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ABSTRACT:

High resolution consumer cameras on Unmanned Aerial Vehicles (UAVs) allow for cheap acquisition of highly detailed images, e.g., of
urban regions. Via image registration by means of Structure from Motion (SfM) and Multi View Stereo (MVS) the automatic generation
of huge amounts of 3D points with a relative accuracy in the centimeter range is possible. Applications such as semantic classification
have a need for accurate 3D point clouds, but do not benefit from an extremely high resolution/density. In this paper, we, therefore,
propose a fast fusion of high resolution 3D point clouds based on occupancy grids. The result is used for semantic classification. In
contrast to state-of-the-art classification methods, we accept a certain percentage of outliers, arguing that they can be considered in the
classification process when a per point belief is determined in the fusion process. To this end, we employ an octree-based fusion which
allows for the derivation of outlier probabilities. The probabilities give a belief for every 3D point, which is essential for the semantic
classification to consider measurement noise. For an example point cloud with half a billion 3D points (cf. Figure 1), we show that our
method can reduce runtime as well as improve classification accuracy and offers high scalability for large datasets.

1. INTRODUCTION

Scene classification is important for a wide range of applications
and an open field in research concerning runtime, scalability and
accuracy. Accurate 3D point clouds are essential for robust scene
classification for state-of-the-art methods. It has been shown
that 3D point clouds from laser sensors are suitable for this task
(Schmidt et al., 2014). Unfortunately their acquisition is expen-
sive, laser sensors are relatively heavy and have a high energy
consumption.

The recent progress in image-based 3D reconstruction by Multi-
View Stereo (MVS) methods allows for the generation of 3D
point clouds from images, also in large numbers. High resolution
consumer cameras on Unmanned Areal Vehicles (UAVs) offer
a cheap acquisition of images from novel viewpoints. Unfortu-
nately, the generation of accurate 3D point clouds requires a high
computational effort.

Particularly, stereo methods like Semi-Global Matching (SGM)
(Hirschmüller, 2008) can generate disparity maps also from very
high resolution images. Recently, the fusion of large sets of dis-
parity maps (billion 3D points) to accurate 3D point clouds has
been demonstrated (Kuhn et al., 2013, Fuhrmann and Goesele,
2011, Fuhrmann and Goesele, 2014). Unfortunately, the process-
ing of such large point clouds on single PCs can take a couple of
days (Ummenhofer and Brox, 2015). For practical applications
such as scene classification, there is basically no need for a com-
putationally complex fusion to obtain accurate 3D point clouds.
We, thus, show that a fast fusion via occupancy grids essentially
speeds up the runtime and offers similar quality for semantic clas-
sification when considering probabilities.

Scene classification is an essential and intensively studied topic in
photogrammetry, remote sensing and geospatial information sci-

ence. Many approaches have been reported over the last decades.
Sophisticated classification algorithms, e.g., support vector ma-
chines (SVM) and random forests (RF), data modeling methods,
e.g., hierarchical models, and graphical models such as condi-
tional random fields (CRF), are well studied. Overviews are given
in (Schindler, 2012) and (Vosselman, 2013). (Guo et al., 2011)
present an urban scene classification on airborne LiDAR and mul-
tispectral imagery studying the relevance of different features of
multi-source data. An RF classifier is employed for feature evalu-
ation. (Niemeyer et al., 2013) proposes a contextual classification
of airborne LiDAR point clouds. An RF classifier is integrated
into a CRF model and multi-scale features are employed.

Recent work includes (Schmidt et al., 2014), in which full wave-
form LiDAR is used to classify a mixed area of land and water
body. Again, a framework combining RF and CRF is employed
for classification and feature analysis. (Hoberg et al., 2015)
presents a multi-scale classification of satellite imagery based
also on a CRF model and extends the latter to multi-temporal
classification. Concerning the use of more detailed 3D geome-
try, (Zhang et al., 2014) presents roof type classification based on
aerial LiDAR point clouds.

In this paper we present a robust and efficient analytical pipeline
for automatic urban scene classification based on point clouds
from disparity maps, which is adapted to utilize the additional
probability information for the points to improve the results.

The paper is organized as follows: In Section 2 we describe a
pipeline for the fast generation of high resolution 3D point clouds.
The fusion of point clouds and the derivation of per-point proba-
bilities are given in Section 3. Section 4 examines the use of point
cloud probabilities for urban scene classification. Experiments on
a large dataset (see Figure 1) are presented in Section 5. Finally
Section 6 gives conclusions and an outlook to future work.
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Figure 1. Village dataset: The four images on the left each show one of 296 36-megapixel input images acquired from an Unmanned
Aerial Vehicle (UAV). In the middle the noisy point cloud derived from disparity maps accumulating half a billion 3D points is given.
On the right the classification results for buildings (red), ground (gray), grass (blue) and trees (green) are presented. In spite of the huge
amount of input data, our method allows for the classification within a couple of hours on a single PC.

2. GENERATION OF 3D POINT CLOUDS

In this paper, we focus on the fast generation of 3D point clouds
from image sets which are suitable for semantic scene classi-
fication. We demonstrate that semantic classification of build-
ings, vegetation and ground for a complete village, captured by
hundreds of high-resolution images leading to half a billion 3D
points, is possible on a single PC within a couple of hours. Hence,
especially the runtime of the processing pipeline, e.g., for gener-
ation of the point cloud is important.

The first step in a dense point cloud generation pipeline is im-
age registration which can be done fast even for thousands of
wide baseline high-resolution images (Mayer, 2015). The fast
processing is possible as only a fraction of the image informa-
tion is needed for the estimation of camera poses. Additionally,
Graphics Processing Unit (GPU) implementations can speed up
the processing (Wu et al., 2011, Wu, 2013).

The next step is MVS. Disparity maps from pairs of the en-
tire set can be generated in parallel using multi-core systems.
Nonetheless, this task can be of high computational complex-
ity. Especially SGM (Hirschmüller, 2008) has been found to suc-
cessfully compute high-resolution disparity images in reasonable
time still retaining small details (Hirschmüller and Scharstein,
2009). Furthermore, for SGM, publicly available (Rothermel et
al., 2012), fast GPU (Ernst and Hirschmüller, 2008) and Field
Programmable Gate Array (FPGA) (Hirschmüller, 2011) imple-
mentations exist. The image set from Figure 1 with 296 36-
megapixel images can be processed at quarter resolution in only
two and a half hours on a single PC with the FPGA. An example
disparity map of an image of this set is shown in Figure 2.

Figure 2. Example image of the urban dataset (Figure 1) and
the corresponding disparity map from SGM considering twelve
overlapping images showing partly the same scene. The white
areas represent areas filtered by consistency checks in SGM.

The final step for the generation of accurate point clouds is dis-
parity map fusion. Even though recently scalable fusion meth-
ods have been presented (Fuhrmann and Goesele, 2011, Kuhn et

al., 2013, Fuhrmann and Goesele, 2014, Kuhn et al., 2014, Um-
menhofer and Brox, 2015) they are still not able to process large
amounts of data, e.g., billion of 3D points, within one day on a
single PC (Ummenhofer and Brox, 2015). To overcome the prob-
lem of costly MVS-based fusion of 3D point clouds, we leverage
occupancy grids (Moravec and Elfes, 1985) for the fusion argu-
ing that the redundancy and the high image resolution of specific
datasets are highly useful for applications like image classifica-
tion. Therefore, the fusion of 3D point clouds from disparity
maps including the derivation of probabilities and their use for
scene classification are the main focus of this paper.

3. FUSION OF 3D POINT CLOUDS

For an efficient scene classification from 3D point clouds it is
essential to get rid of redundancy. Additionally, the 3D point
cloud from disparity maps consists of noise as well as of outliers.
Our goal for point cloud fusion is the applicability to semantic
scene classification, because the use of high resolution images
for MVS leads to point densities from which the classification
does not automatically benefit. In this section we show, how point
clouds from individual images can be merged very fast via octree-
based occupancy grids at a resolution suitable for classification.

To this end, first the framework of occupancy grids is described
in Section 3.1. This is followed by a description of an octree-
based fusion of 3D points from a single disparity map and the
fusion of multiple disparity maps in Section 3.2. For the latter,
the occupancy grids are used to fuse the complete set of disparity
maps and for the derivation of point-wise probabilities suitable
for scene classification.

3.1 Occupancy Grids

Occupancy grids are especially important for real time applica-
tions and, hence, popular in the robotics community. They were
introduced by Moravec and Elfes (Moravec and Elfes, 1985) and
consist of a regular decomposition of an environment into a grid.
Within this representation a probability is derived for individual
grid cells that a cell is occupied depending on the number of mea-
surements assigned to the cell. This can be useful for the fusion
of redundant and noisy measurements and the classification of
outliers, e.g., for disparity map fusion.

Redundant measurements assigned to the same cell are merged
by means of probability theory. More precisely, a Binary Bayes
Filter (BBF) is used for the derivation of the probability of a cell
to be occupied. Initially, an inlier probability p is defined for a
measurement. The measurement, e.g., a 3D point derived from
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disparity and camera calibration, is transformed into the grid de-
pending on its position. To the corresponding cell the probability
p is assigned which represents the probability of the voxel to be
occupied.

When multiple measurements are assigned to one voxel cell, e.g.
redundant 3D points from multiple disparity maps, BBF allows
for the fusion of the probabilities. To this end, the so called log-
prob l is defined as l = ln( p

1−p
). The fusion is conducted incre-

mentally assuming uncorrelated data. Initially l can be set zero
corresponding to an occupation probability of 0.5. The logprob
at time t is defined as:

lt = lt−1 + ln(
p

1− p
) . (1)

The incremental formulation is a crucial advantage when fusing
larger sets of disparity maps, as never more than one input point
has to be considered. The overall logprob for n measurements
(input points) in one cell can be formulated as:

l =

n∑
i=1

ln(
pi

1− pi
) , (2)

and rises continuously with the number of input points. In our
case a constant inlier probability p derived from the disparity
maps is assigned to all 3D points. Hence, p

1−p
is constant and it

is sufficient to calculate it only once. After fusion of the n mea-
surements, the logprob can be transformed back to a final inlier
probability as follows:

p = 1− 1

1 + el
. (3)

Figure 3 demonstrates the fusion of one to three measurements
considering Equations 1 to 3.

0.60.69

0.60.6 0.77

Figure 3. Assuming an inlier probability of 60% for individual
points, overall inlier probabilities of 69% (two points) and 77%
(three points) follow considering BBF.

For a detailed description of Occupancy Grids and the BBF see,
e.g., the textbook of Thrun (Thrun et al., 2005).

3.2 3D Fusion of Multiple Disparity Maps

By considering the relative camera poses and the calibration of
the camera(s), a 3D point cloud can be derived from disparity
maps. Hence, the input of our proposed method is a set of point
clouds corresponding to the individual disparity maps of the im-
age set. For several applications it is useful to get rid of the high

point density inherent in the disparity maps. This could be done
by extraction of disparity maps from downscaled images. Be-
cause of varying distances to the scene and the resulting irregular
loss in quality, we present a reduction in 3D space. As it allows
parallel processing, we initially decompose the dense 3D point
clouds for all disparity maps separately, to reduce the amount of
data. This is our first step towards a fusion in 3D space via oc-
trees, where the space is decomposed according to a given voxel
size. For georeferenced data the voxel size can be defined by the
application and the necessary accuracy, e.g. 20 cm accuracy for
scene classification. Figure 4 shows an input point cloud from
the disparity map shown in Figure 2 and the decomposed point
cloud.

Figure 4. The left images shows the dense point cloud from the
disparity map shown in Figure 2. After decomposition in 3D the
density is adapted to the application of scene classification.

Octrees are suitable for fast decomposition as they offer logarith-
mic access time. In our method, the octree root represents the
entire input point cloud. For it, a bounding volume has to be de-
fined, which in our case is the bounding box of the input point
cloud. Hence, as a first step the bounding box is calculated via
the minimum and maximum x- y- and z-values of the 3D point
coordinates from the input point cloud. After defining the root
node, all points are traced through the octree down to the level of
the decomposition size. If multiple measurements are assigned
to a single voxel of the octree, the 3D coordinates are averaged.
We do not use a probabilistic fusion via occupancy grids at this
point, because the 3D point positions from a single disparity map
are highly correlated due to the regularization terms in SGM.
Hence, the geometric probabilistic fusion is only conducted on
point clouds from multiple disparity maps.

Additionally to the geometric position, the color of the 3D point
is essential for scene classification. To determine it, we combine
multiple RGB measurements from the images in the fusion pro-
cess by means of the median. Particularly, for all of three color
channels the median of all measurements from one image in one
cell is calculated separately. The median allows, in contrast to
the mean, sharper borders between different object classes and,
hence, is suitable for scene classification.

For fusion of the 3D point clouds and derivation of a point-
wise probability, especially the merging of the individual (de-
composed) point clouds is of interest as we assume them to be
uncorrelated. To this end, we transform the reduced point clouds
derived from the disparity maps into occupancy grids. For fast ac-
cess times, again, octrees are used whose root size can be easily
derived from the set of bounding boxes of the individual dispar-
ity maps. As in the decomposition, 3D coordinates in individual
voxels are averaged while the RGB color is fused via median.
Additionally, a probability is derived depending on the number
of measurements.

The incremental definition of the logprob fusion in the BBF (cf.
equation 1) allows for a sequential processing of the set of input
point clouds. This is an important benefit, as never more than
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Figure 5. The left three images show the reduced point clouds derived from three disparity maps. On the right the coded point cloud
representing inlier probabilities derived by means of an occupancy grid is given. The overlapping region in the center has higher
probabilities as it has votes from three point clouds. Only the red points are contained in all of the three input point clouds and, hence,
have the highest probability.

one input point has to be processed at a time which guarantees
high scalability even for large datasets. For all point clouds the
3D points are traced down to the given octree size, which equals
the size in the individual disparity map decompositions. If the
assigned voxel is not occupied, the defined inlier probability p is
assigned to the voxel in its logprob representation l. In case the
voxel is occupied, the logprobs are merged by the incremental
sum (see Equation 1). After the octree has been built from the
entire set of point clouds, the final point cloud with inlier proba-
bilities, derived from the logprobs by Equation 3 is used for scene
classification.

Figure 5 demonstrates the probabilistic derivation by an exam-
ple consisting of three input point clouds. The probability of 3D
points in the voxels rises continuously with the number of mea-
surements (see Figure 4).

In summary, the fusion allows for a probabilistic decomposition
of redundant data for multiple disparity maps. Additionally, to
the benefit of data reduction, the derived point-wise probabili-
ties are an essential prerequisite for a derivation of a stable scene
classification.

4. SEMANTIC CLASSIFICATION

The reconstructed and fused point cloud is the basis for scene
classification. The approach presented in (Huang and Mayer,
2015) is extended to utilize the additional probabilities assigned
to the data points. The proposed classification works on raster-
ized (with x-y the basis and z the elevation) and, therefore, re-
duced point clouds. The quality of the points indicated by the
given probabilities is employed to preserve the more meaningful
data points. Figure 6 compares the rasterized data derived from
non-probabilistic (left) and probabilistic (right, points with the
best probabilities) fusion.

4.1 Patch-wise Scheme

Patch-wise classification is inspired and employs the image seg-
mentation with superpixels (Ren and Malik, 2003, Felzenszwalb
and Huttenlocher, 2004, Moore et al., 2008). The latter is widely
used in image processing, but has not been adapted and employed
for 2.5D or 3D data. The main reason is that the superpixel seg-
mentation does not consider 3D geometry. It, thus, often results
in a false segmentation, i.e., superpixels that cross objects, which
directly leads to errors in the final result, which basically can-
not be corrected by any post-processing. To tackle this, a reli-
able oversegmentation with full 3D parsing of the geometry is
required. We follow the segmentation idea described in (Huang

Figure 6. Comparison of the rasterized data based on conven-
tional (left) and probabilistic fusion (right): Point clouds pre-
sented in color (top) and as elevation (bottom).

et al., 2014) to group the data points. As presented in Figure 7, an
extended super-pixel segmentation for multiple channels includ-
ing RGB, DSM and local normal directions is performed to over-
segment the data into 3D “patches”. Data points inside one patch
are homogeneous concerning color and 3D geometry, which im-
plies they belong to the same object.

The advantage of the patch-wise scheme lies in its efficiency:
Both the feature calculation and the classification only need to be
conducted once and can be applied for all members of the same
patch. Please note, however, the key that makes the fast scheme
also achieves an acceptable classification accuracy is an appropri-
ate oversegmentation. The improved color and elevation values,
as shown in Figure 7, lead to a better segmentation with clearer
boundaries and, therefore, ensure the feasibility of the patch-wise
scheme.

4.2 Relative Features

“Relative” features instead of absolute ones lead to a more stable
classification. Relative heights of buildings and trees in relation
to the ground can be derived based on an estimated DTM (digital
terrain model). The classification, however, still suffers from (1)
the heterogeneous appearance of the objects in the same class,
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Figure 7. Patches generated by oversegmentation employing
color, elevation and normal vector information

e.g., diverse sizes and types of buildings and materials / colors
of streets and (2) feature similarity of the objects from different
classes, e.g., heights, even relative heights of buildings and trees.
The challenge is to extract more inter-class stable and intra-class
discriminative features from both color and geometrical informa-
tion. As demonstrated in Figure 8, we employ the following syn-
thetic features following (Huang and Mayer, 2015): (1) Relative
height derived from the locally estimation ground level, (2) copla-
narity used to measure how well the current point and its neigh-
bors form a plane, which is calculated as the percentage of inliers
for the common plane estimated using RANSAC (Fischler and
Bolles, 1981), and (3) color coherence indicating the color differ-
ence to a reference class (vegetation), which is quantified by their
distance in the L∗a∗b∗ space.

The features are furthermore extended by integrating the proba-
bilities derived in Section 3 as the belief in the individual data
points. In the proposed scheme, a patch of 3D points is the unit
of processing. Since a patch can only be represented by a single
color, the accuracy of this color is important. Instead of using an
averaged value, we only keep the color information above an em-
pirically determined threshold of 0.8 for the beliefs and calculate
the representative color with the beliefs as weights. The same
idea is used for the calculation of relative height. For coplanarity,
the only difference is that all the data points are kept, because in
this case lower probability does not mean incorrect data and all
points are needed for the consensus.

4.3 Classification

A standard random forest classifier (Breiman, 2001) is employed.
The calculation of features and the classification with the trained
classifier are implemented aiming at parallel processing. Please
note that the superpixel-based segmentation is in principle not
suitable for parallelization and requires computational effort re-
lated exponentially to the image size. With the assumption that
the proposed “relative” features are robust in various scenarios,
which implies a generally trained classifier can be directly ap-
plied on all data partitions without additional local or incremental
training, the whole scene is divided into smaller partitions which

Figure 8. Relative feature of both color and geometry

are processed separately. As long as the partitions have a rea-
sonable size, i.e., are large enough to contain main objects like
buildings and roads, the division will only marginally disturb the
results. Due to the oversegmentation, the additional boundaries
have only a minimum effect on the results.

A post-processing is conducted to correct trivial errors caused
by data artifacts and improves the plausibility of the results. It
works as a blob filter based on consistency constraints for roads
and buildings.

5. EXPERIMENTS

For the village dataset (see Figure 1), we acquired a set of 296 im-
ages from the village Bonnland, Germany, flying a UAV 150 m
above ground. The UAV carries a Sony ILCE-7R camera with a
fixed-focus lens having a focal length of 35 mm. Hence, the im-
ages with a size of 7360× 4912 pixels have a ground resolution
of approximately 2 cm. Each image overlaps with ten other im-
ages on average. The scene shows buildings with paved ground
between them in its center and forest and grass around them.

The experiments are performed on a stand-alone standard PC
(dual socket) with two Intel Xeon processors (135 W, 3.5 GHz)
with 16 cores in total. Furthermore, the computer is equipped
with a NVidia GeForce GTX 970 graphics card and a Virtex-
6 Board for the Field Programmable Gate Array (FPGA). The
graphics card is used in the registration step for SIFT feature ex-
traction employing the approach of (Wu, 2007). We perform the
semi-global matching (SGM) on the FPGA.

First, we derived a 3D-reconstructed scene based on images
downscaled to half size. Then, we repeated the test on the im-
ages with quarter resolution. This allows a faster processing with
SGM and one additionally gets rid of high frequency noise. SGM
on full resolution images leads to less dense disparity maps. Fur-
thermore, the full resolution is not necessary for our application.
Both tests were performed using SGM in a multi-view configu-
ration. The images were registered by employing (Mayer et al.,
2011) in 31 minutes (half size) or 36 minutes (full size). The
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Figure 9. 3D point clouds from the village dataset (Figure 1). Left: Dense and accurate 3D point cloud derived by volumetric fusion of
truncated signed distance functions (Kuhn et al., 2014). Center:Resulting point cloud from the novel fast fusion method. Right: Coded
probabilities from the occupancy grid from our fusion. It is obvious, that our fusion leads to higher noise and less dense point clouds
than (Kuhn et al., 2014). Nonetheless, e.g., the border of the roof is clearly visible when considering the high probabilities (red points).

multi-view SGM was performed in 148 minutes (quarter size)
and in 851 minutes (half size).

The disparity maps can be transformed to 3D point clouds con-
sidering the registration of the image set. Overall, the SGM
disparity maps in half resolution of our village dataset lead to
1.082.124.721 (over a billion) 3D points. The quarter resolution
maps result in 406.819.206 (nearly half a billion) 3D points. After
decomposition of the individual disparity maps, the point cloud is
reduced to 45.319.881 (quarter resolution) and 32.136.740 (half
resolution) 3D points. The decomposition size was set to an ac-
curacy of 20 cm. Hence, the decomposed point clouds from half
and quarter resolution disparity maps are quite similar and in the
following we only consider the quarter resolution pipeline as it is
much faster and generates point clouds with less holes. For the
occupancy grid fusion we use a logprob l = 1.0 for individual
points corresponding to an inlier probability of p = 0.73.

Because of the strong parallelization possible with 16 Central
Processing Unit (CPU) cores and fast reading and writing capa-
bilities on a RAID 0 SSD hard disk, the point cloud decomposi-
tion of the entire set of disparity maps can be processed in only
20 seconds. The fusion of the set of point clouds into an occu-
pancy grid takes 30 seconds on a single CPU. This part can be
further parallelized. Yet, because of the high implementation ef-
fort necessary, this is beyond the work of this paper. Overall, the
entire fusion process was conducted on a single PC in below one
minute for the village dataset.

For the evaluation of the quality of the scene classification it is
important to compare the results to state-of-the-art methods. Un-
fortunately, for image-based reconstruction of point clouds there
is no ground truth data available. For a comparison, we, therefore,
compare our results to results of high-quality fusion methods. Es-
pecially, 3D reconstruction methods based on the fusion of Trun-
cated Signed Distance Functions (TSDF) (Curless and Levoy,
1996) have been shown to produce highly accurate point clouds
also for large datasets (Fuhrmann and Goesele, 2011, Fuhrmann
and Goesele, 2014, Kuhn et al., 2013, Kuhn et al., 2014). In the
field of large scale urban environments, particularly the work of
(Kuhn et al., 2014) has been used to produce results also for urban
scene classification (Huang and Mayer, 2015). Hence, we use this
method to produce dense and accurate point clouds, which can be
employed for a comparison to our fusion method.

The fusion of TSDF requires much memory. Hence, in (Kuhn
et al., 2014) the entire space is split into subspaces which are
merged subsequently (Kuhn and Mayer, 2015). To generate an
accurate 3D point cloud, the fusion is done in probabilistic space
where single measurements are represented by a couple of voxels.
The complex fusion and high memory requirements mean that

the runtime is the highest of all components when integrating it
in our pipeline. E.g., for the large dataset with quarter resolution,
the fusion needs more than four hours. In (Kuhn et al., 2014)
an additional meshing of the resulting point cloud is proposed,
which was not used in our experiments. Compared to this our
novel fusion method is about 250 times faster and even though the
result is much noisier and less dense (see Figure 9), it produces a
similar scene classification (cf. Figure 10).

The Bonnland data cover about 0.12 square kilometer of undulat-
ing terrain. The classification is performed on the rasterized point
cloud with a resolution of 0.2 meter. Figure 10 shows selected
results of the classification. Performance on the datasets with
conventional (non-probabilistic) and the proposed probabilistic
fusion method are presented for comparison. We define the four
classes of object: Ground (gray), building (red), high vegetation
(trees, green), and low vegetation (grass, blue). The runtime for
the whole area is about 17 minutes. 51.2% of the time is applied
for the oversegmentation and the rest for the feature calculation
(4.6%) as well as the classification (44.2%), which are processed
in parallel with the above mentioned hardware setup. The data
have been divided into 48 tiles of 200 × 200 pixels/data points
(examples are shown in Figure 10). The partitioning significantly
reduces the runtime of the oversegmentation, which uses global
optimization and is thus the most time-consuming part. The pre-
condition is, as mentioned in Section 4.3, that the features are
robust against variations of both ground height and color appear-
ance so that a generic classifier can be employed for all tiles. The
latter also means the tiles could be calculated in parallel on a
computer cluster, although in this paper they are processed se-
quentially on the stand-alone PC, where the given runtime has
been measured.

Examining Figure 10, it is obvious that scene classification of the
noisy (fast fused) point cloud is only accurate when considering
appropriately determined probabilities. Without these probabil-
ities the classification produces significant errors (e.g., middle
right image). By means of probabilities the quality of the re-
sults is similar to classification considering complex fusion. In a
small region in the top part of the images in the right column the
courtyard was classified correctly only based on complex fusion
results. In the middle column it is obvious that vegetation was
best classified considering fast probabilistic fusion. Furthermore,
the buildings are better separated from the surrounding in all ex-
amples for fast probability fusion. This can especially be seen at
the standalone building in the middle column.

Figure 11 presents a difficult case with results of limited qual-
ity. The proposed patch-wise scheme provides a time-efficient
classification, but the performance might be affected by an in-
correct oversegmentation (cf. Section 4.1). The latter is mostly
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Figure 10. The top row shows classification results on the point cloud from complex fusion (Kuhn et al., 2014) (Figure 9 [left]). Results
for the fast proposed probabilistic fusion but without considering probabilities (Figure 9 [centre]) are shown in the middle row and for
probabilities derived by Equations 1 to 3 (Figure 9 [right]) results are given in the bottom row (red – buildings, gray – ground, blue –
grass, and green – trees).

Figure 11. Classification results affected by artifacts in the data
(red – buildings, gray – ground, blue – grass, and green – trees)

caused by artifacts of the data points concerning color or geome-
try. As shown in Figure 11 (top), the partial roof at the top-right
corner contains false points on the edges, which result in a false
segmentation concerning both color and DSM. Once a patch is
falsely segmented crossing two classes, this error directly affects
the final result.

In summary, we have shown that an accurate scene classification
from unordered images is possible with our method for a dataset
within three and a half hours on a single PC. Table 1 gives an
overview of the runtime for the components of our processing
pipeline for quarter and half resolution images.

IR SGM PCF SC Overall
half res 36 851 1 17 912

quarter res 31 148 1 17 204

Table 1. Runtime in minutes of Image Registration (IR), Semi-
Global Matching (SGM), Point Cloud Fusion (PCF) and Scene
Classification (SC). The input in the first row are the images in
half resolution (res), while in the second row the images in quar-
ter resolution are used. The overall runtime for the presented
results (Figures 1 and 10) is 204 minutes.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a method for fast fusion of dis-
parity maps in 3D space. It complements state-of-the-art dispar-
ity map fusion as it is much faster and yields a better quality for
scene classification. The method can cope with outliers as they
are probabilistically considered. The fast fusion is very useful
for applications that have no need for dense point clouds derived
from high resolution images. We have shown that occupancy
grids based on octrees are suitable for this task.

We have also proposed to employ a supervised classification
based on color and elevation data with (1) robustness against het-
erogeneous appearance of objects and variable topography and
(2) time-efficient patch-wise feature extraction and classification.

We are aware that an incorrect oversegmentation caused by
data artifacts is one of the main sources of error. Besides im-
proved data quality, a post-processing is considered to context-
sensitively fill unavoidable gaps in the data. Furthermore, we
consider to extend the class definition with additional and/or re-
fined classes such as cars, water bodies and different roof types.

An important benefit of our method is that already in disparity
map generation the number of points can be increased by lim-
iting outlier filtering. The above results show that outliers can
be classified based on the probabilities estimated in the occu-
pancy grid fusion. In MVS estimation by SGM, multiple dis-
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parity maps from image pairs are fused. Disparities with insuffi-
cient correspondences in n views are filtered. On one hand, this
leads to stable 3D points, but on the other hand, important points
may be filtered leading to gaps. Keeping instable points leads to
more complete point clouds and, hence, could further improve
the scene classification.
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