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ABSTRACT:

Many buildings in 3D city models can be represented by generic models, e.g. boundary representations or polyhedrons, without ex-
pressing building-specific knowledge explicitly. Without additional constraints, the bounding faces of these building reconstructions do
not feature expected structures such as orthogonality or parallelism. The recognition and enforcement of man-made structures within
model instances is one way to enhance 3D city models. Since the reconstructions are derived from uncertain and imprecise data, crisp
relations such as orthogonality or parallelism are rarely satisfied exactly. Furthermore, the uncertainty of geometric entities is usually
not specified in 3D city models. Therefore, we propose a point sampling which simulates the initial point cloud acquisition by air-
borne laser scanning and provides estimates for the uncertainties. We present a complete workflow for recognition and enforcement
of man-made structures in a given boundary representation. The recognition is performed by hypothesis testing and the enforcement
of the detected constraints by a global adjustment of all bounding faces. Since the adjustment changes not only the geometry but also
the topology of faces, we obtain improved building models which feature regular structures and a potentially reduced complexity. The
feasibility and the usability of the approach are demonstrated with a real data set.

1. INTRODUCTION

1.1 Motivation

Scenes of arbitrary complexity can be described by generic mod-
els, e.g. boundary representations or polyhedrons respectively, in
context of modeling man-made objects. Unfortunately, represen-
tations obtained by purely data-driven approaches cannot distin-
guish between buildings and non-building objects since they con-
tain no building-specific knowledge. Actually, data-driven ap-
proaches are unable to recognize man-made objects at all but fea-
ture the flexibility to capture objects of arbitrary shape. Specific
models, e.g. parametric models, can be directly related to build-
ings. Still, being too specific has the disadvantage of restricting
the number of representable buildings. In general we have the
classical dilemma of choosing a generic, but too unspecific, or a
specific, but too restrictive model (Heuel and Kolbe, 2001).

Several concepts exist to introduce building shape knowledge
without being too restrictive. In (Xiong et al., 2015) for in-
stance, the topological graphs of roof areas are analyzed to com-
bine and instantiate predefined building primitives. Another way
is to recognize man-made structures by a hypothesis generation-
and-testing strategy. Geometric and topological relations such as
orthogonality or parallelism are found by statistical hypothesis
testing and then established by an adjustment (Meidow, 2014).

To perform the adjustment, a set of consistent and non-redundant
constraints is required. Here, consistency refers to non-contra-
dicting constraints and redundancy to independent constraints.
Thus selection strategies are required to obtain such minimal sets
reliably. Conceivable approaches are automatic theorem proving
(Loch-Dehbi and Plümer, 2009, Meidow and Hammer, 2016) or
decisions drawn on numerical criteria within a greedy algorithm
(Pohl et al., 2013).
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Figure 1: The pyramidal broach roof has been reconstructed as
a hipped roof with a very short ridge line. The adjustment pro-
cess enforces the concurrence constraint and therefore changes
the topology of the roof to a pyramidal roof.

1.2 Contribution

Given the generic model of a building in a boundary representa-
tion, we recognize geometric relations such as orthogonality or
parallelism automatically by hypothesis testing and enforce the
recognized constraints by an efficient adjustment procedure. As
a result, we obtain enhanced building models with regular struc-
tures and potentially simplified topology.

An example is shown in Figure 1: A pyramidal broach roof is ini-
tially represented by a hipped roof at which the ridge line is very
short. After recognizing that four planes share a common point
with high probability, an adjustment enforcing this constraint has
been carried out. This leads to a pyramid as a more appropriate
roof description.

For the execution of the hypothesis testing and the subsequent ad-
justment we have to specify the uncertainty of the model geom-
etry. We assume that no information about the geometric uncer-
tainty comes along with the boundary representation. Therefore,
we perform a point sampling for each bounding face to obtain a
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Figure 2: Detail of a point cloud obtained by airborne laser scan-
ning and the derived generic polyhedral building reconstruction.

point cloud which simulates the result of an airborne laser scan-
ning. Estimates for the plane parameters are obtained from these
point clouds which are then the basis for the subsequent reason-
ing process.

For the recognition of constraints only the data-independent sig-
nificance level, i.e. the probability of correctly not rejecting a null
hypothesis, has to be specified. The usability and the feasibility
of the approach are demonstrated by the analysis of a generic
boundary representation for a building captured by airborne laser
scanning. The reconstruction has been carried out according to
the approach proposed in (Xiong et al., 2014), cf. Figure 2.

1.3 Related Work

We consider the approach proposed in (Xiong et al., 2014) as
one of the most recent methods to derive polyhedral building
models from airborne captured point clouds. Formulations for
constraints as multivariate polynomials can be found in (Bren-
ner, 2005). Constraints and statistical tests for geometric enti-
ties in homogeneous representation are provided by (Heuel, 2004,
Förstner et al., 2000). In (Pohl et al., 2013), a greedy algorithm is
used to select a set of independent and consistent constraints au-
tomatically. An adjustment model to solve constrained problems
formulated in homogeneous coordinates efficiently can be found
in (Meidow, 2014). In (Loch-Dehbi and Plümer, 2011, Loch-
Dehbi and Plümer, 2009) independent constraints are found by
automatic theorem proving using Wu’s method (Wu, 1986). The
feasibility is demonstrated but no real data sets have been ana-
lyzed.

2. THEORETICAL BACKGROUND

After the explanation of the point sampling process and the deter-
mination of adjacent point groups (Subsection 2.1) we explain the
utilized parametrization of planes and the corresponding param-
eter estimation (Subsection 2.2) and formulate geometric con-
straints (Subsection 2.3). The recognition of man-made struc-
tures by hypothesis testing (Subsection 2.4) and the enforcement
of the recognized constraints by an adjustment (Subsection 2.5)
are then the core of the reasoning process. Within this approach,
the deduction of a set of consistent and non-redundant constraints
is essential (Subsection 2.6).

2.1 Point Sampling and Adjacencies

The uncertainties of the geometric entities are required for the
complete reasoning and adjustment process. This refers to the
statistical testing of geometric relations (Subsection 2.4) as well
as to the adjustment of the planes (Subsection 2.5). Thus the un-
certainties of bounding planes have to be specified by covariance

Figure 3: Result of the point sampling for each face of the bound-
ary representation (bird’s eye view) with sampling distance 20 cm
and σ = 3 cm for each coordinate. The points of the bottom area
have been omitted for clarity.

matrices. Since we assume that the model does not come along
with this information, we perform a point sampling for each face
of the boundary representation. This sampling simulates the re-
sult of the laser scanning initially used for the acquisition of the
given model.

Figure 3 shows an exemplary part of the point sampling. For
each face, points on a grid with given spacing have been gener-
ated. Then noise has been added to the point coordinates. The
simulated point cloud of a model face is used to estimate the val-
ues of the plane parameters (Subsection 2.2). Furthermore, the
point clouds can easily be used to determine the adjacencies of
bounding faces which are then used for hypothesis generation.
Note that in this way relations can be established which are not
contained in the boundary representation at hand.

2.2 Representation of Planes and Parameter Estimation

A convenient representation of a plane is its normal vector N
with ‖N‖ = 1 and the signed distance D of the plane to the ori-
gin of the coordinate system. The corresponding homogeneous
4-vector is

A =

[
N
−D

]
=

[
Ah

A0

]
(1)

with its homogeneous part Ah and its Euclidean part A0. Since
(1) is an over-parametrization, we need to introduce additional
constraints for the plane parameters to obtain unique results
within the adjustment. We use the spherical normalized vector

A =
A
‖A‖ (2)

with corresponding covariance matrix ΣAA = JΣAAJ
T ac-

cording to error propagation, the covariance matrix ΣAA of the
unconstrained plane parameters and the Jacobian

J =
A
‖A‖

(
I4 −

AAT

ATA

)
. (3)

For the adjustment we need the spherical normalization (2) as a
constraint for the parameters which reads

1

2

(
ATA− 1

)
= 0 (4)

with the factor 1/2 for convenience.

The plane parameters can be estimated in a statistically optimal
manner for 3D points which are mutually uncorrelated, i.e. each
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constraint polynomials m

identity d≡ =

[
Ah ×Bh

A0Bh −B0Ah

]
= 0 3

verticality d| = [0, 0, 1, 0]A = 0 1
orthogonality d⊥ = AT

hBh = 0 1
parallelism d‖ = Ah ×Bh = 0 2
concurrence d◦ = det([A,B,C,D]) = 0 1

Table 1: Potential geometric relations between planes A, B, C
and D expressed by multivariate polynomials and the number of
independent equations (degrees of freedom m).

point Xi has covariance matrix σ2
i I3 with the 3 × 3 identity

matrix I3 and standard deviation σi for the coordinates of the
point. The plane passes through the weighted centroid and its
normal is the eigenvector belonging to the smallest eigenvalue of
the empirical covariance or moment matrixM of the point group.

The covariance matrix of the plane parameters can be derived
from the eigenvalues of M , too (Förstner and Wrobel, 2017).
The 4×4 covariance matrix is full and singular, nevertheless the
information is considered completely by the adjustment model
presented in Subsection 2.5.

2.3 Formulation of Constraints

With the homogeneous representation of planes, the formulation
of constraints is simple. Table 1 summarizes the considered rela-
tions between planes, see (Heuel, 2004) for details. The concur-
rence constraint states that a 3D point is incident to four planes.

Further specific constraints such as identical slopes for roof areas
or horizontal roof ridges are conceivable. But often these con-
straints are implicitly already given, which limits their practical
relevance, depending on the specific application.

For the recognition of constraints by hypothesis testing and for
the enforcement of constraints by adjustment, we need the Ja-
cobians of the constraints listed in Table 1. These are sim-
ple and can be provided analytically. For the concurrence con-
straint ∂ det(M)/∂vec(M) = adj(M) holds, where adj(M)
is the adjugate of the matrix M = [A,B,C,D] and vec(M) =
[AT,BT,CT,DT]T.

2.4 Recognition of Man-Made Structures

For each bounding face, a point cloud is sampled simulating the
scanning results. Two point clouds A and B are considered to be
adjacent if the Euclidean distance between two points—one from
cloud A and one from cloud B—is shorter than a threshold Td,
say Td = 0.5 m. Choosing a large value for Td increases the
number of established neighborhoods. The cliques of the neigh-
borhood graph can be determined by the Bron-Kerbosch algo-
rithm (Bron and Kerbosch, 1973, Cazals and Karande, 2008);
they constitute the set of potential relations which have to be
checked.

2.4.1 Hypothesis Checking To check an assumed relation,
we formulate a classical hypotheses test. We test the null hypoth-
esis H0 that an assumed relation is valid against the alternative
hypothesis Ha that the relation does not hold. Formally, we test

H0 : µd = 0 vs Ha : µd 6= 0. (5)

with the expectation values µd for the distance measures d as
provided by Table 1.

The corresponding test statistic

T =
1

m
dTΣ−1

dd d ∼ Fm,n (6)

Figure 4: Distribution of the test statistic (6) for the parallelism
of two planes. Two point sets with n1 = 4 and n2 = 6 points
have been sampled 10,000 times.

is Fisher-distributed with m and n degrees of freedom. Here,
m denotes the degrees of freedom for the specific relation, e.g.
m = 2 for the test of parallelism, and n is the redundancy of
the parameter estimation, i.e. the number of equations used to
estimate the plane parameters involved in the relation minus the
number of unknown plane parameters. The covariance matrix
Σdd of the contradictions d is derived by error propagation.

Figure 4 illustrates the distribution of the test statistic (6) check-
ing the parallelism of two planes obtained by simulation. We
sampled two planes with the rather small number of n1 = 4 and
n2 = 6 3D points, estimated the two sets of plane parameters in-
dependently, and computed the test statistic d‖, see Table 1. The
simulation has been performed 10,000 times with uniformly dis-
tributed random coordinates X and Y in the interval [0, 1] and
normal distributed Z-coordinates with σZ = 0.01 and mean 0.
As one can see from the histogram, the empirical data fits well to
the Fisher-distribution with m = 2 and n = 6 + 4 − 2 · 3 = 4
degrees of freedom. For larger values of σZ , the effect of lin-
earization errors become visible.

For the test, we choose the data-independent significance number
of α = 0.05, i.e. the probability of erroneously rejecting the null
hypothesis in case it actually holds (type I error). Then the critical
value F1−α;m,n of the corresponding distribution is computed
which limits the regions of acceptance and rejection for the test
statistic. The hypothesis will not be rejected if T < F1−α;m,n
holds for the value of the test statistic (6).

Note that the power of a test, i.e., the probability of not rejecting
a null hypothesis while the alternative hypothesis is true, depends
also on the sample size.

2.4.2 Pre-Check As one can see from equation (6), the value
of the test statistic becomes small if the variance of the distance
measure is large. In this case, the null hypothesis tends to be
not rejected although the alternative hypothesis is correct (type
II error). Therefore, we perform a pre-examination of the data
quality by checking the acceptability of the achieved precision for
the plane parameters (McGlone et al., 2004). To do so, we pro-
vide a reference covariance or criterion matrix CEE for a plane
in canonical form E = [0, 0, 1, 0]T, e.g.

CEE = Diag
(
(3◦)2, (3◦)2, 0, (0.05 m)2

)
(7)

which specifies the required precision for the plane parameters,
see Figure 5. Thus, we require a standard deviation of at most
3◦ for the two principal normal directions NE = [0, 0, 1]T of a
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Figure 5: Plane in canonical form E = [0, 0, 1, 0]T with normal
vectorN = [0, 0, 1]T. The confidence region is a hyperboloid of
two sheets, specified by the covariance matrix (7).

plane and a maximum standard deviation of 0.05 m for distance
DE = 0 of the plane to the origin.

The planes in general orientation are moved to the reference po-
sition [0, 0, 1, 0]T by a 3D motion accompanied by error propa-
gation. For this purpose, the rotation and translation can be ex-
tracted from the estimated covariance matrices. The estimate is
acceptable if the largest eigenvalue of ΣEEC

−1
EE is less than or

equal to one
λmax

(
ΣEEC

−1
EE

)
≤ 1, (8)

cf. (McGlone et al., 2004).

2.5 Enforcement of Constraints

For completeness, we provide a brief summary of the utilized ad-
justment model. For details please refer to (Meidow, 2014). The
solution of the proposed adjustment is equivalent to the adjust-
ment with constraints for observations only (Koch, 1999, Mc-
Glone et al., 2004). In these models, the existence of a regular
covariance matrix for the observations is assumed as its inverse
serves as a weight matrix within the adjustment. For the treat-
ment of singular covariance matrices, we specialize the general
adjustment model introduced in (Meidow et al., 2009).

We compile the unconstrained, spherically normalized parame-
ters of K given planes in a parameter vector x=[AT

1 , . . . ,AT
K ]T

whose singular covariance matrix Σxx features block-diagonal
shape. The adjusted or constrained parameters x̂ are related to
the unconstrained parameters x by additive unknown corrections
ε which have to be estimated, thus x̂ = x+ ε̂ holds.

The functional model subsumes the constraints to be enforced by
the adjustment. The intrinsic constraints are the spherical normal-
izations (2) of the homogeneous vectors needed to obtain unique
results. They are formulated as K restrictions k(x̂) = 0 on
the parameters. The geometric constraints are the H restrictions
h(x̂) = 0 on the plane parameters, e.g. orthogonality or paral-
lelism, cf. Table 1.

The stochastic model reflects the uncertainty of the unconstrained
parameters, described by an initial block-diagonal covariance
matrix Σ

(0)
xx which results from the parameter estimation (Sub-

section 2.2). The covariance matrix Σxx is singular due to over-
parametrization. The explicit constraints for the observed planes,
i.e., the normalization of the homogeneous entities, and the corre-
sponding implicit constraints comprised in the covariance matrix
Σxx must be consistent.

For the derivation of the normal equation system we linearize the
constraints. The sought constrained parameters x̂ are given by the

unconstrained parameters adjusted by estimated corrections ε̂, or
by approximate values x0 and estimated updates ∆x. Thus x̂ =

x + ε̂ = x0 + ∆̂x holds and the linearization of the constraints
reads

k(x̂) = k(x0) +K∆̂x = Kε̂+ k0 (9)

h(x̂) = h(x0) +H∆̂x = Hε̂+ h0 (10)

with the JacobiansK andH and the auxiliary variables

k0 = k(x0) +K(x− x0) (11)
h0 = h(x0) +H(x− x0) . (12)

For the intrinsic constraints K = Diag(A1,A2, . . . ,AK) and
KKT = I holds due to the constraints (AT

kAk −1)/2 = 0 for
each entity indexed with k. The Jacobian H can be extracted
from the equations listed in Table 1.

Minimizing the sum of weighted squared residuals yields the La-
grangian

L =
1

2
ε̂TΣ+

xxε̂+ λT(Kε̂+ k0) + µT(Hε̂+ h0) (13)

with the Lagrangian vectors λ and µ. Setting the partial deriva-
tives of (13) to zero yields the necessary conditions for a mini-
mum

∂L

∂ε̂T
= Σ+

xxε̂+KTλ+HTµ = 0 (14)

and the normal equation system reads Σ+
xx KT HT

K O O
H O O

 ε̂
λ
µ

 =

 0
−k0

−h0

 . (15)

Solving (15) constitutes a solution to the problem at hand but this
implies the computation of the pseudo inverse for Σxx, a matrix
whose size depends on the number of parameters, i.e., the number
of planes. Rewriting (15) leads to the reduced system[

Σ+
xx KT

K O

] [
ε̂
λ

]
=

[
−HTµ
−k0

]
. (16)

With ΣxxK
T = O andKKT = I the relation[

Σ+
xx KT

K O

] [
Σxx KT

K O

]
=

[
I O
O I

]
(17)

holds due to the definition of pseudo inverses and the normal
equation matrix can be inverted explicitly:[

ε̂
λ

]
=

[
Σxx KT

K O

] [
−HTµ
−k0

]
(18)

Thus the substitution of the estimate ε̂ = −ΣxxH
Tµ −KTk0

in (10) yields the Lagrangian vector µ = Σ−1
hh

(
h0 −HKTk0

)
with the regular covariance matrix

Σhh = HΣxxH
T (19)

of the small deviations (12) due to variance propagation. Finally
we obtain the estimate

ε̂ = −ΣxxH
TΣ−1

hh

(
h0 −HKTk0

)
−KTk0 (20)

for the corrections. Note that the size of the matrix to be inverted
depends only on the number of constraints and that the pseudo
inverse of Σxx has not to be computed explicitly. Furthermore,
no special treatment of entities not being affected by any extrinsic
constraint is necessary. In this case the corresponding estimates
for the corrections (20) will simply be zeros.

The estimates are x̂ = x + ε̂ and one has to iterate until con-
vergence. Note that the covariance Σxx must be adjusted dur-
ing the iterations since the linearization points forK change and
ΣxxK

T = O must be fulfilled. This can be achieved by error
propagation for the spherical normalization (2).
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Figure 6: RANSAC-based shape detection.

2.6 Deduction of Required Constraints

For the adjustment presented in the previous subsection, a set of
consistent, i.e. non-contradicting, and non-redundant constraints
is mandatory. Redundant constraints will lead to singular covari-
ance matrices (19) for the small deviations. Since we are dealing
with imprecise and noisy observations, we have to face the pos-
sibility of non-rejected hypotheses which are contradictory, too.

Greedy algorithms are common approaches to select such sets
of constraints—either by algebraic methods, e.g. (Loch-Dehbi
and Plümer, 2011, Meidow and Hammer, 2016), or by numer-
ical methods, e.g. (Pohl et al., 2013). We adopt the approach
proposed in (Pohl et al., 2013) to select sets of constraints auto-
matically: After adding a constraint, we consider the estimated
rank and the estimated condition number of the resulting covari-
ance matrix (19). In case of a rank deficiency and/or a small
condition number, we neglect the additional constraint.

3. EXPERIMENTS

After introducing the input data, i.e. the utilized point cloud and
the derived generic building representation, we illustrate the point
sampling, summarize the deduced constraints, and show the re-
sults of the adjustment process which enforces the man-made
structures.

3.1 Input Data and Point Sampling

We start with the derivation of a generic boundary representa-
tion for buildings. Figure 6 shows a detail of an airborne laser
scan which represents a rural scene with roofs of farmhouses as
dominant man-made objects. The RANSAC-based shape detec-
tion (Schnabel et al., 2007) as provided by the 3D point cloud
and mesh processing software CLOUDCOMPARE has been used
to extract and group points which are likely to lie on planar facets
of the buildings.

Next we derived a generic polyhedral building representation by
the procedure proposed in (Xiong et al., 2014). Figure 2 shows
the resulting boundary representation which is the input for the
proposed reasoning process. Due to the specific reconstruction
process, the walls of the buildings are vertical and the bottom
area of the building is horizontal. Apart from that, the boundary
representation of the roof is unconstrained.

For each facet of the boundary representation we carried out a
point sampling by equally spacing points with added noise to the
point coordinates (Figure 3). The point spacing of D = 0.10 m
and the noise of σ = 0.03 m for point-plane distances simulate
the assumed scanning process.

Figure 7: Illustration of all constraints between faces recognized
by the hypotheses tests: identity (−·), orthogonality (–), paral-
lelism (· · ·), concurrence (◦), verticality (vertical poles). Con-
straints with the bottom area of the building are omitted for clar-
ity.

constraint number of constraints
complete set deduced set

identity 3 0
verticality 27 16
orthogonality 31 7
parallelism 15 2
concurrence 13 13
sum 89 38

Table 2: Recognized and actually required constraints for the ad-
justment.

Thresholds influence the degree of generalization for the recon-
struction result. However, small facets cannot be avoided in
general and a few rather uncertain facets can be created for the
boundary representation. The consideration of the uncertainties
of the planes with the pre-check proposed in Subsection 2.4.2 al-
lows for this.

3.2 Results

Figure 7 illustrates all relations recognized by the hypothesis-
generation-and-testing strategy. The utilized constraints for the
planes are identity, verticality, orthogonality, parallelism, and
concurrence. The latter considers four planes meeting in a com-
mon 3D point—a situation often encountered in building polyhe-
drons. Relations with the bottom area of the building are omitted
in Figure 7 for the sake of clarity. Obviously, many relations are
redundant, however, it is not clear which can be omitted without
loss of information.

Table 2 summarizes the number of recognized and deduced con-
straints itemized according to their type. The set of deduced con-
straints is minimal in the sense of consistency and redundancy
but the actual number of constraints depends on the order of con-
straints as processed by the greedy algorithm. In general, the
number of actually required constraints is considerably smaller
than the number of recognized constraints.

Figure 8 shows the result of the adjustment process with the
strictly enforced constraints listed in Table 2. Eye-catching is the
change of topology for the building with the pyramidal broach
roof: In the given boundary representation, the roof is modeled
as hipped roof with a very short ridge line (Figure 2). In the rea-
soning process, the four planes concurring in a single point have
been recognized and the adjustment changed the roof representa-
tion to a pyramid.
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Figure 8: Constrained boundary representation as the result of the
reasoning and adjustment process. 38 functionally independent
constraints have been recognized and enforced, cf. Table 2. The
reasoning process led to a more adequate representation of the
pyramidal broach roof.

4. CONCLUSIONS AND OUTLOOK

The feasibility and usability of the proposed approach has been
demonstrated with a first real data set. The only input is a generic
boundary representation of a building. Data-dependent thresh-
olds are avoided by the exploitation of statistical methods which
take the uncertainty of the bounding planes into account.

For the future, several improvements and investigations should be
carried out:

• For the simulation of point observations as a result of laser
scanning, more sophisticated methods can be envisioned,
which take sensor-specific characteristics into account and
consider sensor trajectories and scene geometries.

• The formulation of hypotheses for geometric relations
should be expanded to express cartographic rules for the
generalization of boundary representations as a further ap-
plication.

• The estimation of matrix ranks and condition numbers is
inexact and becomes unrealizable for large-scale problems.
Therefore, algebraic methods should be considered for the
deduction of consistent and non-redundant constraints as
they provide exact results. Some progress in this regard has
been achieved, see (Meidow and Hammer, 2016).

• The set of deduced constraints depends on the order of the
constraints within the greedy algorithm. Thus, general rules
for the ordering of constraints are advantageous.

• The results depend on the applied point sampling and the
adding of noise. This dependency should further be investi-
gated.
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Loch-Dehbi, S. and Plümer, L., 2011. Automatic reasoning for
geometric constraints in 3D city models with uncertain observa-
tions. ISPRS J. Photogramm. Rem. Sensing 66(2), pp. 177–187.

McGlone, J. C., Mikhail, E. M. and Bethel, J. (eds), 2004. Man-
ual of Photogrammetry. 5th edn, American Society of Photogram-
metry and Remote Sensing.

Meidow, J., 2014. Geometric reasoning for uncertain observa-
tions of man-made structures. In: X. Jiang, J. Hornegger and
R. Koch (eds), Pattern Recognition, Lecture Notes in Computer
Science, Vol. 8753, Springer, pp. 558–568.

Meidow, J. and Hammer, H., 2016. Algebraic reasoning for
the enhancement of data-driven building reconstructions. ISPRS
Journal of Photogrammetry and Remote Sensing 114, pp. 179–
190.

Meidow, J., Förstner, W. and Beder, C., 2009. Optimal Param-
eter Estimation with Homogeneous Entities and Arbitrary Con-
straints. In: Pattern Recognition, Lecture Notes in Computer Sci-
ences, Vol. 5748, Springer, pp. 292–301.

Pohl, M., Meidow, J. and Bulatov, D., 2013. Extraction and re-
finement of building faces in 3D point clouds. In: Image and
Signal Processing for Remote Sensing XIX, Society of Photo-
Optical Instrumentation Engineers, pp. 88920V–1–10.

Schnabel, R., Wahl, R. and Klein, R., 2007. Efficient RANSAC
for point-cloud shape detection. Computer Graphics Forum
26(2), pp. 214–226.

Wu, W., 1986. Basic principles of mechanical theorem proving
in elementary geometries. Journal of Automated Reasoning 2,
pp. 221–252.

Xiong, B., Jancosek, M., Elberink, S. O. and Vosselman, G.,
2015. Flexible building primitives for 3d building modeling.
ISPRS Journal of Photogrammetry and Remote Sensing 101,
pp. 275–290.

Xiong, B., Oude Elberink, S. and Vosselman, G., 2014. Build-
ing modeling from noisy photogrammetric point clouds. ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences II-3, pp. 197–204.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-333-2016

 
338


	INTRODUCTION
	Motivation
	Contribution
	Related Work

	THEORETICAL BACKGROUND
	Point Sampling and Adjacencies
	Representation of Planes and Parameter Estimation
	Formulation of Constraints
	Recognition of Man-Made Structures
	Hypothesis Checking
	Pre-Check

	Enforcement of Constraints
	Deduction of Required Constraints

	EXPERIMENTS
	Input Data and Point Sampling
	Results

	CONCLUSIONS AND OUTLOOK



