
CLASSIFICATION OF INFORMAL SETTLEMENTS THROUGH THE INTEGRATION 

OF 2D AND 3D FEATURES EXTRACTED FROM UAV DATA 

 

C.M. Gevaert a*, C. Persello a, R. Sliuzas a, G. Vosselman a 

 
a Dept. of Earth Observation Science, ITC, University of Twente, Enschede, The Netherlands -  

c.m.gevaert, c.persello, r.sliuzas, george.vosselman@utwente.nl 

 

Commission III, WG III/4 

 

 

KEY WORDS: informal settlements, image classification, point cloud, aerial imagery, Unmanned Aerial Vehicles (UAV), feature 

extraction, support vector machine 

 

 

ABSTRACT: 

 

Unmanned Aerial Vehicles (UAVs) are capable of providing very high resolution and up-to-date information to support informal 

settlement upgrading projects. In order to provide accurate basemaps, urban scene understanding through the identification and 

classification of buildings and terrain is imperative. However, common characteristics of informal settlements such as small, irregular 

buildings with heterogeneous roof material and large presence of clutter challenge state-of-the-art algorithms. Especially the dense 

buildings and steeply sloped terrain cause difficulties in identifying elevated objects. This work investigates how 2D radiometric and  

textural features, 2.5D topographic features, and 3D geometric features obtained from UAV imagery can be integrated to obtain a high 

classification accuracy in challenging classification problems for the analysis of informal settlements. It compares the utility of pixel-

based and segment-based features obtained from an orthomosaic and DSM with point-based and segment-based features extracted 

from the point cloud to classify an unplanned settlement in Kigali, Rwanda. Findings show that the integration of 2D and 3D features 

leads to higher classification accuracies.  

 

1. INTRODUCTION 

Informal settlements are a growing phenomenon in many 

developing countries and the effort to promote the standard of 

living in these areas will be a key challenge for the urban planners 

of many cities in the 21st century (Barry and Rüther, 2005). The 

planning and execution of informal settlement upgrading projects 

require up-to-date base maps which accurately describe the local 

situation (UN-Habitat, 2012). For example, the identification of 

buildings gives an indication of the population in the area, 

classifying terrain identifies footpaths for accessibility and utility 

planning or free space for the location of infrastructure. However, 

such basic information is often lacking at the outset of upgrading 

projects (Pugalis et al., 2014), thus hindering the amelioration of 

the impoverished conditions in these areas. To create such base 

maps, satellite imagery is a powerful source of information 

regarding the physical characteristics of an informal settlement 

(Taubenböck and Kraff, 2013). However, as slums are often 

characterized by high building densities, small irregular 

buildings, and narrow footpaths, the spatial resolution provided 

by sub-meter satellite imagery is usually not sufficient (Kuffer et 

al., 2014). To this end, Unmanned Aerial Vehicles (UAVs) are 

useful as they can acquire imagery in a very flexible manner, and 

provide a cheap alternative to manned aerial surveys in order to 

generate orthomosaics with sub-decimeter resolution. 

Furthermore, UAV imagery can provide different data products 

like: a 2D orthomosaic, a 2.5D Digital Surface Model (DSM), 

and a 3D point cloud, resulting in a convenient alternative to the 

combined use of aerial images and LiDAR data. The question is: 

how to optimally integrate features from these datasets and assess 

their relative importance in order to accurately classify informal 

settlements to support upgrading projects? 

 

The provision of 3D data is an important advantage of UAVs, as 

the inclusion of height information has been shown to greatly 

increase classification accuracy of urban scenes (Hartfield et al., 
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2011; Longbotham et al., 2012; Priestnall et al., 2000). Especially 

the extraction of a normalized DSM (nDSM), which gives the 

elevation of pixels above the terrain, is useful for identifying 

elevated objects in urban scenes (Weidner and Förstner, 1995) 

and distinguishing between low vegetation and high vegetation 

(Huang et al., 2008). A recent overview of building detection 

methods based on aerial imagery and Airborne Laser Scanning 

(ALS) data indicates that state-of-the-art techniques which have 

access to both imagery and height information can identify large 

buildings with a very high correctness and completeness 

(Rottensteiner et al., 2014). However, these building detection 

algorithms face difficulties when the buildings are relatively 

small (i.e. less than 50m²), or when the height of the terrain is not 

uniform on all sides of the building due to sloped terrain. 

Unfortunately, informal settlements are often characterized by 

these challenging conditions, which emphasizes the need to 

investigate the synergies between 2D and 3D features to fully 

exploit the available UAV data and obtain a high classification 

accuracy. 

 

Existing strategies regarding the combination of 2D and 3D 

features are often based on the integration of LiDAR with 

multispectral aerial imagery. Yan et al. (2015) cite a number of 

studies where nDSM data derived from LiDAR was combined 

with vegetation indices from multispectral imagery to classify 

urban scenes (e.g. Hartfield et al., 2011). Other methods make 

use of elevation images which directly project the 3D points onto 

a horizontal plane without taking into account interpolation 

techniques which are typically applied for DSM extraction. 

Processing this summarized information in 2D space rather than 

the original 3D space can decrease computing costs (Serna and 

Marcotegui, 2014). In another example, Weinmann et al. (2015) 

describe a generic framework for 3D point cloud analysis which 

include spatial binning features or accumulation maps, which are 

similar to elevation images. They define a horizontal 2D grid and 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-317-2016

 
317



calculate: the number of points within each bin, maximum height 

difference and standard deviation of height difference within 

each cell. Serna and Marcotegui (2014) use elevation maps to 

define the: minimum elevation, maximum elevation, elevation 

difference, and number of points per bin as a basis for detecting, 

segmenting and classifying urban objects. However, this method 

assumes the ground is planar. Guo et al. (2011) combined 

geometrical LiDAR features and multispectral features from 

orthoimagery to analyse which features were most relevant to 

classify an urban scene into: building, vegetation, artificial 

ground, and natural ground. They use elevation images to include 

the inclination angle and residuals of a local plane, but found that 

the maximum height difference between a LiDAR point and all 

other points within a specified radius was the most relevant 

feature.  

 

There are two main limitations of the previous methods. Firstly, 

most methods explicitly or inherently assume the terrain to be 

planar. Attributes such as the maximum absolute elevation or 

height above the minimum point within a horizontal radius, 

which are often considered to be the most relevant features (Guo 

et al., 2011; Yan et al., 2015) will not serve to distinguish 

between buildings and terrain in a settlement located on a steep 

slope. Secondly, the methods generally focus on pixel-based 

features, or local neighbourhood features. However, Vosselman 

(2013) and Xu et al. (2014) indicate that segment-based point 

cloud features provide important supplementary information to 

pixel-based attributes. Similarly, Myint et al. (2011) found that 

2D object-based attributes significantly improve the 

classification of urban scenes from VHR satellite imagery. 

Studies investigating the importance of features for urban scene 

classification should therefore consider segment-based features 

as well as point-based features. 

 

The objective of this paper is to integrate the different 

information sources (i.e. UAV point cloud, DSM, and 

orthomosaic) and to analyse which 2D, 2.5D, and 3D feature sets 

are most useful for classifying informal settlements, a setting 

which challenges the boundaries of existing building detection 

algorithms. Feature sets describing 2D radiometrical and textural 

features from the orthomosaic, 2.5D topographical features from 

the DSM, and 3D features from the point cloud are selected from 

literature. Both pixel- or point-based features and segment-based 

features are included. The suitability of the feature sets for 

classifying informal settlements are tested through their 

application to two classification problems. The classification is 

performed using Support Vector Machines (SVMs), which have 

been shown to be very effective in solving nonlinear 

classification problems using multiple heterogeneous features. 

The first classification problem identifies major objects in the 

scene (i.e. buildings, vegetation, terrain, structures and clutter), 

whereas the second attempts to describe semantic attributes of 

these objects such as roof material, types of terrain, and specific 

structures such as lamp posts and walls. The study is an 

unplanned settlement in Kigali, Rwanda which comprises of 

densely-packed, small and irregular buildings on a sloping 

terrain.  

 

2. METHODOLOGY 

2.1 Data sets 

A DJI Phantom 2 Vision+ UAV was utilized to obtain imagery 

over an unplanned settlement of 86 ha in Kigali, Rwanda in May, 

2015. The characteristics of the settlement include small 

buildings (an average of 71.6 m², 41% are smaller than 50 m²), 

often separated by narrow footpaths. Typical roof materials 

corrugated iron sheets, or tile- or trapezoidal-shaped galvanized 

iron sheets that are often cluttered with objects such as stones. 

The area itself is located on a steep slope, and trees partially cover 

the roofs in many areas. The quadrocopter was delivered with a 

14 Megapixel RGB camera with a fish-eye lens (FOV = 110°). 

Each individual image has a resolution of 4608 x 3456 pixels, 

and they were acquired with approximately 90% forward- and 

70% side-overlap. The images were processed with Pix4D 

software to obtain a point cloud with a density of up to 450 points 

per m³. A DSM and an 8-bit RGB orthomosaic with a spatial 

resolution of 3 cm were also obtained.  

 

To develop the classification algorithm, ten 30 x 30 m2 tiles were 

selected in the study area in such a manner as to display the 

heterogeneity of the objects in the settlement. The first 

classification identifies the main objects in the area (Table 1). 

The second classification targets more specific semantic 

attributes which could be of interest for upgrading projects. For 

example, different types of roof material may be an indicator for 

construction quality, the presence of street lights are important 

for the sense of security in the area, and free-standing walls may 

indicate plot boundaries. The clutter class consists of temporary 

objects on the terrain, such as cars, motorbikes, clothes lines with 

drying laundry, and other miscellaneous objects. A training set of 

1000 pixels distributed over all ten tiles was collected. Reference 

data was created by manually labelling pixels according to the 

10-class problem. These labels were aggregated to the 5-class 

labels as indicated in Table 1. In cases where the orthomosaic 

clearly indicated terrain, but the type of terrain was unknown 

(e.g. due to shadowed footpaths between buildings), the points 

were included in the reference data of the 5-class but not the 10-

class problem. In total, approximately 89.1% of the image tile 

pixels were labelled according to the 5 classes. The class of the 

remaining pixels was difficult to identify visually and so they 

were left unlabelled.  

 

5-class 10-class 

Building Corrugated iron roofs  

 Galvanized iron (tile) 

 Galvanized iron (trapezoidal) 

Vegetation High vegetation 

 Low vegetation 

Terrain Bare surface 

 Impervious surface 

Structures Lamp posts 

 Free-standing Walls 

Clutter Clutter 

Table 1. Classes defined in the two classification problems.  

 

2.2 2D and 2.5D feature extraction from the orthomosaic 

and DSM 

2D radiometric, textural, and segment-based features were 

extracted from the orthomosaic, and 2.5D topographical features 

were extracted from the DSM (see the overview in Table 2). The 

radiometric features consisted of the input R, G, and B colour 

channels as well as the normalized values r, g, and b, calculated 

by dividing the colour channel by the sum of all three channels. 

The excess green (ExG(2)) vegetation index (Woebbecke et al., 

1995) was also calculated, as Torres-Sánchez et al. (2014) 

indicated that this vegetation index compared favourably to other 

indices for vegetation fraction mapping from UAV imagery. 

ExG(2) is calculated as follows: 

 

𝐸𝑥𝐺(2) = 2𝑔 − 𝑟 − 𝑏    (1) 
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Where r, g and b are the normalized RGB channels described 

above. 

 

Applying a top-hat mathematical morphological filter to a DSM 

will give the height of a pixel above the lowest point within the 

area delimited by a structuring element. The size of the 

structuring element must be large enough to cover the entire 

object in question, but small enough to maintain the variation 

present in surface topography (Kilian et al., 1996). This size can 

be set in an automatic way based on granulometry to target a 

specific type of object such as buildings (Li et al., 2014). 

However, as the present classification problem targets objects of 

varying sizes, a circular top-hat filter is applied multiple times 

using structuring elements of varying radii r : from 0.25 to 1.0 m 

at 0.25 m intervals, and from 1 to 10 m at 1 m intervals. Previous 

research has shown such an approach applying DSM top-hat 

filters with varying sizes to be successful in classifying urban 

scenes (Arefi and Hahn, 2005). 

 

Textural features of the orthomosaic are described by Local 

Binary Patterns (LBP) (Ojala et al., 2002). The algorithm 

analyses the N neighbouring pixels at a radius of R from the 

centre pixel. Each neighbour is assigned the value of 1 if it is 

higher than the centre pixel and 0 if it is lower, defining a binary 

code of 2N bits. Rotational invariance is achieved by applying a 

circular shift, or bitwise rotation, to the code to obtain the 

minimal binary value. To reduce the number of unique codes, 

uniform patterns are defined as the codes containing a maximum 

of two binary 0/1 transitions. This allows for the definition of 

N+2 uniform, rotationally-invariant binary patterns, each of 

which can be assigned a unique integer. These LBP features are 

denoted as 𝐿𝐵𝑃𝑁,𝑅
𝑟𝑖𝑢2. For a more detailed description of the 

calculation of LBP texture features see Ojala et al. (2002). Due 

to the binary nature of these patterns, they fail to capture the 

contrast between the centre pixel and its neighbours. Therefore, 

Ojala et al. (2002) recommend combining various 𝐿𝐵𝑃𝑁,𝑅
𝑟𝑖𝑢2 

operators with a variance measure VARN,R (2), which compares 

the grayscale values of each neighbour (gN) to the average 

grayscale value in the local neighbourhood (µ). 

 

𝑉𝐴𝑅𝑁,𝑅 =
1

𝑁
∑ (𝑔𝑁 − 𝜇)2𝑁−1

𝑁=0 , 𝑤ℎ𝑒𝑟𝑒 𝜇 =
1

𝑁
∑ 𝑔𝑁

𝑁−1
𝑁=0  (2) 

 

To describe the local texture using LBPs, a sliding window is 

applied to the orthomosaic to locally compute the relative 

occurrence of each N+2 pattern. Here, we apply two sliding 

windows, one of 3x3 pixels and the other 10x10 pixels. For this 

analysis, the standard LBP combination described in Ojala et al. 

(2002) were utilized, consisting of: 𝐿𝐵𝑃8,1
𝑟𝑖𝑢2., 𝐿𝐵𝑃16,2

𝑟𝑖𝑢2., 

𝐿𝐵𝑃24,3
𝑟𝑖𝑢2., and the corresponding VAR features. 

 

The orthomosaic was segmented using the mean shift algorithm  

(Comaniciu and Meer, 2002). The algorithm transforms the RGB 

color values into L*u*v colorspace, and applies a kernel function 

to identify modes in the data. The algorithm requires two 

parameters to define the kernel bandwidths: hs which represents 

the spatial dimension, and hr which represents the spectral 

dimension (Comaniciu and Meer, 2002). These parameters were 

set to 20 and 5 respectively, based on experimental analysis. The 

segment features included in the classification consisted of the 

pixel-based radiometric features (i.e. R, G, B, r, g, b and ExG(2) 

) averaged over each segment. 

 

2.3 Feature extraction from the 3D point cloud 

To include features from the point cloud in the classification, 

spatial binning was first applied to obtain: (i) the number of 

points per bin, (ii) the maximal height difference, and (iii) the 

standard deviation of the heights of all the points falling into the 

bin. The geographical grid used to define the bins was determined 

by the orthomosaic, so that each bin was exactly aligned to an 

image pixel. To reduce the number of empty bins, the attributes 

of each point were assigned to the corresponding bin and the 8 

directly neighbouring pixels. 

 

Planar segments in point clouds have demonstrated their 

usefulness in the identification of building roofs and walls in 

urban scenes (Vosselman, 2013). The planar segment features 

were obtained by applying a surface growing algorithm to the 

point cloud using a 1.0 m radius and a maximum residual of 30 

cm. The segment number of the highest point per bin was used to 

assign the segment features to the pixel. This was based on the 

premise that if there are multiple layers in a point cloud (terrain 

and an overhanging roof, for example), it is the highest point in 

the point cloud (i.e. corresponding to the roof) which will be 

visible in the orthomosaic. For each segment, the number of 

points per segment, average residual, and inclination angle were 

calculated. Furthermore, the maximal height difference per bin of 

the segment (from the previous spatial binning features) was 

assigned to the entire segment. A nearest neighbour interpolation 

was utilized to assign a segment number, and the corresponding 

segment features, to empty pixels. Segment features were only 

calculated for segments which were identified at least once as 

being the highest segment in a bin, but all of the segment points 

pertaining to that segment were included in the calculation of the 

segment features. 

 

The final step was to add more descriptive 3D-shape attributes 

from the point cloud into the image. Weinmann et al. (2015) 

present a set of 21 generic point cloud features. First, the optimal 

neighbourhood was calculated for each point by iteratively 

increasing the number of neighbouring points in a 3D k-nn search 

to maximize the Shannon entropy of the normalized eigenvalues 

(e1, e2, and e3) of the 3D covariance matrix (3). 

 

𝐸𝜆 =  −𝑒1 ln(𝑒1) − 𝑒2 ln(𝑒2) − 𝑒3ln (𝑒3) (3) 

 

In this case, a minimum of 10 and maximum of 100 neighbours 

were selected, as suggested by Weinmann et al. (2015) and 

Demantké et al. (2011). Using this optimal neighbourhood size, 

Dim Code Features  Description 

2D R Radiome

tric 

Input image/DSM values, 

normalized color channels 

and vegetation index 

 T Textural LBPu,i
ri and VARu,i

ri summarized 

over a local window  

 2S 2D 

segment 

Mean-shift segmentation 

2.5D D Topogra

phic 

Top-hat filter over DSM with a 

disk-shaped structuring 

element of radius r 

3D 3B Spatial 

binning  

Spatial binning to summarize 3D 

points in image grid 

 3S Planar 

segments  

Planar segment features from 

point cloud 

 3P Point-

based 

3D Point-based features 

Table 2. List of extracted features used in the classification 

problem. Dim. = dimension of input data, where 2D indicates 

the orthomosaic, 2.5D indicates the DSM, and 3D indicates 

the point cloud. See the text for details. 
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3D geometric, 3D shape, and 2D shape features were calculated. 

The 3D geometric features consisted of the maximum altitude 

difference and standard deviation of the height values of 

neighbouring points. The absolute maximum altitude feature was 

excluded, as the study area is sloped. From the 3D covariance 

matrix, combinations of the normalized eigenvectors are used to 

describe the linearity 𝐿𝜆 (4), planarity 𝑃𝜆 (5), scattering 𝑆𝜆 (6), 

omnivariance (7), anisotropy (8), eigenentropy (9), sum 

eigenvalues (10), and change of curvature (11).  

 

𝐿𝜆 = (𝑒1 − 𝑒2)/𝑒1        (4) 

𝑃𝜆 = (𝑒2 − 𝑒3)/𝑒3        (5) 

𝑆𝜆 = 𝑒3/𝑒1      (6) 

𝑂𝜆 = √𝑒1𝑒2𝑒3
3       (7) 

𝐴𝜆 = (𝑒1 − 𝑒3)/𝑒1     (8) 

𝐸𝜆 =  − ∑ 𝑒𝑖 − ln (𝑒𝑖)3
𝑖+1     (9) 

Σ𝜆 = 𝑒1 + 𝑒2 + 𝑒3   (10) 

𝐶𝜆 = 𝑒3/(𝑒1 + 𝑒2 + 𝑒3)  (11) 

 

Furthermore, the sum and ratio of eigenvalues in the 2D 

covariance matrix obtained by projecting the points in the 

neighbourhood to a local plane were calculated. The spatial 

binning features described by the framework were not applied, as 

they are similar to those calculated previously. To speed up 

computation speed, these 3D features were only calculated for 

the highest 3D point per pixel identified in the spatial binning 

step, again assuming that the highest point will represent the 

object which is visible in the UAV orthomosaic. 

 

2.4 Feature selection and classification 

Feature sets are grouped based on the input data used to calculate 

the features (2D orthomosaic, 2.5D DSM, or 3D point cloud), the 

application of a feature selection algorithm, and whether or not 

image-based segment features are included (Table 3). The first 

two groups simulate practices which use either the orthomosaic 

and DSM or point cloud features and RGB information to classify 

the scene. The next two groups represent an integration of various 

point-cloud based features into the image grid. To reduce the 

computational cost and prevent over-fitting the classifier, the 

Correlation-Based Feature Selector (CFS) is also applied to these 

sets. It is a multi-variate feature selector, screening features for a 

maximal correlation with the class while reducing redundancy 

between features. It was utilized with a best first forward feature 

selection, stopping when five consecutive iterations show no 

improvement regarding the correlation heuristic (Hall, 1999). 

 

For all the previous sets, the features are summarized per pixel of 

the image grid. However, the sixth group of feature sets also 

includes the Mean Shift segment radiometric features. This 

includes a feature set (R2ST) where the mean-shift segments are 

used to summarize the LBP textures into normalized histograms, 

rather than the moving window. Finally, there are feature sets 

which integrate both pixel-based, segment-based, and point-

cloud based features. In this case, image-based segments are 

again used to summarize the information from the 3D features.  

 

The supervised classification is performed using a SVM classifier 

with an RBF kernel implemented in LibSVM (Chang and Lin, 

2011). SVM classifiers maximize the margins between classes 

while minimizing training errors, a method which is proven to 

obtain high classification results and generalization capabilities 

even when few training samples are utilized (Bruzzone and 

Persello, 2010). To train the SVM classifiers, all the features 

were normalized to a 0-1 interval. Then, a 5-fold cross-validation 

was used to optimize the values of the soft margin cost function 

C from 2-5 to 215 and the spread of the Gaussian kernel γ from 2-

12 to 23 on the training set. 

 

The classification results are compared using the Overall 

Accuracy (OA) of the prediction maps compared to the reference 

data. Furthermore, confusion matrices as well as the correctness 

(12) and completeness (13) are used to compare the relations 

between number of true positives (TP), false negatives (FN) and 

false positives (FP) per class. 

 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (12) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (13) 

 

3. RESULTS 

The classification overall accuracy using the various feature 

classes is presented in Table 4, with the completeness and 

correctness of the 5-class and 10-class problems displayed in 

Tables 5 and 6, and 7 and 8 respectively. We first compare the 

feature sets which utilize only pixel-based information, similar to 

the combination of pixel spectra with elevation maps common to 

methods making use of LiDAR and multi-spectral imagery. 

When using only the DSM and RGB image for a pixel-wise 

classification, the combination of radiometric information with 

the set of DSM top-hat features (RD) clearly obtains the best 

results (Table 4), with an OA of 77.7% for the 10-class problem 

and 86.9% for the 5-class problem. The inclusion of point-cloud 

features to each individual pixel does not achieve the same 

accuracy as the cases which utilize DSM information. Even when 

including all the 2D and 2.5D (All2D_px) and 3D (All_px) does 

not improve the classification results. This is likely due to the 

inclusion of features which are not relevant for the classification, 

as using the CFS feature selection method improves the 

classification accuracy. A CFS applied to the 2D radiometric and 

textural and 2.5D topographical features (CFS_all2D) achieves 

the highest accuracy (87.7%) in the 5-class problem for all pixel-

based methods, though it is still achieves a lower accuracy than 

the RD feature set in the 10-class problem.  

 

Feature set 2D 2.5D 3D  

 R T 2S D 3B 3S 3P FS 

R X        

RT X X       

RD X   X     

RTD X X  X     

R3B X    X    

R3S X     X   

R3P X      X  

All_px X X  X X X X  

All2D_px X X  X     

All3D_px X X    X X X  

CFS_all X X  X X X X X 

CFS_all2D X X  X     

CFS_all3D X X    X X X X 

R2S X  X      

R2ST X X X      

R2ST_3B X X X  X    

R2ST_3S X X X   X   

R2ST_3P X X X    X  

R2ST_3all X X X  X X X  

R2ST_3all_CFS X X X  X X X X 

Table 3. Description of the feature sets used for the 

classification experiments. See Table 2 for a description of 

the feature set codes, FS indicates feature selection was 

applied.  
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The integration of segment-based features in addition to the 

point-based features significantly improves the classification 

results. The 5-class OA jumps from 87.7% for CFS_all2D to 

90.8% for R2ST which uses  the mean-shift segments to compute 

the LBP-feature normalized histograms. The 10-class OA is also 

higher, 81.8% in this case compared to maximum of 77.7% when 

not including the mean-shift segment features. If the spatial 

binning, planar segment, and 3D geometric features from the 

point cloud are also summarized by the segments (R2ST_3all), 

we achieve the highest OA of 84.0% in the 10-class problem and 

91.5% in the 5-class problem. The largest gain of including the 

planar segment 3D information (R2ST_3S) is observed in the 10-

class problem by reducing the confusion between tile and 

corrugated iron roofs, low vs high vegetation, and bare surface 

versus corrugated iron roofs, as well as improving the 

identification of walls (Tables 7 and 8). The point-based 3D 

shape features (R2ST_3P) improved the identification of lamp 

posts. 

 

The results also illustrate which classes remain difficult to 

identify. In the 5-class classification problem, the structure and 

clutter classes are often confused with building and terrain. The 

correctness was 0.26 for structures and 0.27 for clutter using the 

R2ST_3all feature set (Table 5). The completeness of these 

classes was better, achieving values of 0.66 and 0.58 respectively 

when using the R2ST_3all feature set (Table 6). Structures were 

most often confused with building roofs and clutter was most 

often assigned to terrain pixels. Nonetheless, the correctness and 

completeness of the building, vegetation, and terrain classes was 

more than 0.88 for all features sets which included the mean-shift 

segment features. The R2ST_3all identified building pixels with 

a correctness of 0.98 and a completeness of 0.94. 

 

The 10-class problem displayed difficulties in identifying lamp 

posts, walls, type of terrain, and high- versus low-vegetation.  

Interestingly, the RD feature set obtained the highest 

completeness for the lamp post class. As lamp posts have a 

standard size, these objects were relatively easily recognized by 

the DSM top-hat features. The correctness was still only 0.14, 

due to the confusion between lamp posts and protruding tree 

branches of a similar planimetric dimension. The R2ST_3all 

feature set had the second highest completeness for lamp posts at 

0.98, and the highest correctness at 0.31. Corrugated iron roofs 

were often misclassified as walls, most likely because the 

overlapping iron sheets sometimes displayed narrow white 

rectangular patches similar to free-standing walls in the scene 

(Figure 1). Walls were best identified by the R2ST_3S, 

R2ST_3P, and R2ST_3all feature sets, which is possibly due to 

the inclusion of planarity and normal inclination angle features in 

the planar segment and local shape features. Regarding the terrain 

classes, results indicate that for all feature sets, there was much 

confusion between bare terrain and impervious surfaces. This is 

a common problem in remote sensing, as shadows from 

surrounding buildings and spectral similarity with pervious 

surfaces hinders the identification of impervious surfaces (Weng, 

2012). 

 

4. DISCUSSION 

4.1 Importance of summarizing texture and 3D features 

over mean-shift segments 

Out of all the feature sets, those which used a mean-shift 

segmentation to summarize texture or 3D features greatly 

increased the classification accuracy. The inclusion of local 

histogram texture features summarized by a moving window 

decreases the classification accuracy compared to only using 

radiometric features (i.e. RT vs. R in Table 4), but increases the 

accuracy when summarized according segment boundaries (i.e. 

R2ST vs. R2S in Table 4). As the extent of the moving window 

is fixed, it will summarize the textures of distinct classes at object 

borders, whereas this problem is avoided when using segments 

to summarize textural information. The discriminative power of 

the LBP texture features summarized per segment is possibly due 

to the high resolution of the UAV imagery, in which the texture 

of the corrugated iron roofs is clearly visible. This facilitates the 

distinction between building roofs, wall structures, and terrain. It 

is especially notable if one takes into account that for the R2ST 

feature set, no features derived from the DSM or point cloud are 

included, and yet it achieves a high classification accuracy. 

Summarizing the 3D features over the segments also serves to 

Feature set N Overall Accuracy (%) 

  5-class 10-class 

R 7 81.0 71.3 

RT 75 78.6 62.4 

RD 20 86.9 77.7 

RTD 88 84.8 73.2 

R3B 10 82.3 70.7 

R3S 11 81.7 69.4 

R3P 21 81.8 66.9 

All_px 109 82.0 70.0 

All2D_px 88 85.1 72.3 

All3D_px 96 24.0 31.0 

CFS_all 42 83.1 70.0 

CFS_all2D 31 87.7 77.1 

CFS_all3D 13 64.1 54.4 

R2S 14 84.2 76.0 

R2ST 82 90.8 81.8 

R2ST_3B 85 90.7 82.3 

R2ST_3S 86 91.1 83.7 

R2ST_3P 96 89.9 82.4 

R2ST_3all 103 91.5 84.0 

R2ST_3all_CFS 34 91.1 82.9 

Table 4. Overall Accuracies obtained by the various feature 

sets for the different classification problems. N = the number 

of features per set.  

Feature set Build. Veg. Terrain Struct. Clutter 

RD 0.91 0.85 0.88 0.18 0.20 

CFS_all2D 0.96 0.94 0.85 0.14 0.19 

R2S 0.97 0.92 0.82 0.07 0.17 

R2ST 0.97 0.95 0.89 0.21 0.25 

R2ST_3S 0.98 0.95 0.89 0.26 0.29 

R2ST_3B 0.97 0.95 0.90 0.17 0.26 

R2ST_3P 0.98 0.93 0.89 0.20 0.23 

R2ST_3all 0.98 0.93 0.92 0.26 0.27 

Table 5. Correctness of selected feature sets for buildings 

(Build.), vegetation (Veg.), terrain, structures (Struct.) and 

clutter 

Feature set Build. Veg. Terrain Struct. Clutter 

RD 0.94 0.87 0.79 0.55 0.21 

CFS_all2D 0.90 0.87 0.88 0.49 0.39 

R2S 0.84 0.91 0.84 0.47 0.49 

R2ST 0.93 0.90 0.91 0.54 0.41 

R2ST_3S 0.94 0.90 0.89 0.61 0.57 

R2ST_3B 0.93 0.90 0.91 0.57 0.48 

R2ST_3P 0.93 0.89 0.88 0.62 0.53 

R2ST_3all 0.94 0.92 0.89 0.66 0.58 

Table 6. Completeness of selected feature sets for buildings 

(Build.), vegetation (Veg.), terrain, structures (Struct.) and 

clutter 
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decrease noise in the point cloud, such as outliers formed by 

dense matching errors. The R2ST_3all feature set proves the 

utility of integrating both 2D and 3D features, especially in the 

context of the 10-class problem. 

 

4.2 Propagation of errors when using DSM features 

Regarding the pixel-based methods, the suite of DSM top-hat 

filters allows for the distinction of objects of various sizes, which 

could be used to target elevated objects of uniform size. 

However, errors in the DSM are then propagated to the 

classification. For example, in this case the Pix4D software 

utilized an Inverse Distance Weighting (IDW) interpolation 

incorporated to create the DSM, which causes the terrain next to 

or footpaths between buildings to be misclassified as building or 

vegetation since these pixels are falsely assigned a higher 

elevation value. This hinders the suitability of the classification 

for upgrading projects, which requires the delineation of 

individual buildings or identification of footpaths to analyse 

accessibility in the settlement. As the building outlines are clearly 

visible in the orthophoto, the mean-shift segmentation improves 

the delineation of building outlines, especially when combined 

with 3D features. Therefore, the use of 3D features summarized 

per image segment has a better classification performance than 

the features extracted from the DSM. 

 

4.3 Comparison of the three sets of 3D features 

Three groups of features were derived from the point cloud to 

represent 3D attributes: spatial binning, planar segment features, 

and 3D point features. Spatial binning is the easiest method to 

implement and improves the identification of lamp posts 

(R2ST_3B) as opposed to not using 3D features (R2ST). 

However, the inclusion of more sophisticated 3D features such as 

planar segment or point-based 3D shape features obtain better 

results. The inclusion of planar segments had the single largest 

benefit (compared with spatial binning or point-based shape 

features), as indicated by Table 4. In informal settlements, a 

single roof may consist of patches of materials displaying 

heterogeneous characteristics causing an over-segmentation of 

the mean shift based on radiometric features. However, these 

different materials may still generally lie on the same plane, 

allowing the 3D planar segments to summarize information over 

a larger area of the roof. However, errors in the point cloud 

segmentation, such as building roofs and terrain being assigned 

to the same plane in sloped areas, caused visible artefacts in the 

Feature set Buildings Vegetation Terrain Structures Clutter 

GI – tile CI GI-trap High Low Bare Imperv. Lamps Walls Clutter 

RD 0.90 0.92 0.91 0.88 0.37 0.75 0.74 0.14 0.14 0.13 

CFS_all2D 0.78 0.95 0.97 0.86 0.32 0.78 0.77 0.03 0.12 0.13 

R2S 0.74 0.95 0.99 0.91 0.34 0.75 0.70 0.11 0.08 0.13 

R2ST 0.84 0.96 0.99 0.93 0.43 0.79 0.83 0.10 0.21 0.14 

R2ST_3S 0.89 0.97 0.99 0.94 0.48 0.83 0.80 0.11 0.27 0.18 

R2ST_3B 0.89 0.96 1.00 0.95 0.44 0.79 0.84 0.19 0.19 0.16 

R2ST_3P 0.91 0.96 0.98 0.93 0.44 0.79 0.84 0.30 0.22 0.17 

R2ST_3all 0.97 0.96 1.00 0.90 0.45 0.78 0.85 0.31 0.30 0.18 

Table 7. Correctness of selected feature sets for the 10-class problem. (GI = galvanized iron, CI = corrugated iron, Imperv. = 

impervious) 

Feature set Buildings Vegetation Terrain Structures Clutter 

GI – tile CI GI-trap High Low Bare Imperv. Lamps Walls Clutter 

RD 0.82 0.91 0.95 0.65 0.89 0.58 0.62 0.99 0.64 0.43 

CFS_all2D 0.74 0.88 0.85 0.64 0.59 0.64 0.65 0.57 0.53 0.67 

R2S 0.78 0.83 0.91 0.66 0.72 0.71 0.62 0.57 0.45 0.62 

R2ST 0.82 0.91 0.93 0.70 0.75 0.78 0.66 0.62 0.55 0.61 

R2ST_3S 0.86 0.93 0.93 0.73 0.79 0.77 0.68 0.64 0.62 0.72 

R2ST_3B 0.81 0.91 0.93 0.69 0.78 0.76 0.70 0.70 0.57 0.66 

R2ST_3P 0.80 0.92 0.93 0.76 0.73 0.73 0.67 0.76 0.64 0.75 

R2ST_3all 0.85 0.94 0.92 0.76 0.82 0.69 0.67 0.98 0.63 0.77 

Table 8. Completeness of selected feature sets for the 10-class problem. (GI = galvanized iron, CI = corrugated iron, Imperv. = 

impervious) 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
  Building   Vegetation   Terrain   Structures   Clutter 

 

 

Figure 1. Sample classification results of the RD (a), R2ST (b) and R2ST_all (c) feature sets for the 5-class problem, with the 

RGB reference image (d). The yellow boxes indicate footpaths that are misclassified as buildings in RD due to DSM errors. 
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classification. The 3D point attributes had the highest impact on 

the correct classification of lamp posts, greatly reducing 

confusion with corrugated iron roofs. The integration of all 3D 

features (R2ST_all) has the highest performance, suggesting that 

the different 3D features provide complimentary information. 

Furthermore, although the feature selection algorithm increased 

the performance of the pixel-based classification, it did not 

enhance performance for the features set containing the 

combination of all radiometric, mean-shift segment, and 3D 

features.  

 

4.4 Remaining difficulties 

Although the classification obtained a high overall accuracy of 

91.5% on the 5 class problem and 84% on the 10 class problem, 

there were a number of classes which remain difficult to 

distinguish. All feature sets displayed a high confusion between 

low- vs. high-vegetation and bare vs. impervious surfaces. The 

former could be due to the characteristics of the scene, where 

grasses on steep slopes may mimic some of the characteristics of 

high vegetation: e.g. green, rounded shape, large height 

differences. Bare vs. impervious surfaces were also difficult to 

distinguish as many impervious surfaces may be partially 

covered in dirt and due to shadows. Furthermore, red-painted 

roofs and rusted iron sheets tend to be spectrally similar to the 

bare soils which tend to be reddish in colour. Other inaccuracies 

may be due to the definition reference data using the 

orthomosaic. Some objects, such as overhanging electricity 

wires, are not visible in the orthomosaic. This causes a 

misalignment in the 3D features computed in the point cloud and 

the 2D-derived reference data. Finally, it is also important to note 

that the current classification uses approximately 0.01% of the 

reference pixels for training the SVM model. Increasing the 

training set size could also improve classification accuracy.  

 

5. CONCLUSIONS AND RECOMMENDATIONS 

This work illustrates the importance of integrating 2D 

radiometric, textural, and segment features, 2.5D topographical 

features, and 3D geometrical features for informal settlement 

classification. Through the integration of these features, a high 

classification accuracy can be obtained, despite the challenging 

characteristics of the study area, which consists of small 

buildings, mixed and poor quality roof materials with clutter 

located on steep slopes. Various feature sets were applied to a 5-

class problem: buildings, vegetation, terrain, structures (free-

standing walls and lamp posts), and clutter (cars, laundry lines, 

miscellaneous objects on the ground); and a 10-class problem 

which distinguished roof material, high/low vegetation, 

pervious/impervious surfaces, and type of structure. Results 

indicate that using 2D radiometric features together with a series 

of top-hat morphological filters applied to the DSM had the 

highest accuracy of all pixel-based feature sets. However, 

inaccuracies in the DSM are propagated into the classification. 

Summarizing texture features over mean-shift segments obtains 

an improved classification even though it only requires the 2D 

RGB image as input. However, the best results are obtained when 

integrating point-based and segment-based 3D features from the 

point cloud with image-based radiometric and texture features 

summarized over segments. Especially in the more complex 10-

class problem, the necessity of more sophisticated feature sets 

including 3D features is evident (raising the OA from 81.8% to 

84.0%). 3D planar segment features facilitated the identification 

of walls and clutter, while point-based 3D shape attributes 

facilitated the classification of lamp posts.  

 

The observation that the highest classification accuracies were 

obtained by combining both 2D and 3D features demonstrates 

that both feature spaces contain complimentary information. As 

UAV imagery provides both a dense 3D point cloud and a high-

resolution orthomosaic, both can be exploited to improve scene 

understanding. This is especially important in challenging scenes 

such as informal settlements, where many assumptions 

fundamental to building extraction algorithms  (such as ground 

planarity and free-standing buildings) do not hold. Here, we 

demonstrate which feature sets can be combined to provide an 

accurate, up-to-date classification map of informal settlements, 

which is essential for upgrading projects. It also demonstrates the 

importance of using 3D features directly, which preserves narrow 

footpaths between buildings which may be lost if using features 

from interpolated DSMs. This is crucial in the context of informal 

settlement upgrading, as the narrow footpaths provide important 

information regarding the accessibility of houses to utilities and 

services. Other studies can use the current findings to direct their 

attention to certain feature sets according to the target classes of 

their specific classification problem. 

 

Further research focus on an analysis of how to fine-tune these 

features to enhance the recognition of various objects and 

materials in informal settlements. The synergies between 3D 

features obtained through spatial binning, planar segments and 

3D shape features could also be further investigated, analysing in 

which specific cases one or the other should be applied also 

considering the computational efforts. Application of this 

framework to different study areas could provide insights 

regarding the transferability and sensitivity to parameter tuning 

of the different features. Classification post-processing, which 

was considered outside the scope of the present study, could also 

reduce the presence of small pixel groups and improve the 

classification results.  
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