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ABSTRACT: 

 

Anomaly regions in satellite images can reflect unexpected changes of land cover caused by flood, fire, landslide, etc. Detecting 

anomaly regions in satellite image time series is important for studying the dynamic processes of land cover changes as well as for 

disaster monitoring. Although several methods have been developed to detect land cover changes using satellite image time series, 

they are generally designed for detecting inter-annual or abrupt land cover changes, but are not focusing on detecting spatial-temporal 

changes in continuous images. In order to identify spatial-temporal dynamic processes of unexpected changes of land cover, this study 

proposes a method for detecting anomaly regions in each image of satellite image time series based on seasonal autocorrelation analysis. 

The method was validated with a case study to detect spatial-temporal processes of a severe flooding using Terra/MODIS image time 

series. Experiments demonstrated the advantages of the method that (1) it can effectively detect anomaly regions in each of satellite 

image time series, showing spatial-temporal varying process of anomaly regions, (2) it is flexible to meet some requirement (e.g., z-

value or significance level) of detection accuracies with overall accuracy being up to 89% and precision above than 90%, and (3) it 

does not need time series smoothing and can detect anomaly regions in noisy satellite images with a high reliability. 

 

 

1. INTRODUCTION 

Anomaly is a pattern in the data that does not conform to the 

expected behaviour, also referred to as outliers, exceptions, 

peculiarities, surprises, etc. (Chandola et al., 2009). Anomalies in 

satellite images can translate to significant land cover changes or 

disturbances, which may be caused by nature (e.g., fire, flood, 

severe drought, and windstorm), biogenic factors (e.g., plant 

diseases, insect pests) or anthropogenic activities (e.g., 

deforestation, urbanization) (Hecheltjen et al., 2014; Verbesselt 

et al., 2012). 

 

Anomaly regions in satellite images can reveal land cover 

changes or disturbances occurring worldwide at unknown time 

and location. Satellite image time series possess significant 

potential for monitoring land cover changes at regional to global 

scales, due to the synoptic and frequent satellite observation 

(Hansen and Loveland, 2012). Satellite image time series from 

the AVHRR (Advanced Very High Resolution Radiometer), 

MODIS (MODerate-resolution Imaging Spectroradiometer) and 

the coming Sentinel Constellation, for instance, provide 

consistent observation of land cover over large areas and at high 

frequencies. Satellite image time series continuously records the 

varying status of land cover, including the seasonal patterns 

driven by annual temperature and rainfall interactions, as well as 

the anomalies caused by anthropogenic or natural factors 

(Verbesselt et al., 2012). 

 

Detection of anomaly regions in satellite image time series is 

important for researchers to study the dynamic processes of land 

cover changes, as well as for resource managers to monitor land 

cover dynamics over large areas, especially where access is 
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difficult or hazardous (Kennedy et al., 2009; Pickell et al., 2014). 

Long term satellite image time series has been used to detect 

anomaly region for identifying land cover changes or 

disturbances (Lu et al., 2004). A challenge in anomaly region 

detection in satellite image time series is to understand what 

constitutes anomalies amidst background seasonal variation 

(Hutchinson et al., 2015; Verbesselt et al., 2012). 

 

For detecting anomaly regions in satellite image time series, 

many studies have developed time series analysis methods. The 

methods can be divided into two groups. The first group includes 

the methods that fit the whole time series with some model, such 

as piece-wised harmonic model (Verbesselt et al., 2010a; 

Verbesselt et al., 2010b), nonlinear harmonic model (Carrao et 

al., 2010), triply modulated cosine function (Anees and Aryal, 

2014b), and temporal autocorrelation function (Kleynhans et al., 

2012). The anomaly regions in satellite image time series are 

detected by comparing the parameters of the fitted model for 

different parts of the time series data. The second group consists 

of the methods that monitor anomalies in satellite time series data 

using some forecasting model, such as Extended Kalman Filter 

(Kleynhans et al., 2011), Gaussian Process (Chandola and 

Vatsavai, 2011), harmonic model (Verbesselt et al., 2012; Zhou 

et al., 2014; Zhu et al., 2012), nonlinear least square or finite 

impulse response filter (Anees and Aryal, 2014a), and Martingale 

theory and martingale central limit theorem (Anees and Aryal, 

2014b), etc. In general, these monitoring methods consist of two 

main steps, i.e., model-fitting of historical data and anomaly 

detection by comparing the new observations to the predictions 

from the fitted model. 
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However, although these methods can, to some extent, get 

promising results of anomaly region detection in satellite image 

time series, they are generally designed for detecting inter-annual 

land cover changes or occurrence of abrupt changes in the time 

series. In order to more comprehensively identify and 

characterize the dynamic processes of spatial-temporal changes 

of land cover (e.g., intra-annual changes), it is practical to 

develop a method for detecting anomaly regions in each image of 

satellite image time series. 

 

To this end, this paper proposes a method that is based on 

seasonal autocorrelation analysis of time series data, for detecting 

anomaly regions in each image of satellite image time series.  The 

method is composed of two steps: (1) anomaly enhancement by 

seasonal autocorrelation analysis based on a Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model 

(Cryer and Chan, 2008), and (2) anomaly detection using a 

criterion based on statistical analysis of anomaly-enhanced time 

series data. The method is tested with a case study for detecting 

anomaly regions caused by severe flooding (i.e., detecting 

anomalous flood areas) occurred at the border of southeast Russia 

and northeast China in 2013. The test data is Normalized 

Differencing Vegetation Index (NDVI) image time series from 

the satellite Terra/MODIS and the reference data is multi-spectral 

ETM+ and OLI images from the satellite Landsat. Experiment 

results demonstrate the effectiveness of the proposed method that 

it can detect anomaly regions in each image of the MODIS NDVI 

image time series, with overall accuracy being up to 89%. 

 

This paper is organized as follows. Section 2 simply introduces 

the principle of seasonal autocorrelation analysis of time series 

using SARIMA model. Section 3 describes how to enhance and 

further to determine anomaly region in satellite image time series 

using a SARIMA model and a statistical analysis criterion. In 

section 4, the method is demonstrated with the case study for 

detecting anomaly regions caused by big flooding, followed by a 

conclusion of this paper in Section 5. 

 

2. SEASONAL AUTOCORRELATION ANALYSIS 

2.1 SARIMA Model for Autocorrelation Analysis 

In a time series, any data is correlated to others in the same time 

series, with correlation coefficient being from zero to one. This 

kind of correlation of the data within time series is well known 

as autocorrelation. From this point of view, a seasonal time series 

can be represented with a Seasonal Autoregressive Integrated 

Moving Average (SARIMA) model (Cryer and Chan, 2008), 

which is a common model for analysing autocorrelation of 

seasonal time series data.  

 

Given a seasonal time series Yt with period s, where t is an integer 

time index and the Yt are real numbers, then a SARIMA model 

can be given by: 
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where  L = lag operator, 

 ( )L  = autoregressive (AR) part with order p, 

 ( )L  = moving average (MA) part with order q, 

 ( )sL  = seasonal autoregressive (SAR) part with 

order P, and 

 ( )sL  = seasonal moving average (SMA) part with 

order Q of the SARIMA model 

 

In the SARIMA model in Equation 1, the t

dY  and t

D

s Y are 

respectively the differencing term with degree d and the seasonal 

differencing term with degree D: 
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and the error terms εt are generally assumed to be independent, 

identically distributed variables sampled from a normal 

distribution with zero mean. The SARIMA model is generally 

denoted as: 

 SARIMA( , , ) ( , , )Sp d q P D Q   (4) 

where s refers to the number of seasons/data in a period/cycle, 

the parameters p, d, q, P, D and Q are non-negative integers refer 

to the orders/degrees of the model, as shown in Equation 2 and 3. 

If a time series does not have seasonal variation, the parameters 

P, D and Q of the seasonal part of the SARIMA model would be 

zeros. 

  

2.2 Seasonal Autocorrelation of Satellite Time Series 

The varying pattern of a satellite time series Yt (see Figure 1(a) 

as an example) can be well fitted and represented with a 

SARIMA model with proper parameters. In practice, however, 

anomalous data in the satellite time series may also be falsely 

fitted with that SARIMA model, resulting in miss of anomaly 

detection. Nevertheless, the point in question is not the varying 

pattern of time series to represent, but the anomalies in the time 

series to detect. For this purpose, one should exploit appropriate 

parameters of SARIMA model to extract or enhance anomalies 

in the satellite time series, other than to well fit the varying 

pattern of satellite time series. 

 

 
Figure 1. (a) NDVI time series data. (b) Anomaly-enhanced time 

series data, zt, and the detected anomalies (red dots). 

 

In principle, seasonality characterizes the satellite time series to 

some extent (from slight to strong). As shown in Figure 1(a),The 

time series data from satellite images has clear seasonal varying 

pattern because the vegetation phenology is highly impacted by 

annual temperature and rainfall (Verbesselt et al., 2012). Here, 

(a)  

(b)  

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-303-2016

 
304



we assume that the satellite time series data has linear trend or no 

trend (otherwise, the trend can be removed beforehand using 

yearly average or Seasonal-Trend Decomposition based on Loess 

(STL) for example). Under normal conditions, the status of land 

cover in a period (e.g. September) in a year would be similar to 

those in the same period in other years. That is to say that the 

satellite time series data is strongly seasonal autocorrelated. 

Since only the anomalies in the satellite time series are of 

interests but the temporal varying patterns are not, here only the 

seasonal autocorrelation of satellite time series (representing 

seasonality) is considered but the non-seasonal autocorrelation of 

satellite time series is not. The seasonal autocorrelation of a time 

series can be represented by: 

 

 SARIMA(0,0,0) ( , , )SP D Q   (5) 

 

i.e., only the parameters for seasonal part of the SARIMA model 

are left and those for non-seasonal part are all set to be zeros. 

 

3. ANOMALY REGION DETECTION 

Anomaly region is detected from satellite image time series pixel 

by pixel. Based on the fact that the anomalies in satellite time 

series data are those not conformed to the expected seasonal 

pattern, and the fact that the satellite time series data is seasonal 

auto-correlated, a practical way to distinguish the anomalies from 

the seasonal pattern is to remove the seasonality of the time series, 

via the seasonal autocorrelation analysis. What is more, since 

anomalies are mixed with erratic fluctuations (i.e., noises) in 

satellite time series, anomalies can be determined with some 

criterion based on statistical analysis. 

 

3.1 Anomaly Enhancement by Seasonal Autocorrelation 

Analysis 

A practical way to remove the seasonality of satellite time series 

data is first degree seasonal differencing (seasonal differencing, 

for short) (Cryer and Chan, 2008), even if there is slight or no 

seasonal pattern in the time series. The seasonal differencing of 

the time series Yt , 𝛻𝑠𝑌, can be denoted as:  

 

  𝛻𝑠𝑌𝑡 = SARIMA(0,0,0) × (0,1,0)s (6) 

 

where the parameters P and Q are given zeros. This is because it 

is hypothesized here that for satellite time series data, a data at a 

period in a year is strongly correlated with the data at the same 

period in other years. This is to say, under normal condition, the 

status of land cover in this year is similar to the status in other 

years at the same season or time period. 

 

If there is no anomaly in satellite time series data, the differences 

between the data of adjacent years, i.e., 𝛻𝑠𝑌𝑡, would be random 

noises, denoted εt . It is assumed to be independent and 

identically distributed variables sampled from a normal 

distribution with mean μ  and variance σ2 . Then, the seasonal 

differencing of time series would be εt. Otherwise, if there is an 

anomaly with magnitude mt at time t, it might be extracted by 

subtracting the random noise from the seasonal difference time 

series: 

 mt = ∇sYt − εt   (7) 

 

In practice, however, one does not known the prior knowledge of 

the distribution of random noise εt. A general way to estimate the 

noise term is to suppose there is no anomaly in the time series 

data. Since the time series data as well as the probably anomalies 

may have different magnitudes, the seasonal differenced time 

series is normalized to near standard normal distribution, for 

simplicity to determine anomalies from noises. Here, the 

anomaly-enhanced time series, denoted  𝑧𝑡, is defined as: 

 

 𝑧𝑡 = (𝛻𝑠𝑌𝑡 − 𝑢)/𝑠  (8) 

 

where  𝑢 = mean value of the seasonal differenced time series 

 𝑠  = / 2 sYt   , robust standard deviation (Cryer 

and Chan, 2008) of the seasonal differenced time series. 

 

Then, the anomalies in a satellite time series would be obvious in 

the anomaly-enhanced time series, which is assumed to follow 

standard normal probability distribution. See Figure 1(b) for an 

illustration of the anomaly-enhanced time series zt. 

 

3.2 Criterion for Anomaly Determination 

The anomaly-enhanced time series zt  contains information of 

both anomaly mt and noise εt. If a time series Yt has exactly one 

anomaly at time T, then ∇sYT = εT + mT  but ∇sYt = εt 

otherwise. Therefore, the zt  has (approximately) a standard 

normal distribution under the null hypothesis that there is no 

anomaly in the time series (Cryer and Chan, 2008).  

 

When T is known beforehand, the observation is declared an 

anomaly at the 5% significance level ( α = 0.05 ) if the 

corresponding zt  exceeds a threshold of 1.96 (i.e., the z-value 

z[0.05/2]) (Cryer and Chan, 2008). In practice, however, there is 

often no prior knowledge about the number and the time of 

anomalies. To detect anomalies, the test of zt should be applied 

to all observations in the time series. In the process of detection, 

the threshold of 1.96 for zt would result in 5 anomalies in 100 

tests just by chance, even if there is actually no anomaly (Cryer 

and Chan, 2008). A simple and conservative way is to use the 

Bonferroni Correction for controlling the overall error rate of 

multiple tests of anomalies (Cryer and Chan, 2008). An 

observation could be tentatively identified as anomaly if the 

corresponding zt  exceeds the upper 0.05/2N ×  100% 

percentile of the standard normal distribution (N is the length of 

time series). This way can greatly reduce the probability (e.g., at 

most a 5% probability if α = 0.05 ) of false detection of 

anomalies in the whole time series data (Cryer and Chan, 2008). 

 

Therefore, to detect anomalies at a significance level α , an 

observation at time t could be tentatively identified as anomaly if 
|zt| > z[α/2N], where the z[α/2N] is the z-value that meets: 

 

  P(|z| > z[α/2N]) = α/2N (9) 

 

However, an anomaly in the anomaly-enhanced time series at 

time t-s (s is the period of the time series), mt−s, would be affect 

the anomaly-enhanced time series at time t (see Figure 1(b) for 

illustration). This is because if Yt−s = Yt−2s + εt−s + mt−s , then 

∇sYt = Yt − Yt−s = Yt − Yt−2s − εt−s − mt−s ≈  −εt−s − mt−s. 
Thus, −mt−s would be a fake anomaly at time t. 

 

Therefore, to determine anomalies from the anomaly-enhanced 

time series and to filter out fake anomalies, a criterion of anomaly 

detection is defined: 

 

 |𝑧𝑡| > 𝑧[𝛼/2𝑁] 𝑎𝑛𝑑 |𝑧𝑡−𝑠| ≤ 𝑧[𝛼/2𝑁]   (10) 

 

where s is the number of data in a period or cycle (e.g., s=23 if 

there are 23 data in a year). Any data in the anomaly-enhanced 

time series satisfies the criterion Equation 10 is determined as 

anomaly (See Figure 1(b)). 
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4. EXPERIMENTS AND RESULTS 

4.1 Materials 

4.1.1 Case Study Area: The study area is around a border of 

southeast Russia and northeast China, with the Heilongjiang 

River being as the border of two countries (see Figure 2(a), 

Russia to the north and China to the south). The geographic 

coordinates of the study area are “133.4255E, 48.4654N” for the 

north-west corner and “134.7849E, 48.0569N” for the south-east 

corner, covering about 6,000 km2 with roughly 120 km by 50 km 

 

In the study area, main types of land cover include forest, shrub, 

urban and water. From the year 2000 to 2015, the land cover 

types are consistent over years and there is no significant changes 

of land cover types. However, a big flood occurred in the summer 

of 2013 and the river broke through its banks on August 23, 

causing severe flooding over large areas for as long as two 

months (see Figure 2(a-e)). 

 

The Heilongjiang River is a seasonal river, i.e., it has seasonal 

floods in each year and it has different water areas in different 

seasons. Normal flooding in riverbank during the summer should 

not be seen as unexpected land cover disturbance. However, 

severe flooding caused inundation over towns and farmlands 

around the river during the summer of 2013. The unexpected 

flooded region during this period should be taken as anomaly 

region. 

 

4.1.2 Satellite Image Time Series: The 16-day composited 

MODIS vegetation indices products (MOD13Q1) provide image 

time series (23 images per year, s=23 for Equation 10) with 

medium-coarse spatial resolution (250 meter) and low cloud-

contamination. The MOD13Q1 products covering the study area 

from February 2000 to February 2015 (345 images in total) were 

collected from the LAADS (http://ladsweb.nascom.nasa.gov). 

There are 609×183=111447 pixels in each image. In Figure 2 , 

the subtitle of each image indicates the 16-day composited period 

of the MODIS NDVI image.  

 

The NDVI image time series from the satellite Terra/MODIS was 

selected as test data. Since NDVI is a commonly used indicator 

of vegetation status, and different types of land covers have 

distinct NDVI values at different time (Defries and Townshend, 

1994; Loveland et al., 2000), special temporal changing pattern 

would reside in the NDVI time series data in the case of flooding. 

If vegetation areas or other non-water areas are flooded unusually, 

the NDVI time series values will decrease dramatically and will 

be much lower than those in previous years. The use of 

Normalized Difference Water Index (NDWI) would be better to 

reproduce a clearer land-water separation, but when compared to 

NDVI, it may be less appropriate to reveal the varying pattern of 

vegetation and the NDWI data derived from MODIS product has 

coarser spatial resolutions (i.e., 500-meter). 

 

4.1.3 Reference Images: Some contemporary satellite 

images with higher spatial resolution (30 meter) were selected as 

reference images. The multi-spectral Enhanced Thematic 

Mapper Plus (ETM+) images from the satellite Landsat-7 and 

OLI images from the satellite Landsat-8 covering the study area 

from 2012 to 2013 were collected from the Earth Explorer 

(http://earthexplorer.usgs.gov). The observing date of the 

reference images during the severe flooding are 2013/09/18 and 

2013/09/27, which are in the Sep. 14 – Sep. 29 compositing 

period of the MODIS NDVI images (see Figure 2(d)).  

 

Due to the failure of the Scan Line Corrector (SLC) in the ETM+ 

instrument since 2003, the collected ETM+ images show wedge-

shaped gaps. In this study the gaps were filled by the phase 2 gap-

filling algorithm (USGS, 2004). In addition, after precisely 

geometric correction, the four reference images were subset and 

re-projected to the same geographical region with the MODIS 

NDVI images. 

 

To validate the results of anomaly detection from MODIS NDVI 

image time series, a reference map of anomaly region from the 

reference images was produced. At first, for distinct classes in 

each image (i.e., water, forest, cropland, vegetative wetland, 

built-up area, cloud and cloud shadow, residual gaps), we 

visually selected more than 5% pixels in each class as sample 

data. Then, each of the four images is classified using a 

supervised classification method Support Vector Machine (SVM) 

(Pal and Mather, 2005), resulting in two water maps for the year 

2012 and 2013. Finally, the reference anomaly region was 

derived from the two water maps by subtracting the water map in 

2012 from the water map in 2013. The reference images before 

2012 were not used here because there was not big flood for this 

period so that we use the image in 2012 to represent all the images 

before 2012. 

 

4.2 Results 

Two experiments were conducted on the whole MODIS NDVI 

image time series (i.e., 345 images) using the proposed method. 

Anomaly regions were detected from the images pixel by pixel 

(111447 pixels in total) based on the above mentioned procedures, 

i.e., anomaly enhancement and anomaly determination. The 

difference of the two experiments is that the one takes a user-

specified z-value of the anomaly determination criterion but the 

other takes varying z-values. 

 

For the first experiment, the z-value was set to be two. Since the 

aim of the experiments was to detect anomaly regions caused by 

the big floods in 2013 in the case study area, the experiments 

results during the flooding season are shown in Figure 2. The 

images on the left column of Figure 2 are pseudo-coloured 

MODIS NDVI images, illustrating the spatial-temporal changes 

of big flooding from July to October in 2013. Correspondingly, 

the images on the right column of Figure 2 are the detected 

anomaly regions pasted on the NDVI images, showing the 

detected anomaly regions in each NDVI image. 

 

It can be shown in Figure 2(f-j) that spatial-temporal changes of 

anomalous flooded areas are explicitly represented with the 

detected anomaly regions. Note that the blue curves within the 

red coloured anomaly regions are river water areas in the past 

years. Although these areas were also flooded during that period, 

they were not taken as anomaly regions in the detection because 

these areas were permanent water areas or frequently flooded 

areas in almost every year. 
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Figure 2. The MODIS NDVI image time series (left column, a-e) showing the dynamic changes of the probably flood-affected regions 

in 2013, and the corresponding detected anomaly regions (right column, f-j) when setting the z-value to be two. The subtitle of each 

image indicates the 16-day composite period of the corresponding MODIS NDVI image. 

 

(a)  Jul. 28 – Aug. 12 

(b)  Aug. 13 – Aug. 28 

(c)  Aug. 29 – Sep. 13 

(d)  Sep. 14 – Sep. 29 

(e)  Sep. 30 – Oct. 15 

(f)  Jul. 28 – Aug. 12 

(g)  Aug. 13 – Aug. 28 

(h)  Aug. 29 – Sep. 13 

(i)  Sep. 14 – Sep. 29 

(j)  Sep. 30 – Oct. 15 

Russia 

China 
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Detected 

region 

Reference region     

Anomaly 

Non- 

anomaly Total  

User 

Acc. 

Anomaly 35094 3632  38726 90.62 % 

Non-

anomaly 8985 63736 72721 87.64 % 

Total 44079 67368 111447  

Prod. Acc. 79.62 % 94.61 %   

Overall Acc.      88.68 % 

 

Table 1. Confusion matrix of the detection results in Figure 2(i) 

in comparison with the reference anomaly region. 

 

To quantitatively validate the results of the detected anomaly 

regions, the detection results in Figure 2(i) were compared with 

the reference anomaly region. Table 1 shows the confusion 

matrix of the comparison, including the region pixel counts and 

different aspects of accuracies. The Prod. Acc. (producer 

accuracy, a.k.a. recall or true positive rate) of the detected 

anomaly region is 79.62%, indicating that near four fifth of pixels 

in the reference anomaly region are identified as anomaly region 

in the MODIS NDVI image. The User Acc. (user accuracy, a.k.a. 

precision or positive predictive value) of the detected anomaly 

region is 90.62%, indicating that over nighty percent of the 

detected anomaly region appear in the reference anomaly region, 

i.e., nearly ten percent are false detections when compared to 

reference anomaly region. The Overall Acc. (overall accuracy) of 

the detected anomaly region is 88.68%, which shows that nearly 

nighty percent of the whole image region are correctly identified 

as anomaly region and non-anomaly region. 

 

For the second experiment, the z-values of the anomaly 

determination criterion were continuously selected from zero to 

five with a 0.01 step (i.e., 600 z-values). The purpose of this 

experiment was to validate the detection results under different 

constraints in detection. The validations were also conducted by 

comparing the anomaly region detected from the MODIS NDVI 

image as shown in Figure 2(d) with the reference anomaly region. 

 

Figure 3 illustrates the curves of the anomaly region accuracies 

with respect to different constraints of detection (i.e., z-values of 

the anomaly determination criterion). The vertical grey dashed 

line at z=2.0 in Figure 3 just indicates the case of the first 

experiment. The accuracies in this specific case are just as those 

in the Table 1. It can be seen in Figure 3 that z=2 corresponds to 

neither best Prod. Acc., nor best User Acc., nor best Overall Acc. 

In Figure 3, when the z-value is set to be 1.0, the detection results 

get highest Prod. Acc. being about 91% but worst User Acc. 

being only about 78%. In contrary, when the z-value is set to be 

3.5, the detection results get worst Prod. Acc. less than 60% but 

highest User Acc. more than 95%.  

 

There is no best z-value because there are trade-offs between 

Prod. Acc. and User Acc. When z-value varies, the rise of the 

Prod. Acc. is accompanied by the decrease of User Acc., and vice 

versa. Nevertheless, in this experiment, the Overall Acc. are 

relatively stable within a small range from 83% to 90% even for 

a wide range of z-values. 

 

 
Figure 3. The accuracies of anomaly regions detected at varying 

z-values of the anomaly determination criterion. 

 

4.3 Discussion 

4.3.1 Effectiveness of the Anomaly Detection Method: The 

first advantage of the proposed anomaly detection method is that 

it can effectively detect anomaly region in each image of the 

satellite image time series, so that it can represent spatial-

temporal changes of anomaly events on land cover. As is shown 

in Figure 2(f-j), the detected anomaly regions in each image can 

show the coming and the spreading of the flood, the large area 

flooding after the break of riverbank, and the receding of the 

flood. This demonstrates that the method is able to detect spatial-

temporal changing anomaly regions in the image time series. 

Moreover, the frequently changing areas in the images can be 

effectively excluded from anomaly regions. The proposed 

method is not compared to others here because at present few 

methods focus on detecting anomaly regions in each image of the 

satellite image time series but some methods consider detecting 

main disturbances/ structural changes (e.g. (Verbesselt et al., 

2010b)) or occurrence of disturbance (e.g., (Zhu et al., 2012)) in 

satellite image time series. 

 

The second advantage of the method is that it can be tuned 

according to the requirement of different aspects of accuracies. 

As is shown in Figure 3, on one hand, the method could result in 

relatively good overall accuracies (i.e., 83% to 90%) for a wide 

range of z-values. On the other hand, the method could get higher 

producer accuracy up to 90% (i.e., detect more anomaly regions) 

at a smaller z-value and get higher user accuracy up to 95% (i.e., 

more corrective anomaly regions) at a larger z-value. This 

demonstrates that the method is flexible and it can get satisfactory 

results with a reasonable z-value. 

 

There is also a benefit of the method that it does not necessarily 

require time series smoothing.  For one thing, smooth the satellite 

time series data may cause the loss of anomalies because they are 

generally taken as noise in many time series smoothing methods. 

For another, the probable anomalies in the satellite time series 

data could be enhanced and determined based on statistical 

analysis, to confidently differentiate anomalies from noise, as is 

shown in the example in Figure 1(b). 

 

Therefore, the experiments demonstrate the effectiveness of the 

proposed method that it can detect anomaly regions in each image 

of satellite image time series with good accuracies. The method 
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can be tuned to meet the user’s requirement of accuracies. The 

method does not need the data processing of smoothing and 

might be able to detect anomaly regions in noisy satellite image 

time series with high reliability.  

 

However, the method also has two limitations. The one is that 

although data smoothing is not necessary, noises with high 

magnitudes (for example caused by cloud and aerosols) would be 

falsely labelled as anomalies, so that it would be better to do 

cloud removing beforehand. The other is that the condition that 

makes this proposed method work is the assumption that there is 

linear or no trend in the time series. If the time series has 

significant non-linear (e.g., quadratic or curve) trend, the 

seasonal differencing of the time series (see Equation 6) may not 

satisfy the assumption to follow a normal distribution, which 

would reduce the reliability of anomaly detection. Therefore, 

trend checking and removing (e.g., uses yearly average or STL to 

remove the trend) should be conducted before using the seasonal 

differencing. 

 

4.3.2 Error Sources of Anomaly Region Detection: The 

error sources of the detected anomaly region generally result 

from uncertainties in the MODIS NDVI and reference images. 

By visually comparing between the detected results with 

reference map, most detection errors result from uncertainties in 

the 16-day MODIS NDVI images. The MODIS NDVI images 

generally appear to underestimate areas of flooding, because the 

strategy for compositing NDVI value in 16-day time periods (van 

Leeuwen et al., 1999) tends to catch higher NDVI value 

indicating vegetation and to depress lower NDVI value indicating 

clouds or temporary water bodies. Therefore, if both vegetation 

and water bodies exist in a 16-day period, e.g., temporary 

flooding which lasts only 10 days, the flooded areas probably do 

not appear in the 16-day MODIS NDVI image. Besides, due to 

the low spatial resolution of the MODIS sensor, the small water 

bodies blend with surrounding vegetation in single pixels of the 

image (a.k.a. mixed pixels), leading to miss of anomaly region 

detection. In addition, flooded vegetation or floating vegetation 

might be confusing factors for detecting anomaly region caused 

by flooding. Water inundation within vegetation areas will also 

lead to false results.  

 

A small proportion of detection errors inherit from the inaccuracy 

of the reference map. Some factors may affect the accuracy of the 

reference anomaly region derived from the reference images. 

First, since reference data to match each experiment image (i.e., 

MODIS NDVI image in this study) is difficult to find (Kennedy 

et al., 2007), the reference images used in this study could not 

reveal the same flood conditions as those in the MODIS NDVI 

images. Second, some gaps in the ETM+ images remain after 

gap-filling. Third, clouds and cloud shadows in the reference 

images are likely to be misclassified as water bodies. Forth, the 

misregistration of the reference images make some water borders 

be falsely categorized into anomaly region, such as riverbanks. 

As a consequence, the unreliability of the reference anomaly 

region also affects the detection accuracies. 

 

Therefore, like many other change detection methods, the 

performance of the proposed anomaly region detection method is 

subject to both the temporal and spatial resolutions of satellite 

image time series as well as the selection of a proper parameter 

(i.e., z-value in this study). Nevertheless, the proposed method is 

effective and flexible to detect spatial-temporal changing 

anomaly regions in satellite image time series.  

 

5. CONCLUSION 

This study proposed a method for detecting anomaly regions in 

satellite image time series. The method is based on seasonal 

autocorrelation analysis of satellite time series data to remove the 

seasonality of time series and to enhance the anomaly 

information. Then, the anomalies are detected with higher 

reliability by statistical analysis. The method was validated by a 

case study to detect anomaly regions caused by severe flooding 

in MODIS NDVI image time series. The experiments 

demonstrated the effectiveness of the method and its good 

detection accuracies. 

 

The method for anomaly region detection using seasonal 

autocorrelation analysis has significant advantages. The method 

can detect spatial-temporal varying anomaly regions in satellite 

image time series. It is flexible to meet some requirements of 

detection accuracies. It does not need time series smoothing and 

can be able to confidently detect anomaly regions in noisy 

satellite time series. But it is suggested to do some cloud- and 

trend-removing pre-processing of the satellite time series data 

beforehand. The use of higher spatial resolution satellite image 

time series would increase the performance of the method. 
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