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ABSTRACT: 

 

Bundle adjustment based on collinearity is the most widely used optimization method within image based scene reconstruction. It 

incorporates observed image coordinates, exterior and intrinsic camera parameters as well as object space coordinates of the 

observed points. The latter dominate the resulting nonlinear system, in terms of the number of unknowns which need to be estimated. 

In order to reduce the size of the problem regarding memory footprint and computational effort, several approaches have been 

developed to make the process more efficient, e.g. by exploitation of sparsity or hierarchical subdivision. Some recent developments 

express the bundle problem through epipolar geometry and scale consistency constraints which are free of object space coordinates. 

These approaches are usually referred to as structureless bundle adjustment. The number of unknowns in the resulting system is 

drastically reduced. However, most work in this field is focused on optimization towards speed and considers calibrated cameras, 

only. We present our work on structureless bundle adjustment, focusing on precision issues as camera calibration and residual 

weighting. We further investigate accumulation of constraint residuals as an approach to decrease the number of rows of the Jacobian 

matrix.  

 

1. INTRODUCTION 

For many decades bundle adjustment (BA) has been the method 

of choice to accurately estimate the relations between points in 

object space and their projections to images of a scene. Its 

application ranges from classical airborne mapping, over high 

precision close range photogrammetry and SfM (structure from 

motion) to SLAM (simultaneous localization and mapping), just 

to name a few. Often, BA is carried out repeatedly in order to 

avoid drifting behavior. The collinearity equation, as the 

underlying mathematical model, incorporates observed image 

coordinates, exterior and interior camera parameters as well as 

object space coordinates of the observed points. The latter 

heavily dominate the resulting system of equations, regarding 

the number of unknowns to be solved. For large datasets or 

applications which require rapid computations, BA can become 

a severe bottleneck, both in terms of memory footprint and 

computational effort.  

 

Several approaches have been developed to make the process 

more efficient, e.g. by exploitation of sparsity, or subdividing 

the problem. Some recent developments describe the bundle 

problem through epipolar and scale consistency constraints, 

which are free of object space coordinates. These approaches 

are often referred to as structureless bundle adjustment. The 

major focus of research in this field usually lies on 

computational efficiency and scalability. Often, camera 

calibration is either assumed to be given or negligible. 

 

The advantage can be described best by a numerical example. 

Assume an image set of ten images observing 10,000 object 

points. Given calibrated camera(s) this leads to 60 parameters of 

exterior camera orientation and 30,000 object coordinates. A 

structureless approach reduces the amount of unknowns to 

0.2%, compared to classical BA. Obviously, this is particularly 

effective for use with images of higher resolution, which 

produce a high number of object points. However, since the 

constraints describe relations between observations, the number 

of equations easily exceeds that of classical bundle adjustment, 

especially in highly redundant scenarios where the same object 

points are observed very often. 

 

In this paper we investigate an approach to structureless bundle 

adjustment which is closely related to GEA - global epipolar 

adjustment (Rodriguez et al., 2011a, 2011b), and partially to 

iLBA - incremental light bundle adjustment (Indelman, 2012, 

Indelman et al., 2012) and relative bundle adjustment (Steffen et 

al., 2010). We incorporate distortion parameters to the 

underlying model in order to achieve a precision suitable for 

photogrammetric applications when camera calibration is not 

given. Furthermore, we suggest symmetric errors to reduce the 

size of the Jacobian matrix. We additionally present preliminary 

results for a variant, which accumulates constraints to a single 

equation per projection and therefore results in fewer rows in 

the Jacobian as in classical bundle adjustment. In the second 

chapter, we give an overview of existing approaches. The third 

chapter describes the objective functions used in our approach 

followed by an outline of our adjustment procedure in the fourth 

chapter. We present and discuss experimental results in chapter 

five and conclude our work in chapter six. 

 

2. RELATED WORK 

A good overview of classical bundle adjustment and 

possibilities to achieve high efficiency is given in (Triggs et al., 

2000). It also describes the Schur complement trick, which in 

some way relates to the context of this paper. Here the Jacobian 

is factorized and recombined to a reduced bundle system, in 

order to solve for the orientation parameters, only. Nonetheless, 

the full Jacobian, including object coordinates, needs to be 

established. Also, between subsequent iterations, the structure 

needs to be triangulated in order to proceed. Hence, this 

approach cannot be considered structureless. In fact, actual 

structureless approaches are usually based on the use of epipolar 
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constraints to express the relations between feature 

correspondences and camera orientations without introduction 

of scene points. Here, the relative orientation between two 

cameras can easily be expressed by chaining their absolute 

orientations.  

 

In (Rodriguez et al., 2011a, 2011b) only two-view epipolar 

distances are used. By formulation using a measurement matrix 

and factorizing it as suggested in (Hartley, 1998), the problem is 

reduced to a 9x9 system per camera pair, no matter how many 

correspondences exist between the two cameras. This results in 

a remarkable speed up in the estimation of camera orientations. 

However, collinear projection centers form a degenerate case 

for the two-view epipolar constraint (coplanarity constraint), 

since distances between cameras become ambiguous. To 

overcome this problem, additional constraints for scale 

consistency can be incorporated. As an example, (Steffen et al., 

2010) combine epipolar constraints with trifocal constraints. 

The system is solved using Gauß-Helmert model, since dealing 

with constraint equations.  

 

(Indelman, 2012a, b) describes three-view scenarios by addition 

of base line vectors and scaled observation vectors. The scales 

are eliminated by reformulation of rank conditions of the 

resulting equation system. This results in three constraint 

equations, of which two happen to be standard epipolar 

constraints. The third adds scale consistency to the constraints 

system. The model is successfully applied within a SLAM 

scenario as a local optimization, i.e. only a selected subset of 

cameras is refined at once. As in (Rodriguez et al., 2011a, 

2011b), in (Indelman, 2012b) the problem is solved without any 

additional unknowns. Both show that, regarding reprojection 

errors, the results achieved are comparable to those of classical 

bundle adjustment. 

 

At present, we do not incorporate scale consistency. However, 

in most cases small deviations from a linear camera distribution 

are sufficient to solve camera orientation. In contrast to 

(Rodriguez et al., 2011a, 2011b), we incorporate self-calibration 

with Brown distortion parameters (Brown, 1966). Since the 

parameters would be part of the reduced measurement matrix, a 

repeated update of it would be necessary - which again reduces 

the advantage of using it. However, investigation towards its 

application in combination with camera calibration may be 

subject to future work. In the following chapter, we suggest 

accumulation of epipolar distances in order to achieve a smaller 

sized Jacobian matrix. 

 

3. FUNCTIONAL MODEL 

3.1 Epipolar Distance 

With 𝑝 being an observed projection of an object point, we 

define 𝑝̅ = 𝑝 + ∆𝑝 as an observation corrected for distortions. 

The algebraic epipolar distance for a point observed in two 

images 𝑖 and 𝑗 is then given as: 

 

 𝑑𝑗,𝑖 = 𝑝̅𝑖
𝑡𝑙𝑗,𝑖 (1) 

 

where 𝑙𝑗,𝑖 = 𝐾𝑖
−𝑡𝐸𝑗,𝑖𝐾𝑗

−1𝑝̅𝑗 is the epipolar line. The essential 

matrix 𝐸𝑗,𝑖  encapsulates the relative orientation between two 

images. The expression using absolute orientations yields: 

 

 𝑙𝑗,𝑖 = 𝐾𝑖
−𝑡𝑅𝑖

𝑡[𝑇𝑗 − 𝑇𝑖]×𝑅𝑗𝐾𝑗
−1𝑝̅𝑗 (2) 

 

The model contains the camera constant (or focal length) and 

the principal point as part of the camera matrix 𝐾. We model ∆𝑝 

using the Brown distortion model (see 4.4).  

 

The epipolar distance has to be normalized in order to make it 

independent from the length of the baselines. Otherwise, 

minimizing the error could lead to camera stations collapsing 

into a single point. One way is to normalize by the length of the 

baseline, resulting in an algebraic error metric. Instead, we 

choose to normalize by the first two elements of the epipolar 

line (hessian representation) in order to result in residuals in 

pixel metric, instead. We redefine: 

 

 
𝑑𝑗,𝑖 =

𝑝𝑖
𝑡𝑙𝑗,𝑖

√𝑙𝑗,𝑖(1)
2 + 𝑙𝑗,𝑖(2)

2
= 𝑝̅𝑖

𝑡𝑙𝑗̅,𝑖 (3) 

 

This allows a more intuitive handling of outliers in later steps - 

at the cost of slightly higher computational effort, of course. In 

contrast to the algebraic error, this variant also produces 

different results for the two involved images, i.e. 𝑑𝑗,𝑖 ≠ 𝑑𝑖,𝑗 . 

This consideration is taken into account in the next section. 

 

3.2 Accumulation of Epipolar Distances 

In classical bundle adjustment, the number 𝑚 of equations for a 

single point within the Jacobian matrix grows linearly with the 

number 𝑛 of projections of this point (4). Usually two equations 

are used for each projection, since horizontal and vertical 

coordinate residuals are regarded separately.  

 

 𝑚𝐵𝐴 = 2𝑛 (4) 

 

Considering the fact, that an epipolar distance can be computed 

for both images of a pair, 𝑚 grows quadratically when each 

constraint is used separately (5). For 𝑛 > 3 this results in a 

larger number of equations. For highly redundant datasets, the 

difference can be severe and, regarding memory consumption, 

drastically reduce the advantage of avoiding structure 

parameters. 

 

 𝑚𝑒 = 𝑛(𝑛 − 1) (5) 

 

A way to reduce 𝑚 by a factor of two could be to neglect 

forward-backward epipolar distance computation. The same 

reduction can be achieved, when a symmetric epipolar distance 

is used (6). Here, the number of equations exceeds that of BA 

for 𝑛 > 5. We use the RMS to model the symmetric error (7). 

 

 𝑚𝑒𝑠𝑦𝑚 = 𝑛(𝑛 − 1)/2 (6) 

 

 𝑑𝑗,𝑖
𝑠𝑦𝑚

= √(𝑑𝑗,𝑖
2 + 𝑑𝑖,𝑗

2 ) 2⁄  (7) 

 

We investigate a second variant of accumulation by modelling a 

per-projection-error through the fusion of all epipolar distances 

to an observed image point. I.e. a point observed in n images 

produces n-1 epipolar lines for every image observing it. We 

define the joint error as the RMS of the corresponding epipolar 

distances: 

 

 𝑑𝑖
𝑎𝑐𝑐 = √

1

𝑛 − 1
∑𝑑𝑗𝑘,𝑖

2

𝑛−1

𝑘=1

 (8) 
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This function yields a single equation per projection (9) and 

therefore 𝑚 is always lower than in classical bundle adjustment. 

Only for twofold observations the symmetric error produces 

fewer equations, since two errors are fused to a single value. 

Figure 1 illustrates these considerations. 

 

 𝑚𝑒𝑎𝑐𝑐 = 𝑛 (9) 

 

 
Figure 1. Resulting number of equations 𝑚 against the number 

of projections 𝑛 of a point for different cost functions. For 

classical bundle adjustment (blue) m grows linearly, whereas it 

grows quadratically for standard epipolar formulations (red: 

single epipolar distance, yellow: symmetric epipolar distance). 

In contrast, our mean epipolar distance (purple) grows linearly 

and always results in half the number of equations, compared to 

standard bundle adjustment. 

 

4. ADJUSTMENT SCHEME 

The geodesic approach to solve our constraints system would be 

to apply the Gauß-Helmert model. However, this approach 

would introduce a large number of additional unknowns and 

therefore corrupt the aim of creating a small system. Instead, as 

(Rodriguez et al., 2011a, 2011b) and (Indelman, 2012b), we 

choose to minimize our objective functions without additional 

unknowns and solve the system as a standard nonlinear least 

squares problem. In the following, we describe techniques used 

within the adjustment to achieve robustness and numerical 

stability.  

 

4.1 Residual Weighting using an adaptive M-Estimator 

To robustify against outlier influences, M-estimators (Huber, 

1964) can be applied for residual weighting. The influence of a 

residual 𝑑 (derivative of the sum of squares with respect to 𝑑) 

for the unweighted case is 2‖𝑑‖. M-estimators apply a 

weighting function 𝑤(𝑑) to the residuals which modifies the 

influence to follow a specified design. We choose the Hampel 

estimator (Hampel, 1986) which is a redescending variant (10). 

 

 𝑤(𝑑) =

{
 
 

 
 
1,                            0 < ‖𝑑‖ ≤ 𝑎
𝑎

‖𝑑‖
,                       𝑎 < ‖𝑑‖ ≤ 𝑏

𝑎

‖𝑑‖

𝑐 − ‖𝑑‖

𝑐 − 𝑏
,        𝑏 < ‖𝑑‖ ≤ 𝑐

0,                                     ‖𝑑‖ > 𝑐

 (10) 

 

It separates the space of absolute residuals into four sections, 

using three thresholds 𝑎, 𝑏, 𝑐. Residuals below 𝑎 remain 

unweighted. The influence of residuals is fixed at 2𝑎 for values 

between 𝑎 and 𝑏 and linearly scaled down to zero for values 

between 𝑏 and 𝑐. Finally, the influence is eliminated for values 

larger 𝑐. We reset the thresholds in every iteration as follows: 𝑎 

is set to the current standard deviation 𝜎 of the unweighted 

residuals, 𝑏 is set to 3𝜎 and 𝑐 to max (‖𝑑‖). Effectively we only 

use the first three sections of the estimator. In our experience, 

full suppression of outlier candidates may be corruptive in first 

iterations. However, the redescending characteristic of the third 

section usually proves helpful. 

 

Furthermore, we put a permanent lower boundary of one pixel 

to 𝑎 and enforce 𝑎 ≤ 𝑏 ≤ 𝑐. This may result in convergence and 

fusion of the boundaries. In cases of fusion of b and c, the 

resulting estimator corresponds to the Huber estimator. If all 

thresholds reach equality, the result corresponds to a completely 

unweighted case. Figure 2 illustrates the adaptive weighting 

scheme. The weighting function is applied to the objective 

function as a diagonal weighting matrix 𝑊. 

 

 
 

 
Figure 2. Illustration of residual weighting using Hampel 

estimator. Top: first iteration, bottom: after first outlier removal. 

The histogram of residuals (black) is overlaid with the 

weighting function (solid green) and corresponding influence 

function (solid red). The vertical dashed lines indicate the 

barriers 𝑎, 𝑏 and 𝑐 (from left to right). Histogram and influence 

function are scaled for clarification. 

 

4.2 Numerical Stabilization through Column Equilibration 

Variables whose derivatives differ widely in magnitude may 

cause numerical instability during matrix inversions. In our 

case, introduction of the distortion parameters makes it 

necessary to take corresponding counter measures. For this 

purpose, we apply column equilibration (Demmel, 1997) to 

precondition the Jacobian. It may be interpreted as a 

normalization of variable space and is applied to the Jacobian as 

a weighting of unknowns. We compute a normalization factor 

for every unknown and apply it as a diagonal matrix 𝐸. The 

least squares equation is modified to: 

 

 𝐽𝐸𝐸−1𝛿𝑥 = −𝑑 (11) 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-3-2016

 
5



 

In practice, the Jacobian is equilibrated and the adjustment is 

carried out as usual, which corresponds to solving for 𝐸−1𝛿𝑥. 

Accordingly, the correct solution is found by left hand 

multiplication with E. For better readability in the following 

section, we substitute 𝐽𝐸 = 𝐽. The solution update 𝛿𝑥 with 

residual weightings finally reads: 

 

 𝛿𝑥 = 𝐸(𝐽′𝑊𝐽)−1𝐽′𝑊(−𝑑) (12) 

 

The reciprocal RMS of each column’s non-zero entries is used 

as factor for the corresponding unknowns. In order to reduce the 

influence of outliers, we do not compute the factors directly 

from the Jacobian, but from its weighted pendant, i.e. 𝑊
1
2𝐽. We 

have tested other variants and visually compared the resulting 

surface reconstructions regarding completeness and noise level. 

While differences were negligible in most cases, this variant 

performed notably best on some datasets. 

 

4.3 Levenberg-Marquardt with Step Size Control 

To achieve robustness against weak starting values we choose 

to use the Levenberg-Marquardt (LM) approach. Here, we apply 

a simple step size control to avoid unnecessary recomputation 

of the Jacobian 𝐽. In basic LM, every solution 𝛿𝑥 of a Gauß-

Newton (GN) step (outer loop) is checked for whether it 

actually improves the residuals. If this is the case, the starting 

solution 𝑥0 is updated and the next GN step is triggered. If not 

the case, the solution is damped and shifted towards a steepest 

gradient solution by emphasizing the diagonal of the normal 

matrix 𝑁 = 𝐽′𝑊𝐽 by increasing a damping factor λ.  

 

 𝛿𝑥 = 𝐸(𝑁 +λ𝐼)−1𝐽′𝑊(−𝑑)  (13) 

 

 
 

Figure 3. Plot of convergence behavior. Residuals are plotted 

against inner iterations (blue). The dashed vertical lines and 

orange curve indicate nine outer iterations. After the fourth 

outer iteration the full camera model is applied, causing a 

stronger improvement. Outlier removal is triggered after the 

sixth outer iteration. 

 

This is repeated (damping inner loop) until an improvement is 

achieved and a new GN step can be triggered. In both cases, on 

a successful test, the damping factor is decreased. The Jacobian 

is only recomputed within the outer loop. We modify the 

approach by an additional accelerating variant of the inner loop. 

I.e. on success we decrease the damping factor, update our 

solution 𝑥0 and recompute the residuals as well as the weights, 

but keep the current Jacobian. We iterate with the fixed 

Jacobian until a failure occurs. In some cases the inner loop 

shows convergent behavior, causing ineffective iterations. As a 

counter measure we terminate the inner loop when its 

convergence falls below 1%. After termination, the next GN 

step is started and a full update is computed. This results in an 

adaptive acceleration of convergence in steeper regions of the 

solution landscape. An example is given in Figure 3, where in 

total 26 inner iterations, whose main workload lies in the 

recomputation of 𝑑, are needed. The much more expensive 

recomputation of the Jacobian is carried out only nine times 

within the outer GN loop.  

 

4.4 Successive Camera Calibration and Outlier Removal 

As additional intrinsic camera parameters to camera constant 

(focal length) and principal point, we choose radial (𝐾1, 𝐾2, 𝐾3) 

and tangential (𝑃1, 𝑃2) distortions as defined in the Brown 

model (Brown, 1966). With 𝑝𝑥,𝑦 being image point coordinates 

w.r.t. the principal point and 𝑟 being the corresponding distance, 

∆𝑝 is composed as the sum of:  

 

 Δ𝑝𝑟𝑎𝑑 = (
𝑝𝑥
𝑝𝑦
) (𝑟2𝐾1 + 𝑟

4𝐾2 + 𝑟
6𝐾3) (14) 

 

 Δ𝑝𝑡𝑎𝑛 = (
𝑃1(𝑟

2 + 2𝑝̃𝑥
2) + 2𝑃2𝑝̃𝑥𝑝̃𝑦

𝑃2(𝑟
2 + 2𝑝𝑦

2) + 2𝑃1𝑝𝑥𝑝𝑦
) (15) 

 

Aspect and skew could be added either within ∆𝑝 (Brown 

parameters 𝐵1, 𝐵2) or the camera matrix K, but we neglect these 

parameters, since usually they are insignificant. Note that the 

distortions are applied to the observations in order to fit to the 

idealized model, whereas usually in BA the idealized projection 

of a point is corrected to fit to the observation. If needed, e.g. to 

compute undistorted images, the parameters can be inverted in a 

separate estimation.  

 

Due to high correlations, weak camera constellations can cause 

drifting or erratic convergence behavior for the intrinsic camera 

parameters, especially in combination with weak starting 

values. In order to reduce this effect, we choose to start the 

adjustment with a reduced camera model, including only the 

camera constant and 𝐾1. We iterate until the improvement of a 

GN step falls below 20%, then add the principal point and, in 

the last step, add the remaining parameters 𝐾2, 𝐾3, 𝑃1 and 𝑃2. 

When this state is reached, we trigger outlier removal with a 3𝜎 

threshold when improvement falls below 5%. The process is 

stopped if improvement stays below this level for three 

subsequent outlier removals. 

 

4.5 Datum Definition 

The system has a rank deficiency of order seven, which 

corresponds to an undefined seven parameter rigid 

transformation (three rotation parameters, three translations and 

scale). A common way to overcome this is to fix the first 

cameras’ position and rotation for the first six degrees of 

freedom. Often, one position coordinate of the second camera is 

fixed for overall scale. The corresponding unknowns are 

removed from the system (hard constraint). Alternatively, the 

distance between two cameras can be fixed. In cases of weak 

initial values for the first camera, this may lead to slow 

convergence behavior, especially during first iterations. In 

contrast, we define the datum by fixing mean position, mean 

rotation (sum of rotation matrices) and mean distances between 

cameras as additional constraint equations (weak constraints). 

This allows all cameras to move freely as in a geodesic free 

network adjustment and, if necessary, results in strong 
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corrections to the first camera, whereas other cameras may rest 

in place. An example can be found in Figure 4. Here seven 

images are linearly distributed, with a large base between first 

and second image. If available, datum information from GPS, 

IMU, control points, scale bars etc. may be incorporated. 

However, our current implementation does not include these 

measures. 

 

  
Figure 4. Example for the effect of our datum definition. All 

cameras are allowed to move freely during adjustment. The 

lines indicate changes in the estimated camera positions over 

the iterations. Camera stations are plotted at the final stations 

with their coordinate axes (x, y and z axis as red, green and 

blue).  

 

5. EXPERIMENTAL RESULTS 

The examples shown in this section were processed with our 

non-sequential and structureless approach to SfM, which is 

being developed at present and outlined briefly in the following.  

 

We extract SIFT features (Lowe, 2004) for every image and 

compute coarse relative orientations using a RANSAC 

procedure with a non-triangulating chirality test. The relative 

orientations are refined using the scheme described in the 

previous chapter. However, at this stage of our workflow we 

neither solve for intrinsic camera parameters, nor explicitly 

remove potential outliers. Weak image pairs are filtered by 

residuals. We apply further filtering by rotational inconsistency 

between triplets. The remaining triplets are then oriented by the 

estimation of camera poses based on the pairwise orientations. 

The result is refined, again using our adjustment approach. At 

this stage, we solve for the camera constant and 𝐾1 to reduce 

drifting caused by incorrect values for these parameters. Very 

similar to the approach described in (Moulon et al., 2013), the 

triplets are used for global camera orientation. In the next step, 

we augment the approach by creating larger subsets based on 

triplet connectivity and refine these by adjustment. Again, this 

measure is taken to reduce drifts. Also, at this stage the 

adjustment is carried out as described in chapter 4, including the 

full camera model and outlier removal. The subsets are fused 

globally in the same fashion as the triplets and the result 

obtained by this procedure is used to initialize a final 

adjustment. During the whole procedure no triangulated points 

are used.  

 

We evaluate the approach on the Datasets HerzJesuP8, 

EntryP10, FountainP11 and HerzJesuP25 of the benchmark 

datasets presented in (Strecha et al., 2008). The numbers in the 

names indicate the number of images. We omit the ‘Castle’ 

datasets, as our current SfM implementation produces instable 

results here. For the used datasets, ground truth is given for 

camera orientation as well as the camera matrix K. The given 

images are corrected for radial (K1 and K2), but not for 

tangential distortion. Additionally, we have measured visible 

cross targets and triangulated these points using the ground truth 

information. We added three manually measured natural points 

to the datasets Entryp10 and FountainP11, since only three 

targets are visible. 

 

We run our process with both suggested cost functions, but 

otherwise identical settings. We omit the given ground truth and 

initialize the focal length with the length of the image diagonal, 

which deviates roughly by 10% from the given value. We use 

the image center as initial value for principal point and initialize 

the distortion parameters with zero. Furthermore, we assume 

that all images of a dataset share the same camera model. As a 

reference solution, we process the datasets using PhotoScan 

(Version 1.1.6) with identical distortion parameters activated. 

The measured target points were not used within our 

adjustment, as this is at present not implemented. Accordingly, 

they remained unused for the PhotoScan orientations.  

 

As the used camera model differs from the model used for the 

ground truth and to account for correlations between the 

estimated parameters and (subsequent) structure estimation, we 

evaluate in two different ways. The results given in Table 1 are 

obtained by registering the estimated camera stations to the 

ground truth positions. The transformation is estimated as a 

seven parameter rigid transform using unweighted least squares 

adjustment. We evaluate the deviations in the camera stations 

after transformation and compute the rotational error as 

geodesic distance in SO(3) (Hartley et al., 2013). 

 
  Position RMS [mm] Rotation [°] 
  dX dY dZ Total Mean RMS 

HerzJesuP8 

S 2.6 3.6 2.8 5.3 0.216 0.039 

A 2.9 3.5 2.6 5.3 0.187 0.034 

P 2.6 2.8 2.8 4.7 0.254 0.014 

EntryP10 

S 2.4 5.6 3.7 7.2 0.010 0.018 

A 30.1 7.6 4.8 31.4 0.766 0.099 

P 10.5 3.1 5.1 12.1 0.097 0.016 

FountainP11 

S 2.4 1.7 1.8 3.4 0.225 0.012 

A 2.2 2.2 1.6 3.5 0.307 0.011 

P 1.8 1.3 2.0 3.0 0.076 0.017 

HerzJesuP25 

S 7.1 3.4 4.0 8.9 0.140 0.044 

A 3.6 3.5 4.1 6.5 0.146 0.021 

P 3.2 3.6 4.3 6.5 0.179 0.024 

Table 1. Deviation between exterior orientation ground truth 

and estimated results after transformation using the camera 

stations (S: symmetric, A: accumulated, P: PhotoScan). 

 

For the results in Table 2, we register using the triangulated 

targets (and natural points) and evaluate the differences in these 

points. Here, we additionally evaluate the dataset IF15D800E, 

which consists of 36 images of a storage/garage building in a 

stone quarry, captured with a Nikon D800E and a 24mm lens. 

No ground truth is given for the camera orientation and 

calibration. However, reference values, derived from 

laserscanning, are available for cross targets which are visible in 

the images. For our computations, we initialize the focal length 

of the dataset IF15D800E by the given approximate metric 

value and known pixel size.  

 

The results indicate that in general all three variants perform 

comparably. The result obtained for EntryP10, processed with 

accumulated epipolar distances, clearly stands out as 

unsatisfactory. The reason is at present unclear and might as 

well be found within the applied SfM procedure, rather than the 

adjustment used therein. In general, though otherwise not 

clearly represented by the numerical results of this evaluation, 
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there is a tendency for the accumulated cost function to generate 

stronger noise in subsequent surface reconstruction using Dense 

Image Matching. This circumstance is also indicated by the 

reprojection errors of the SIFT features, as can be seen in Table 

3. Generally, the effect is stronger for datasets of lower image 

quality. We assume the results could be improved by 

incorporating the residual weighting into the functional model 

as a ‘root of weighted mean of squares’. A visual comparison of 

some results is given in Figure 6. For comparability, all surfaces 

are computed using SURE (Rothermel et al., 2012), by 

importing the corresponding camera orientations and 

undistorted images. The used software settings are identical. 

 
  Repro. Position RMS [mm] 

  error [pix] dX dY dZ Total 

HerzJesuP8 

GSD: 5.0mm 
Points: 9 

S 0.22 2.5 4.0 2.0 5.2 

A 0.19 1.9 4.0 1.6 4.7 

P 0.10 5.7 1.8 1.3 6.2 

EntryP10 

GSD: 6.9mm 

Points: 3+3 

S 0.29 3.5 1.0 3.9 5.3 

A 0.57 6.9 1.5 7.8 10.5 

P 0.22 3.5 1.5 4.6 6.0 

FountainP11 

GSD: 2.8mm 
Points: 3+3 

S 0.36 1.4 1.1 1.7 2.4 

A 0.39 1.3 1.1 1.8 2.5 

P 0.31 1.3 0.8 2.0 2.5 

HerzJesuP25 

GSD: 4.6 

Points: 11 

S 0.29 1.9 3.0 2.3 4.2 

A 0.48 0.6 3.2 1.8 3.8 

P 0.13 1.3 2.4 2.7 3.8 

IF15D800E 

GSD: 3.8mm 
Points: 9 

S 0.42 1.9 2.2 1.8 3.4 

A 0.56 1.6 3.2 1.9 4.0 

P 0.40 3.0 2.0 1.7 4.0 

Table 2. RMS of reprojection errors for the targets and 

deviations between the corresponding 3D reference points and 

estimated points. The first column lists the number of targets 

and the mean ground sampling distance (GSD) at the targets. 

For the datasets EntryP10 and FountainP11, three manually 

measured natural points have been added to the three 

automatically measured targets (S: symmetric, A: accumulated, 

P: PhotoScan).  

 

 Points Eequations Iter. 
Epi. 
dist. 

[pix] 

Repro. 
error 

[pix] 

HerzJesuP8 
S 10920 37603 7 0.40 0.29 

A 10920 31343 8 0.45 0.31 

EntryP10 
S 10846 53988 10 0.44 0.33 

A 10846 34783 11 0.52 0.46 

FountainP11 
S 21030 106078 10 0.29 0.26 

A 21030 69017 9 0.33 0.30 

HerzJesuP25 
S 27531 230690 7 0.35 0.33 

A 28371 102360 7 0.46 0.48 

IF15D800E 
S 30009 188120 7 0.27 0.21 

A 29565 92653 7 0.30 0.22 

Table 3. Comparison of the two suggested cost functions (S: 

symmetric, A: accumulated). From left to right: number of 

points, resulting number of equations (both during first 

iteration), Gauß-Newton iterations, final RMS of epipolar 

distances and corresponding reprojection error for the feature 

points. 

 

Table 3 also lists the number of rows of the Jacobian for the 

suggested cost functions and the Gauß-Newton iterations 

required for the final adjustment. As expected, the benefit of the 

accumulated variant differs in terms of size reduction. The 

reduction is small for datasets with low redundancy, since 

twofold observations dominate in these cases. However, for 

datasets with high redundancy, e.g. HerzJesuP25 and 

IF15D800E, the reduction is significant. Our actual intention for 

future development is to use both functional models within the 

adjustment to achieve further reduction. Related to convergence 

speed, there is no notable difference between the two costs. The 

listed reprojection errors are obtained by reprojection of the 

SIFT features after nonlinear least squares triangulation. To 

simulate an outlier removal of a classical bundle adjustment, we 

remove the worst 1% before computing the overall error.  

 

Regarding camera calibration, we do not encounter unexpected 

behavior. As usual, images with strong distortions or weak 

initial camera constant can lead to strong drifts, especially in 

absence of loop closure. Of course, the camera could be pre-

calibrated and reference points could be used. Figure 5 

illustrates exemplary distortion results. As expected, the 

estimated radial distortions reach maximal magnitudes of 

around one pixel for the Datasets of (Strecha et al., 2008). 

 

  

  

Figure 5. Magnitude of distortion results in pixel units. Left: 

radial distortion; Right: tangential distortion; Top: HerzJesuP8. 

As expected, the remaining radial distortion is low for this 

dataset, since the input images have been corrected for the 

parameters K1 and K2. Bottom: Exemplary result for a dataset 

with original images. 

 

In our experience, the additional computational workload of a 

scale consistency constraint may not be necessary for a wide 

range of image acquisition scenarios. However, if 

implementations aim at a general applicability, it should be 

taken into account. Also, our current first implementations show 

improved stability and convergence behavior for the triplet 

phase of our SfM procedure. 

 

6. SUMMARY & OUTLOOK 

We have shown that camera calibration with distortion 

parameters can be incorporated to structureless bundle 

adjustment and results with precision in object space 

comparable to standard bundle adjustment can be obtained. To 

our knowledge this has not been verified in practice before. We 

have developed a robustified procedure which incorporates 

Levenberg-Marquardt with step size control and usually 

converges in a reasonable number of Gauß-Newton steps. We 

suggested two variants of cost functions which reduce the 

number of equations and demonstrated experimentally that both 

can be applied successfully - though with different quality at 

present. Since integration of scale consistency constraints is 

needed for general applicability, we will also continue 

developments in this direction, while following the concept of 

constraint accumulation. 
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Figure 6. Meshed surfaces with normal shading. Datasets from left to right: HerzJesuP25, FountainP11 and IF15D800E. In top down 

order: symmetric cost function, accumulated cost function, PhotoScan. The corresponding orientation data and undistorted images 

have been used to reconstruct the surfaces with SURE, using identical settings. While differences are marginal in general, the 

accumulated cost function produces higher noise in some cases, as can be seen at the example of HerzJesuP25. 
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