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ABSTRACT:

Data acquisition using unmanned aerial vehicles (UAVs) has gotten more and more attention over the last years. Especially in the
field of building reconstruction the incremental interpretation of such data is a demanding task. In this context formal grammars play
an important role for the top-down identification and reconstruction of building objects. Up to now, the available approaches expect
offline data in order to parse an a-priori known grammar. For mapping on demand an on the fly reconstruction based on UAV data is
required. An incremental interpretation of the data stream is inevitable. This paper presents an incremental parser of grammar rules for
an automatic 3D building reconstruction. The parser enables a model refinement based on new observations with respect to a weighted
attribute context-free grammar (WACFG). The falsification or rejection of hypotheses is supported as well. The parser can deal with
and adapt available parse trees acquired from previous interpretations or predictions. Parse trees derived so far are updated in an
iterative way using transformation rules. A diagnostic step searches for mismatches between current and new nodes. Prior knowledge
on façades is incorporated. It is given by probability densities as well as architectural patterns. Since we cannot always assume normal
distributions, the derivation of location and shape parameters of building objects is based on a kernel density estimation (KDE). While
the level of detail is continuously improved, the geometrical, semantic and topological consistency is ensured.

1 MOTIVATION AND CONTEXT

3D building models are nowadays essential for several tasks such
as urban and telecommunication planning (Köninger and Bar-
tel, 1998; Knapp and Coors, 2008) and disaster and rescue man-
agement (Kolbe et al., 2008) in particular flooding simulations
(Schulte and Coors, 2008). Further, the data model CityGML
(Gröger et al., 2012) supporting several levels of detail (LoD)
is widely used in order to address semantics and exchange city
data models. For many applications such as disaster management
and visualization in particular in the navigation context, façades
(LoD3 models) are important. In order to achieve an interpre-
tation of the observations with good quality models providing
prior knowledge are needed. In this context, formal grammars
receive increasing attention (Musialski et al., 2012). For the re-
construction of façades Becker (2009) introduced a hybrid ap-
proach by the integration of inferred grammar rules into a non-
parametric reconstruction process. Ripperda and Brenner (2009)
used a probabilistic grammar for the description of façades. The
production rules are expanded by the relative frequency of a sin-
gle rule extracted from a manually collected rule database. Marti-
nović and Van Gool (2013) proposed an approach to learn stochas-
tic attributed grammar rules for two-dimensional façade genera-
tion and reconstruction from imagery data. Dehbi et al. (2016)
presented a statistical relational based approach for automatic
learning of an attribute grammar for building reconstruction.

Formal grammars demand a mechanism that fits data to under-
lying grammar rules. For this issue, several parse algorithms
have been introduced. Han and Zhu (2009) used a two-staged
approach in order to parse images based on a graph grammar.
They assume that man-made objects are modelled by sub-objects
using the grammar rules. Teboul et al. (2011) presented an ap-
proach for 2D shape grammar parsing of façades using reinforce-
ment learning. Toshev et al. (2010) introduced a method for the
detection and parsing of buildings from 3D laserscan data. Mar-
tinović et al. (2012) proposed a three-layered approach for façade

parsing. Schmittwilken (2012) presented an estimator and parser
for the identification and interpretation of façades from LIDAR
point clouds based on attribute grammars and a-priori probabili-
ties. All these approaches expect offline data in order to parse the
underlying grammar rules.

The presented work is part of a project which aims to build 3D
building models during the acquisition of data by a lightweight
autonomously flying UAV. It uses the visual information from
cameras for navigation, obstacle detection, exploration and object
acquisition leading to a high resolution dense 3D point cloud.
Based on a semantically specified user inquiry the UAV delivers
a point cloud stream improving the level of detail. Hence, an
incremental model refinement is needed in order to deal with the
continuous observation stream and to falsify or verify new model
hypotheses.

The main contribution of this paper is the incremental parsing
of weighted attribute context-free grammar (WACFG) for the au-
tomatic 3D building reconstruction. The parser refines models
based on new observations. If a refinement is not possible, model
hypotheses are falsified and rejected. In this way an adaptation
of the available parse tree that has been acquired from previous
interpretation steps is enabled. Parse trees are iteratively updated
drawn upon ideas of graph transformation systems (Löwe, 1993;
Heckel, 2006). Prior knowledge on façade parts is given by prob-
ability densities. In order to avoid distribution assumptions, the
location and shape parameters of building parts are identified with
a non-parametric kernel density estimation (KDE). During the in-
terpretation, geometrical, semantic and topological consistency is
ensured Gröger and Plümer (2012) using transaction rules.

The remainder of the article is structured as follows: An introduc-
tion of formal grammars is presented in section 2. Our method
will be explained in detail in section 3. Hereby, the identification
of façade parts is explained in subsection 3.1 while the algorithms
for the incorporation of these identified parts based on the incre-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-311-2016

 
311



Figure 1: Offline parsing of 3D point clouds using formal grammars.

mental parsing of the attribute grammar rules are presented in
subsection 3.2. The paper is summarized and concluded in sec-
tion 4.

2 FORMAL GRAMMARS

Ever since formal grammars were introduced by Chomsky (1956,
1959) for reconstructing sentences of natural language, they have
also been used to generate formal languages. The so-called Chom-
sky hierarchy distinguishes between four levels (type 0 to type 3)
of formal grammars. A formal grammar G can be defined as
the quadruple {S,N, T, P} of a start symbol S, a set of non-
terminals N represented by capitalised initials, a set of terminals
T denoted by lower case initials and a set of production rules P .

A special case of formal grammars are context-free grammars
which correspond to type 2 according to Chomsky’s hierarchy.
Production rules appear in the form A → a where A is a non-
terminal, and a is a sequence of terminals and non-terminals. This
rule implies that each occurrence of the symbol A can be replaced
by the string a.

Figure 2: A possible derivation tree of a context-free gable roof
building grammar.

As illustrated in figure 2, a possible context-free derivation which
describes the structure of a gable roof building can be modelled

as follows: Building as a start symbol is made of Corpus and
gableRoof. In addition to the Facade, Corpus consists of left side,
right side, and back side. Facade is built of window and Entrance
which is made of door and Stairs. For the sake of simplicity of the
example we assume that the façade has one single window. Stairs
can be substituted either by one Step and Stairs as a sequence of
steps or terminates with a Step which in turn consists of a riser
(vertical rectangle) and a tread (horizontal rectangle). Likewise,
a building can be represented by the following production rules:

B u i l d i n g → Corpus gab leRoof
Corpus → l e f t Facade r i g h t back
Facade → E n t r a n c e WinArray
WinArray → WinArray window
E n t r a n c e → door S t a i r s
S t a i r s → S t a i r s S t e p
S t a i r s → Step
S tep → r i s e r t r e a d

The set of non-terminals is N = {Building, Corpus, Facade, En-
trance, WinArray, Stairs, Step}; the set of terminals is T = {
gableRoof, left, right, back, window, door, riser, tread}. In or-
der to express the likelihood of the application of rules, each rule
is augmented by a weight or a probability defining a weighted
or a probabilistic context-free grammar respectively (Geman and
Johnson, 2002).

Motivated by requirements of early programming languages such
as ALGOL and in order to cope with a restricted form of context
sensitivity Knuth (1968, 1971) extended context-free grammars
and introduced attribute grammars. Hereby, terminals and non-
terminals are expanded by attributes, whereas production rules
are extended by ”semantic rules”. The latter specify the con-
straints among the attributes. In our example these enable us to
state that all steps within the same staircase have the same dimen-
sions which cannot be expressed by context-free grammars. An
extract of an attribute grammar of stairs is shown in listing 1.

The grammar symbols at the top are augmented by the attributes
height, depth and width, which are used in the semantic rules
R2(P2) to R4(P2) at the bottom in order to specify the identity be-
tween the shape parameters of risers and treads within the same
stairs. Additionally, R1(P1) ensures that the new stairs consist
of exactly one more step than the one before. The superscript
indices n and n-1 are used to differentiate between multiple oc-
currences of the same symbol.
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Listing 1: Excerpt of an attribute grammar for stairs
P1 : S t a i r s n−1 → Step S t a i r s n

P2 : S t a i r s → Step
P3 : S t ep → r i s e r t r e a d

R1 ( P1 ) : S t a i r s n . numberOfSteps =
S t a i r s n−1 . numberOfSteps +1

R2 ( P2 ) : S t ep . wid th = S t a i r s . w id th
R3 ( P2 ) : S t ep . h e i g h t = S t a i r s . h e i g h t
R4 ( P2 ) : S t ep . d e p t h = S t a i r s . d e p t h
. . .

3 INCREMENTAL PARSING OF 3D POINT CLOUD

As yet, the parsing of formal grammars expect an offline data
processing, especially for 3D point clouds. Based on a given
grammar, the parser searches for a most likely parse tree with
successively grammar rule application that matches the underly-
ing data well (see figure 1). In this section we introduce a novel
approach that enables to deal with changing data, e.g. provided
by an UAV. The parser interprets the building parts within the
measured point cloud and determines their descriptive location
and shape parameters. Based on the detected parts a derivation
tree is built that reflects the 3D model of the building. As soon
as a new point cloud segment is provided, it is interpreted and
the derivation tree of the building reconstruction is updated. This
update of the tree is the main discriminative aspect of the incre-
mental parser in comparison to an offline parser.

Algorithm 1: PARSE FAÇADE – Weighted attribute grammar
based incremental parsing of a 3D point cloud stream
Input: Pts . . . 3D point cloud
Input: WACFG . . . Weighted attribute context-free grammar
Input: Tree . . . Parse tree (Can be empty)
Output: Tree . . . most likely parse tree

1 Tree = Tree.getNodes();
2 [Plane,PPts] =

ESTIMATE AND ROTATE MAIN FAÇADE(Pts);
3 [Nodes] = FIND PARTS(Pts,Plane,PPts,Nodes);
4 [Tree] =

TRANSFORM PARSE TREE(WACFG,Nodes,Tree);

The whole algorithm of the incremental parser (see algorithm 1)
is subdivided into the two parts building part detectors and tree
transformation which are executed consecutively. An overview
of our approach is shown in figure 3. Beforehand, the main façade
plane Plane is estimated and consequently an orthogonal recti-
fication of the point cloud is performed.

The first part of the algorithm is responsible for the detection of
the building parts within the measured point cloud Pts. Here-
with, the descriptive location and shape parameters of each build-
ing part is determined. These parts build a set of nodes Nodes.
This identification step is the core of section 3.1. The results of
the interpreted dataset from the first part are employed to incorpo-
rate the observed building part in the model derived or predicted
so far. A predicted tree is deduced based on a reasoning pro-
cess as described in Loch-Dehbi and Plümer (2015). If there is
no tree available, a new model is constructed otherwise. In both
cases, the model consists in a parse tree. It describes the taxon-
omy and partonomy of a given façade reflecting semantics of each
building part with respect to an a-priori learned weighted attribute

Figure 3: An overview of the incremental attribute grammar pars-
ing of a 3D point cloud stream.

context-free grammar (WACFG) (Dehbi et al., 2016). The in-
terpretation is performed as long as new observations (point cloud
stream) are received. This incremental interpretation is discussed
in section 3.2.

3.1 Identification of façade parts

This section describes the process of the determination of the
façade parts. This is based on building part detectors tailored
for each building part of interest. At first, the main façade is de-
tected using a façade detector. This is performed with the use
of a RANSAC estimation (Fischler and Bolles, 1981) based on
the observed and geo-referenced points Pts. RANSAC delivers
the estimated plane Plane together with the consensus set that
supports the plane model. We assume that the input point cloud
is taken from a fronto-parallel view of the world plane. Other-
wise, an orthogonal rectification of the point cloud is performed
according to the transformation in equation 1 leading to plane
points PPts (Förstner and Wrobel, 2016). Herewith, a rota-
tion R(Np, Nxz) using the vector pair (Np, Nxz) along the axis
Np × Nxz takes place. Np represents the normal of Plane,
whereas Nxz is the normal of the xz plane of the world coor-
dinate system. I , Ñp and Ñxz denote the identity matrix, the
normalization of Np and Nxz respectively.

R(Np, Nxz) = I + 2ÑpÑT
xz −

1

1 + ÑxzÑp

(Ñp + Ñxz)(Ñp + Ñxz)
T

(1)

where Ñp = N(Np), Ñxz = N(Nxz) and Np ·Nxz 6= −1.

In this manner an accurate detection of façade parts is enabled.
To this end, further building part detectors are required. Openings
such as windows or doors in the façades are interpreted as holes

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-311-2016

 
313



in the point cloud. This corresponds to areas with a low point
density. Therefore, a kernel density estimation (KDE) (Wand and
Jones, 1994; Wang and Suter, 2004) is appropriate for the deter-
mination of the location and shape parameters of windows and
doors. KDE enables a non-parametric estimation of a probabil-
ity density function avoiding to make data distribution assump-
tions. The bandwidth of the used Gaussian kernel is adapted and
optimized for each estimation depending on the underlying data
(Benoudjit et al., 2002).

Figure 4: KDE of the consensus set of the façade main plane
of the Frankenforst manor in Vinxel/ Germany. The extrema are
incorporated for the floor-wise and column-wise segmentation of
the façade and for the identification of openings.

The identification of the façade openings in algorithm 2 starts
with a kernel density estimation of the x- and z-coordinates of
the points Pts. Consequently the extrema along both directions
are identified. The openings in the façade correspond to the in-
tersection of the horizontal and vertical orange lines in figure 4.
These denote the orthogonal projection of single minima mix and
miz on the according axis leading to an approximative centroid
and hence a location of an opening. Furthermore, in order to de-
termine the shape parameters (width and height) a bounding box
BB is defined over each centroid. Each bounding box BB is
expanded in four directions (left, right, up, down) until a minimal
point number is reached. Besides, the maxima max and maz in
the according direction are used for the robust determination of
the shape parameters such as shown in figure 5. Further back-
ground knowledge – probability density functions – about shape
parameters of building parts derived from a relational building
database (RBDB) is also used in order to acquire a good size
of the bounding box BB. The latter corresponds to the shape
parameters of a single façade part and hence a leaf of a parse
tree. These nodes are collected in a list TempNodes. As can
be stated for the windows of the ground floor in figure 4, due
to structured walls the derivation of the shape parameters is in
general not straightforward. In this case, a local floor-wise re-
estimation of the parameters is needed. To this end, a segmenta-
tion of the point cloud is performed based on the maxima values
of the coordinates. This enables a recursive application of the pre-
vious steps for each floor based on a new bandwidth leading to a
list Nodes and their improved parameters. In order to discrimi-
nate between windows and doors, common architectural patterns
as well as probability density functions derived from RBDB are
used.

3.2 Incremental refinement of parse trees

This section deals with parse tree transformations based on the
building parts detected and acquired from the first stage described
in section 3.1. These parts are integrated in a parse tree with
respect to the grammar rules of the WACFG. If there is no tree

Figure 5: Local KDE in the neighbourhood of an opening in the
main plane of the façade from figure 4. The maxima are incorpo-
rated for the identification of shape parameters of a window.

Algorithm 2: FIND PARTS – KDE-based identification of façade
parts
Input: Pts
Input: P lane
Input: PPts
Input: Nodes
Output: Nodes

1 Perform a KDE in x and z directions;
2 Calculate extrema in x and z directions;
3 Identify openings using minima mix and miz ;
4 Initialize bounding boxes BBs over centroids of the openings;
5 for bbi ∈ BBs do
6 Expand bbi in 4 directions till minimal points or next (max and

maz in according direction) reached;
7 Define a nodei using size(bbi);
8 Add nodei to a list TempNodes;

9 [FPts,F loors] = SEGMENT IN FLOORS(Pts, max, maz ,
TempNodes);

10 for fi ∈ F loors do
11 [FP lane, CFPts] = ESTIMATE FLOOR PLANE(FPts);
12 [FiNodes] = FIND PARTS(Pts, F loorP lane, CFPts,

TempNodes);
13 Update TempNodes using FiNodes;

14 Let Nodes = TempNodes;

already available, e.g. at the beginning of a UAV mission, a
parse tree Tree is predicted using a stochastic and geometric
reasoning based on few observations such as the façade width
(Loch-Dehbi et al., 2013). If a parse tree already exists, the re-
sulting building parts Nodes from the building part detectors
are regarded as leaves of the current parse tree. They represent
together with the WACFG and the parse tree Tree the input of
algorithm 3 for the parse tree transformation. Since the parse tree
represents a directed acyclic graph, our approach is inspired by
the ideas of Graph transformation (Löwe, 1993; Heckel, 2006)
in order to adapt the tree structure based on the concept of trans-
formation rules. The latter consist of a start and a target graph
that are mapped using transitional rules.

The first step in order to integrate the new observations in the
model Tree is a diagnostic step. In this stage, nodes of the
current tree Tree that deviate from the new observed façade
parts Nodes are identified and labelled. To this end, the dis-
crepancy is measured based on a Hausdorff distance based anal-
ysis (Edgar, 2007). In this step, only nodes in the new observed
region are considered. The remaining nodes out of this scope re-
main unchanged and are maintained in the new tree. During the
node comparison, it is differentiated between four states of nodes:
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Figure 6: An incremental interpretation of the façade (Fa) of the Frankenforst manor in Vinxel/ Germany. On the left: Parse tree and
the belonging resulted interpretation of two observed floors (Fl) with windows (w) and doors (d). On the right: An updated parse tree
after the observation of a further floor.

Algorithm 3: TRANSFORM PARSE TREE – Construct or update
a parse tree
Input: WACFG . . . Weighted attribute context-free grammar
Input: Nodes . . . Observed and interpreted building parts
Input: Tree . . . Parse tree (Can be empty)
Output: Tree . . . most likely parse tree

1 [CNodes] = FIND CORRUPTED NODES(Tree,Nodes);
2 [CorrNodes] = CORRECT ATTRIBUTES(Tree,CNodes);
3 DELETE NOT SUPPORTED NODES(Tree, CNodes);
4 [Tree] = PROPAGATE ERROR ON DELETE(AG,Tree);
5 [Tree] = ADD NODES(Tree,CorrNodes);
6 [Tree] = PROPAGATE ERROR ON ADD(WACFG,Tree);

error-free, error-prone, erroneous and new. Error-free nodes are
those still having the same location and shape parameters taking
the observations uncertainty into account. In this case old nodes
are confirmed by new observations and retained in the so far con-
structed tree. Error-prone nodes are characterised with nearby
location values and one or more significantly different shape pa-
rameters. Nodes that are no longer supported by the new obser-
vations, are denoted as erroneous. Furthermore, new nodes are
those without a correspondence in the tree.

The diagnostic step leads to a list of corrupted nodes CNodes
and their attributes that will be corrected in a subsequently step
leading to a list CorrNodes together with the new nodes. The
corrected attributes that affect other parse tree nodes are consid-
ered, the according changes are then propagated based on the se-
mantic rules of WACFG. The WACFG describes the taxonomic
and partonomic structure of façades by a weighted context-free
grammar (WCFG) and the substantial topological as well as ge-
ometric constraints which are described using Statistical Rela-
tional Learning (SRL) methods namely Markov Logic Networks
(MLNs) (Dehbi et al., 2016).

In the next step, erroneous nodes from CNodes and possibly
belonging parse tree parts are deleted. That would lead to con-
flicts between the current tree structure and the underlying gram-
mar rules. In order to deal with such cases, a rule selection is
performed based on the rule weights as well as the floor infor-
mation derived during the identification stage in section 3.1 lead-
ing to a most likely rule. If the conflict cannot be resolved, the
according parse tree part is deleted from Tree. The belonging

nodes are retained in a separate node list giving the possibility for
a later consideration. Geometric and topological errors caused by
deletion of nodes or tree parts are again considered and corrected
using the attributed part of the WACFG. Constraints such as align-
ments of windows in floors or attributes identity are ensured using
MLNs.

The list CorrNodes is now considered. Based on the floor-
wise segmentation and the rule’s likelihood, a rule selection is
performed. Hereby, rules with higher node support are preferred.
Based on this deduced parse tree structure, constraints are en-
sured in a same manner as in the deletion case using the semantic
rules of the WACFG.

Figure 6 illustrates a scenario of an incremental interpretation of
the main façade of the Frankenforst manor in Vinxel / Germany.
At first, two floors have been observed. The according interpre-
tation so far is shown as a parse tree on the left side of the figure.
The incorporation of a new observed floor triggers an adaptation
of the tree structure as shown in the parse tree on the right. The
shape parameters are also adequately updated.

4 CONCLUSION

This paper introduced a novel approach for the automatic in-
cremental refinement of façade models. The refinement process
is based on a weighted attribute context-free grammar. In con-
trast to other approaches that expect an offline data interpreta-
tion, the presented method deals with continuous observations
coming from an unmanned aerial vehicle (UAV). Prior knowl-
edge on façade parts (e.g. windows) is given by non-parametric
distributions using a kernel density estimation (KDE). These dis-
tributions are iteratively adapted using new observations. Ac-
cordingly, available parse trees acquired from previous interpre-
tation steps are adapted with respect to the rules of the grammar.
The falsification or rejection of model hypotheses is supported as
well. As long as the level of detail is continuously improved, the
geometrical, semantic and topological consistency is ensured.

Up to now, the presented approach paid attention to façades that
can be split into floors. The underlying WACFG supports sev-
eral splitting schemes, e.g. column-wise. In order to take more
sophisticated façades into consideration an extension of the rule
selection strategy is required.
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Gröger, G. and Plümer, L., 2012. Transaction rules for updat-
ing surfaces in 3d gis. ISPRS Journal of Photogrammetry and
Remote Sensing 69, pp. 134–145.
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Martinović, A. and Van Gool, L., 2013. Bayesian grammar
learning for inverse procedural modeling. In: Computer Vi-
sion and Pattern Recognition (CVPR), 2013 IEEE Conference on,
pp. 201–208.
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