recovered for a long time-span dataset
even if itself does not fit in RAM.

4 EXPERIMENTS AND RESULTS

4.1 Moving object detection

The experimental data are acquired in Paris by a MMS called
Stereopolis (Paparoditis et al., 2012) using a HDL-64E Velodyne
laser scanner, which is composed of 64 vertically distributed sen-
sors. The scanner rotates around the vertical axis with a fre-
quency around 10Hz. The vertical angular resolution is about
0.86◦, and the horizontal one, in our case, is 0.23◦.

To constantly monitor the place of interest, the MMS can be sta-
tioned at certain observation points to scan the surroundings. Fig-
ure 2 shows the static acquisition, in which points on moving
pedestrians (red) are successfully detected using different meth-
ods. The detection results are statistically evaluated against man-
ually labelled ground truth (Table 1). Since the method detects
points on moving objects, the results are evaluated at point level.
The recall (R), precision (P ) and F1 score (2R × P/(R + P ))
are assessed.

The Max-distance method is simple and fast. However, false de-
tections can be observed on penetrable objects, e.g. fences, trees,
because these objects have points behind them along the rays.
These falsely detected points can be considered as noise in the
following process, and can be filtered out as they do not move
over time.

According to the results in Table 1, the Max-Distance method
is able to detected almost all the moving points, whereas it has
very low precision. Because it is very sensitive to penetrable ob-
jects, which are largely presented in the data. The Nearest-point
method does not require the scanning geometry, i.e. the laser
center locations. This means that the data acquisition can be ar-
tificially limited to a reasonable range where the point density
is high enough. Another advantage is that it is robust to pene-
trable objects given a proper distance threshold. Nevertheless,
false detections and under detections are inevitable, so the track-
ing method should be robust to noise and a certain degree of data
incompleteness.

These points on moving objects can be accumulated on an image
which will illustrate the moving pattern and density of objects. It
can be used for visual interpretation of the moving object traffic
flow (Figure 3). The next step is to recover the individual trajec-
tory of each pedestrian.

(a)

(b)

(c)

Figure 2: Moving object detection using laser scanning system,
(a) original data during about 15 s, (b) Max-Distance, and (c)
Nearest-point methods. The former is simple and fast, whereas
the later is robust to penetrable objects, as seen in (c) there are
much less false alarms (red) on fences and trees.

4.2 Pedestrian tracking

Detected moving points are firstly transferred into space-time cube
(x, y, t) as shown in Figure 4. The data are then partitioned
into small temporal windows, such that in each time window the
pedestrian trajectories are assumed to be a straight line segment,
namely tracklet (Figure 5(b)). Then the tracklets are estimated by
associating the points to the assumed tracklet hypotheses. In the
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Figure 3: Moving object point accumulation image. Points are
projected to an image showing the number of points in each pixel.
Coloured from blue to green, to red as the pixel value increases.

end, the tracklets from different temporal windows are connected
so that the overall trajectories are recovered (Figure 5(c)).

Figure 4: Detected moving objects shown in space-time coordi-
nate system where (x, y, t) are in green, blue, red respectively.
Dense point clusters are moving trajectories, and sparse points
are false detections on street fences. Points are coloured from
blue to black over time.

One of the advantages of the SDAT method is that all the points
on moving objects are retained, even those that are partially scanned
due to occlusion or limited scanning FOV. Figure 6 shows an ex-
ample where significant less points are acquired on the moving
objects that are close to the laser scanner (highlighted by a black
rectangle). The trajectories are still recovered because these small
amount of points convey enough evidence for the tracklet search-
ing. However, as for tracking-by-detection method, these points
will hardly be detected as pedestrians because they are only of a
small portion of a whole people.

Figure 7 illustrates the pedestrian flow of the public place during
3 minutes. General trajectory patterns can be easily observed.
Detailed and accurate information, e.g. pedestrian location, mov-
ing direction, can be extracted from the results and used as input
for accurate pedestrian flow simulations.

To evaluate our SDAT method, a benchmark ETH Zurich Poly-
terrasse dataset used by Spinello et al. (2011) and Kaestner et
al. (2012) is adopted. Both work follow the detection-and-then-
tracking convention. The difference is that the former specifi-
cally detects pedestrian using a bottom-up top-down (BUTD) de-
tector, whereas the latter detects all types of moving objects in
general. The tracking results are quantitatively evaluated using
the CLEAR MOT metrics (Bernardin and Stiefelhagen, 2008).

(a)

(b)

(c)

Figure 5: Moving object tracking. (a) original detected mov-
ing points; (b) detected tracklets in partitioned temporal windows
(tracklets are in dark blue, points in different temporal windows
are coloured randomly); (c) connected final trajectories.

Figure 6: Example of trajectory recovery by points that are par-
tially scanned on objects (highlighted in the black rectangle).

Three basic types of errors/values are determined for the esti-
mated tracks against the ground truth:

• FN: The false negative ratio, i.e. the percentage of missing
tracks that are supposed to exist regarding the ground truth.

• FP: The false positive ratio, i.e. the percentage of false alarms
w.r.t the ground truth.

• MM: The number of mismatches in terms of track identity
switches.

Two more indicators are also derived:

•MOTP: Multiple object tracking precision, i.e. the average Eu-
clidean distance between the estimated track instances and the
ground truth.

• MOTA: Multiple object tracking accuracy, i.e. the percentage
of the number of correct track instances w.r.t the ground truth.

The MOTA can be computed by the three basic values:

MOTA = 1− FN + FP +MM∑
trackgroundtruth

(8)
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Figure 7: Pedestrian flow in a public place. Pedestrian trajectories
are in random colors, and the background is in black.

Table 2: Tracking methods comparison using the CLEAR MOT
metrics. MOTA, FN, FP are in %. The best value of each indi-
cator is in bold. BU and BUTD results are from Spinello et al.
(2011), Genera result is from Kaestner et al. (2012).

Detector MOTP MOTA FN FP MM

BU < 0.16m 23.1 18.7 57.1 11
BUTD < 0.16m 89.1 2.6 7.6 20
General < 0.14m 77.7 8.5 10.1 n/a
SDAT < 0.12m 88.4 5.3 5.8 5

The evaluation results are listed in Table 2, together with other re-
sults from comparative methods. Note that the data are truncated
by a limited distance, meaning points that are far away are not
recorded. Thus the max-distance static environment map is in-
complete. Only the Nearest-point method is used in the first step
to extract moving points. Figure 8 illustrates the detected tracks
(cyan) and the ground truth (magenta). The comparison reveals
that the SDAT method has the most accurate track positions and
least mismatches. The FN ratio is slightly higher than the result
of BUTD but is still acceptable. It is mainly caused by severe oc-
clusion, e.g. target occluded longer than multiple temporal win-
dows. The FP ratio is the lowest compared to others. We do not
detect a single object but a group of presences of the object, so
that single object false detections are avoided. Still a duplicated
track is sometimes observed if the object is taking/carrying large
accessories, e.g. a stroller, meaning a non-pedestrian object con-
stantly showing a similar pattern to a pedestrian can be falsely
detected.

5 DISCUSSIONS

Points on moving objects are detected firstly using two meth-
ods. The maximum-distance moving object detection method is
simple and fast. But it is specific to the static data acquisition
mode and is more sensitive to penetrable objects. Most criti-
cally, it requires the point recording behind moving objects. If
there is no light/pulse backscattered to the sensor, the scanning

Figure 8: Comparison between the detected tracks (cyan) and the
ground truth (magenta).

range from the sensor center to the furthest reachable location
can no be determined. Then points on moving objects in mid-
dle of the scanning range will be treated as the furthest reach-
able points and therefore the static background. The nearest-point
method, however, only takes point locations into account hence
does not required further information, e.g. scanning geometry,
furthest range. Points far from the laser scanner are normally
very sparse and no reasonable features can be extracted, so they
can be discarded to reduce the data size if necessary. The static
environment is automatically extracted at this stage. Even though
there still might be mobile objects, the sub-cleaned data can be
used as basis for other purposes, e.g. database updating, road
mapping, surface reconstruction, etc. Thus the moving object de-
tection algorithm can serve as the pre-processing step for such
applications.

Our SDAT algorithm takes all the detected moving points as in-
put regardless false detections. The strengths are: (i) no need
of segmentation for the detected moving points; (ii) no need of
moving point detection refinement or pre-classification (pedes-
trian or not); (iii) partially scanned objects are also retained, to
be robust to moderate occlusions and under detections. However,
the downside is that false alarms can be raised if a non-pedestrian
object’s spatial distribution is constantly similar to a pedestrian’s.
The only constraint is the number of points which lie inside of a
pedestrian-sized 2D circle. Apparently, more comprehensive and
discriminative features should be incorporated into the SDAT al-
gorithm to cope with data with many other types of objects, e.g.
cars, buses, so that the method can be used for more complex en-
vironments. The Tannenstrasse data from Spinello et at. (2011)
will be investigated in the future. One drawback of the method is
it is time inefficient since the RANSAC step can take more than
10 minutes for a 2 seconds time interval. So it is not suitable for
online tracking even the tracklets are associated progressively in
an online fashion.

The tracking method inherently smooths the detected trajectories
since tracklets within the temporal windows are treated as lin-
ear, and they are connected by averaging their endpoints. When
an object is far from the laser scanner, its point density is small
due to the radial scanning nature. Then there will be not enough
points for tracklet detection. So panoramic laser scanners have a
certain effective range, better within 20 m (Kaestner et al., 2012).
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6 CONCLUSION

A pedestrian-oriented simultaneous detection and tracking (SDAT)
algorithm is proposed and is successfully implemented using laser
scanning data. Moving object points are extracted firstly using
two different methods, Max-distance and Nearest-point. The ac-
cumulated point density image/map can be used for qualitative vi-
sual interpretation of the pedestrian flow. Quantitative estimation
is achieved by reconstructing the 3D trajectories of pedestrians.
The SDAT method takes all the moving points and estimates the
trajectories that best explain the points. The tracking, segmen-
tation and classification are solved simultaneously. The method
inherently handles occlusions and under detections to certain de-
grees. Results suggest that panoramic laser scanning data can be
used for efficient and accurate pedestrian flow estimation.

Future work will focus on incorporating more discriminative fea-
tures to further eliminate other objects, or introducing other shape
models to track other types of objects.

REFERENCES

Aeschliman, C., Park, J. and Kak, A. C., 2010. A probabilistic
framework for joint segmentation and tracking. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pp. 1371–1378.

Andriluka, M., Roth, S. and Schiele, B., 2008. People-tracking-
by-detection and people-detection-by-tracking. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1–8.

Arras, K. O., Grzonka, S., Luber, M. and Burgard, W., 2008. Effi-
cient people tracking in laser range data using a multi-hypothesis
leg-tracker with adaptive occlusion probabilities. In: IEEE In-
ternational Conference on Robotics and Automation, pp. 1710–
1715.

Bernardin, K. and Stiefelhagen, R., 2008. Evaluating multiple
object tracking performance: the clear mot metrics. Journal on
Image and Video Processing 2008, pp. 1–10.

Dehghan, A., Assari, S. M. and Shah, M., 2015. Gmmcp tracker:
Globally optimal generalized maximum multi clique problem for
multiple object tracking. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), Vol. 1, p. 2.

Fischler, M. A. and Bolles, R. C., 1981. Random sample consen-
sus: a paradigm for model fitting with applications to image anal-
ysis and automated cartography. Communications of the ACM
24(6), pp. 381–395.

Himmelsbach, M. and Wuensche, H.-J., 2012. Tracking and clas-
sification of arbitrary objects with bottom-up/top-down detection.
In: IEEE Intelligent Vehicles Symposium (IV), pp. 577–582.

HosseinyAlamdary, S. and Yilmaz, A., 2014. Merging trajectory
and point clouds for 3d object tracking. In: Photogrammetric
Computer Vision Symposium Tracking Challenge.

Kaestner, R., Maye, J., Pilat, Y. and Siegwart, R., 2012. Gen-
erative object detection and tracking in 3d range data. In: IEEE
International Conference on Robotics and Automation, pp. 3075–
3081.

Koyasu, H., Miura, J. and Shirai, Y., 2001. Real-time omnidirec-
tional stereo for obstacle detection and tracking in dynamic envi-
ronments. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, Vol. 1, pp. 31–36.

Lindström, M. and Eklundh, J.-O., 2001. Detecting and tracking
moving objects from a mobile platform using a laser range scan-
ner. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, Vol. 3, pp. 1364–1369.

Milan, A., Leal-Taixé, L., Schindler, K. and Reid, I., 2015. Joint
tracking and segmentation of multiple targets. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 5397–
5406.

Milan, A., Roth, S. and Schindler, K., 2014. Continuous energy
minimization for multitarget tracking. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 36(1), pp. 58–72.

Moosmann, F. and Stiller, C., 2011. Velodyne slam. In: IEEE
Intelligent Vehicles Symposium, pp. 393–398.

Moosmann, F. and Stiller, C., 2013. Joint self-localization and
tracking of generic objects in 3d range data. In: IEEE Interna-
tional Conference on Robotics and Automation, pp. 1146–1152.

Niskanen, S. and Östergård, P. R. J., 2003. Cliquer user’s
guide, version 1.0. Technical report, Communications Labora-
tory, Helsinki University of Technology, Espoo, Finland.

Paparoditis, N., Papelard, J., Cannelle, B., Devaux, A., Soheilian,
B., David, N. and Houzay, E., 2012. Stereopolis ii: A multi-
purpose and multi-sensor 3d mobile mapping system for street
visualisation and 3d metrology. Revue Française de Photogram-
métrie et de Télédétection 200, pp. 69–79.

Reid, D. B., 1979. An algorithm for tracking multiple targets.
IEEE Transactions on Automatic Control 24(6), pp. 843–854.

Schindler, K., Ess, A., Leibe, B. and Van Gool, L., 2010. Auto-
matic detection and tracking of pedestrians from a moving stereo
rig. ISPRS Journal of Photogrammetry and Remote Sensing
65(6), pp. 523–537.

Schindler, K., James, U. and Wang, H., 2006. Perspective n-view
multibody structure-and-motion through model selection. In: Eu-
ropean Conference on Computer Vision (ECCV), pp. 606–619.

Schulz, D., Burgard, W., Fox, D. and Cremers, A. B., 2003. Peo-
ple tracking with mobile robots using sample-based joint prob-
abilistic data association filters. The International Journal of
Robotics Research 22(2), pp. 99–116.

Shackleton, J., VanVoorst, B. and Hesch, J., 2010. Tracking peo-
ple with a 360-degree lidar. In: IEEE International Conference
on Advanced Video and Signal Based Surveillance, pp. 420–426.

Spinello, L., Luber, M. and Arras, K. O., 2011. Tracking peo-
ple in 3d using a bottom-up top-down detector. In: IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pp. 1304–1310.

Teichman, A., Levinson, J. and Thrun, S., 2011. Towards 3d
object recognition via classification of arbitrary object tracks.
In: IEEE International Conference on Robotics and Automation
(ICRA), pp. 4034–4041.

Vallet, B., Soheilian, B. and Brédif, M., 2014. Combinatorial
clustering and its application to 3d polygonal traffic sign recon-
struction from multiple images. In: ISPRS Annals of Photogram-
metry, Remote Sensing and Spatial Information Sciences, Vol. 1,
pp. 165–172.

Wu, B. and Nevatia, R., 2007. Detection and tracking of multiple,
partially occluded humans by bayesian combination of edgelet
based part detectors. International Journal of Computer Vision
75(2), pp. 247–266.

Zamir, A. R., Dehghan, A. and Shah, M., 2012. Gmcp-tracker:
Global multi-object tracking using generalized minimum clique
graphs. In: European Conference on Computer Vision (ECCV),
pp. 343–356.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-295-2016

 
302




