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ABSTRACT:

Airborne Laser Scanning (ALS) and terrestrial photogrammetry are methods applicable for mapping forested environments. While
ground-based techniques provide valuable information about the forest understory, the measured point clouds are normally expressed
in a local coordinate system, whose transformation into a georeferenced system requires additional effort. In contrast, ALS point
clouds are usually georeferenced, yet the point density near the ground may be poor under dense overstory conditions. In this work, we
propose to combine the strengths of the two data sources by co-registering the respective point clouds, thus enriching the georeferenced
ALS point cloud with detailed understory information in a fully automatic manner. Due to markedly different sensor characteristics,
coregistration methods which expect a high geometric similarity between keypoints are not suitable in this setting. Instead, our method
focuses on the object (tree stem) level. We first calculate approximate stem positions in the terrestrial and ALS point clouds and
construct, for each stem, a descriptor which quantifies the 2D and vertical distances to other stem centers (at ground height). Then, the
similarities between all descriptor pairs from the two point clouds are calculated, and standard graph maximum matching techniques
are employed to compute corresponding stem pairs (tiepoints). Finally, the tiepoint subset yielding the optimal rigid transformation
between the terrestrial and ALS coordinate systems is determined. We test our method on simulated tree positions and a plot situated
in the northern interior of the Coast Range in western Oregon, USA, using ALS data (76x121 m2) and a photogrammetric point
cloud (33x35 m2) derived from terrestrial photographs taken with a handheld camera. Results on both simulated and real data show
that the proposed stem descriptors are discriminative enough to derive good correspondences. Specifically, for the real plot data, 24
corresponding stems were coregistered with an average 2D position deviation of 66 cm.

1 INTRODUCTION

During the last decade, the application of Airborne Laser Scan-
ning (ALS) for mapping forested areas has become widespread
(Hyyppä et al., 2012). This technique has proven useful for a
wide variety of forest parameter estimation tasks. An attractive
property of ALS point clouds is that they are usually georefer-
enced due to the integration of a GNSS receiver and an IMU with
the laser scanner. This simplifies inference about specific geo-
graphic locations or target inventory sites. However, a weakness
of the ALS approach is that for areas with a dense canopy cover,
the laser beam is strongly attenuated and may not penetrate to the
ground. As a result, the point density within the understory layer
may be poor (Amiri et al., 2015). On the other hand, estimat-
ing certain important forest parameters such as tree species di-
versity, vertical structure and the soil’s carrying capacity require
the availability of understory information (Korpela et al., 2012).
To achieve this, techniques complementary to ALS, such as Ter-
restrial Laser Scanning (TLS), may be used (Gupta et al., 2015).
Recently, Yone and Oguma (2014) presented a tree position and
diameter measurement system based on photogrammetric point
clouds extracted from video images. This is a particularly ap-
pealing alternative to TLS due to its relatively low cost. Note that
the ground based methods generally provide the measured point
cloud in a local coordinate system (CS), whereas in a usual forest
inventory scenario, a georeferenced CS is required. Therefore, in
order to transform the coordinate system, additional effort must
∗Corresponding author.

be undertaken by providing artificial control points with a pri-
ori measured positions, or by using expensive external devices
(GPS, IMU). In particular, cheap embedded GPS modules are in-
sufficient due to their low precision and susceptibility to canopy
attenuation. The main idea underlying this paper is to introduce
a system for automatic, marker-free coregistration of terrestrial
and ALS point clouds in forested areas without the use of any
external hardware. Combined with a cheap video camera-based
measurement system, this would make it possible to augment an
ALS point cloud with understory information using moderate ef-
fort, which boils down to taking terrestrial photographs of the
target area. Such capabilities could significantly simplify forest
inventory tasks concerning the understory layer.

The problem of coregistering two point clouds is related to cal-
culating a transformation which maps the CS of one point cloud
to the CS of the other. Usually, a rigid body transformation is
applied, although other choices are possible. If the point cloud
densities are comparable and there is significant overlap between
the captured scene parts, methods based on finding correspon-
dences between characteristic keypoints in the scene using their
geometric similarity can be applied (e.g. as shown by Theiler et
al. (2014) and by Weinmann and Jutzi (2015)). However, when
the point clouds are obtained from sensors with considerably dif-
ferent characteristics, it is not realistic to expect that a sufficient
number of similar keypoints will occur in both scenes. This is
particularly true when the sensor viewpoints diverge significantly.
As an example, consider the case of ALS and TLS scans in urban
areas, where the TLS sensor registers only the building facades,
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while the ALS instrument captures the rooftops. The point clouds
are thus related not through geometric similarity, but through the
concept of a building. It is only through the knowledge of a build-
ing’s structure (walls perpendicular to roof) that coregistration
can be performed. To deal with this scenario, object-based ap-
proaches have been developed, such as the method of Yang et al.
(2015), where building outlines are extracted from ALS and TLS
data in the form of polygons and then coregistered through apply-
ing geometric constraints and spectral graph theory. Note that the
object-based paradigm also applies to our forested area scenario,
where the terrestrial and ALS point clouds are related through the
concept of a tree while being quite dissimilar at the point level,
since the ground photographs capture only lower parts of stems
without tree crowns, and in contrast the ALS point cloud features
only crowns with few stem points. Therefore, approaches relying
on common 3D keypoints are likely to fail. To the best of our
knowledge, this is the first contribution dealing with the coreg-
istration of ALS and terrestrial photogrammetric point clouds in
forested areas, although matching of aerial photogrammetric and
ALS point clouds has been investigated before (St-Onge et al.,
2015). Also, the related task of coregistering ALS and TLS for-
est datasets has been addressed by several authors. Lindberg et
al. (2012) create pairs of grayscale images corresponding to the
stem positions and heights of the two tree sets. They assume that
the Z axes of both coordinate systems are equal and focus on
the in-plane rotation angle and 2D translation. The translation
is determined through cross-correlation analysis of the grayscale
images, conducted over a range of rotation angles. Hauglin et
al. (2014) consider the case when an initial georeferenced posi-
tion of the TLS scanner is available. They exhaustively check
groups of 2 matched tree pairs with distance and tree size con-
straints to derive the optimal rotation and translation. Note that
this method requires estimates of tree height (from ALS) and di-
ameter at breast height (DBH - from TLS) for approximating the
tree size. Finally, Kelbe (2015) deals with coregistration of TLS
scan pairs. The proposed method hinges on point triplets. Each
triplet is assigned a descriptor formed by the DBH values of its
member trees and by eigenvalue-based features which describe
its intrinsic (CS-independent) geometry. Pairs of triplets between
the two input point clouds are exhaustively evaluated for similar-
ity based on their descriptors, and similar triplet pairs are used to
determine the optimal 3D CS transformation.

We propose a coregistration method based solely on relative stem
positions within the target plot. We do not assume that tree height
or DBH information is available. Also, we do not fix the tie-
point set size, but utilize a larger, data-driven number of tiepoints
to account for greater tree position errors within the photogram-
metric and ALS point clouds compared to TLS scans. This re-
sults in greater redundancy when defining the CS transforma-
tion. Our approach utilizes a tree stem descriptor which, for a
target stem, characterizes the distances to other trunks within the
plot. Based on the pairwise similarities between the descriptors,
we find correspondences between the trees in the ALS and pho-
togrammetric datasets. Finally, the subset of correspondences re-
sulting in the optimal rigid transformation from the terrestrial to
the ALS coordinate system is obtained via a heuristic algorithm
offering a tradeoff between solution quality and computational
effort. We consider the main contribution of this paper to be the
stem-descriptor based coregistration pipeline, including the ro-
bust method for aligning the Z axes of both CS through tree prin-
cipal axis determination. The rest of this paper is structured as
follows: in Section 2 we provide an overview of the method and
the input data assumptions. Section 3 describes our tree stem de-
tection methods for both input data sources. In Section 4, the
coregistration algorithm is explained. Section 5 describes the
study area, experiments (on real and simulated data) and evalua-

tion strategy. The results are presented and discussed in Section
6. Finally, the conclusions are stated in Section 7.

2 METHODOLOGY OVERVIEW

The input data for our method consists of a terrestrial and an ALS
point cloud. We assume that the ALS points are given in a geo-
referenced coordinate system. No restrictions are made regard-
ing the presence or absence of radiometric data (intensity, pulse
width) or the return type of the laser scanner (discrete return vs.
full waveform). Regarding the terrestrial point cloud, a local co-
ordinate system is assumed with arbitrary 3D rotations and trans-
lation w.r.t. the ALS CS, but the true object scale must be main-
tained. In practice, this requires that the parameters of the camera
used for acquiring the ground photographs (focal length etc.) be
known. The key assumption is that sufficiently many common
trees are present within both captured scenes, and that both point
densities are high enough to allow a reliable extraction of tree
crowns (ALS) and stems (terrestrial). The output of our method
is the rigid transformation which maps the terrestrial CS to that
of the ALS point cloud. The processing pipeline describing our
approach is depicted in Figure 1. The method consists of three

Figure 1: Overview of coregistration pipeline.

main steps. In the first step, approximate tree positions (intersec-
tions of the stem center and the ground) are detected in both input
point clouds. For ALS data, this is done on the basis of individ-
ual tree clusters, since usually no stem hits are available. On the
other hand, for the terrestrial data the tree stems are visible at the
ground level, and the considerably higher point density enables
direct stem detection within the point cloud. First, the points are
segmented to form putative stem candidates. For each candidate,
we determine its principal direction (axis). The median axis of
all candidates is then aligned with the Z axis of the ALS CS.
This is an important part of our method, since in later steps we
use planimetric and vertical distances between trees. Comparing
these distances across the two datasets only makes sense if they
are calculated w.r.t. the same reference plane, defined by the CS’s
Z axis. Also, note that by fixing the Z axis to the median principal
axis, we fix 2 of the 3 rotation angles of the coordinate transform,
leaving only the in-plane rotation as well as 3D translation to be
determined. This is in the spirit of the coregistration approach of
Novak and Schindler (2013), with the difference being that they
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align the Z axis with the dominant normal vector direction, while
we utilize the application-specific tree stem orientation. In the
second step of our method, the calculated tree positions are used
to form a descriptor for every stem in each dataset. We define
a similarity measure on the space of descriptor pairs. The pair-
wise similarities are used to set up an instance of the maximum
weight matching problem, whose solution yields the set of corre-
sponding ALS and terrestrial tree positions. The third step uses
the corresponding tree positions as tiepoints for calculating the
CS transform which defines the remaining in-plane rotation an-
gle and the 2D offset. At this stage, the set of all corresponding
tree pairs obtained from the previous step may contain outliers
(erroneously matched trees). The goal is to find a maximum tie-
point subset which is free from invalid matches. Finally, once the
true tiepoint subset is known, the vertical shift is determined, thus
completing the CS transformation.

3 TREE POSITION DETECTION

In this section, we explain the details of our approach for cal-
culating the tree positions based on the input point clouds. For
ALS point clouds, we first calculate the DTM, followed by a 3D
segmentation of individual trees (Reitberger et al., 2009). We
then approximate the tree center as the 2D location (xc, yc) of
the highest point within each segmented tree cluster. We assume
the tree axis is parallel to the CS Z axis and so the ground inter-
section point’s planimetric coordinates coincide with those of the
tree top. The final tree positions are augmented with the DTM
heights calculated at each tree center (xc, yc). In the remainder
of this section, we focus on the workflow for the terrestrial data.

3.1 Preprocessing

Since we assume that the local CS of the data has an arbitrary
rotation, the point cloud may appear inverted, i.e. the ground
points will be above the stem points. This is not acceptable since
it interferes with parts of the method which rely on the notions
of ’up’ and ’down’. We compensate for this by rotating the point
cloud (through PCA) so that the ground points appear to lie on
the XY plane. The DTM of the point cloud is then calculated
using an Active Shape Model formulation (Polewski et al., 2015)
and all points within a threshold distance dDTM of the DTM are
removed to filter out ground vegetation. The point cloud is subse-
quently voxelized with a width of dvox. We found this step bene-
ficial due to the large amount of noise present in the photogram-
metric point cloud, which contains not only points lying ideally
on the stem surfaces, but rather a thick, volumetric ring which dis-
torts neighborhood calculation (Figure 2(a)). We proceed by ap-
plying connected component segmentation with a threshold dcc
on the maximum distance between neighboring points. The re-
sulting connected components are considered stem candidates.
The candidate set is filtered using a minimum point count ncc and
a minimum dimension hcc to remove objects which are not likely
to represent stems. Note that the stem candidates may possess
side branches (Figure 2(b),2(c)). Usually, one connected compo-
nent corresponds to one tree, but a many-to-one relationship is
allowed as the optimal subset of tree locations actually used for
defining the transformation is determined in a later step.

3.2 Principal direction calculation

We introduce a method for estimating the principal direction of
a cylindrical shape. The approach is designed to be robust in the
presence of multiple side branches and point cloud noise. First,
surface normals are calculated using local plane fitting. Next, the
spherical neighborhood Up of each point p is considered. For

(a) (b) (c)

Figure 2: Photogrammetric point clouds of single stems with side
branches: (a) top view, (b)-(c) side view.

each point pair (pi, pj), we compute the cross-product between
their associated normals, therefore obtaining a new vector vi,j
which is perpendicular to both of the normals. Observe that on
a cylindrical surface, the cross-product of two normals (exclud-
ing parallel and antiparallel pairs) is collinear with the cylinder’s
axis direction (Figure 3). Therefore, if p lies on an approximately
cylindrical surface, the dominating direction in the set of vi,j
within p’s neighborhood should represent the principal direction.
We formalize this intuition by defining the principal direction v
as the spatial median of the cross-products:

vp = argmin
v∈R3

∑
pi,pj∈Up

||v − (ni × nj)|| (1)

(a) (b)

Figure 3: (a) Cylinder with direction d and surface normals. (b)
The cross product v of normals u,w is collinear with d.

The spatial median is one of several possible multivariate gener-
alizations of the standard (univariate) median. Kärkkäinen and
Äyrämö (2005) describe an efficient algorithm for calculating it.
Note that utilizing the median instead of the mean increases ro-
bustness to outliers, because their influence is diminished from
quadratic to linear. After the principal axes for all points have
been calculated, an aggregation must be performed. In our sce-
nario, stems with side branches are acceptable as input, therefore
the target object may be viewed as consisting of several cylinders
with various dimensions and directions. Consequently, there will
likely exist several clusters of principal directions, although we
assume that the contribution from side branches will be limited
due to the data acquisition viewpoint (ground plane). The task
is to find the dominating one, or more formally, the mode of the
principal direction distribution with the highest amplitude. To
achieve this, we first project the principal directions onto a Gaus-
sian sphere, thereby obtaining an equivalent 2D representation.
To ensure independence from the signs of the cross-products,
they are flipped so that all resulting vectors lie in the same hemi-
sphere. We then construct a nonparametric kernel density estima-
tor (KDE) in the reduced 2D space. This step bears some resem-
blance to the dominant normal direction clustering step of Novak
and Schindler (2013), however note that we utilize the KDE on
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cylinder axes and not on normals. Also, in the former, a fixed
KDE bandwidth is employed, whereas in our approach the KDE
bandwidth is estimated in a data-driven manner using the method
of Wand and Jones (1994). To find the maximum mode of the un-
derlying distribution, we sample k times from the KDE and pick
the maximum-probability sample as the starting point. Gradient
ascent is subsequently applied to locate the peak of the corre-
sponding mode. The vector associated with the highest probabil-
ity is returned as the entire object’s principal direction. The pro-
posed method shares some ideas with the Hough-transform based
approach of Rabbani and van den Heuvel (2005), where normal
vectors from the point cloud vote for the cylinder axis on a Gaus-
sian sphere. However, our approach has the advantage that the
axis parameter space does not need to be discretized; nor do we
need to generate samples to populate the Hough space. Instead,
we rely on established statistical methods to determine the KDE
kernel bandwidth and perform the search in continuous space.

3.3 Cylinder fitting

Once the cylinder principal direction is determined, we calcu-
late the center position and radius based on a sample consensus
method. For a cylinder with an axis parallel to one of the coor-
dinate axes, 3 point samples are require to uniquely identify the
remaining parameters (Beder and Förstner, 2006). To exploit this,
we rotate the candidate stem point cloud to align the calculated
principal direction with the Z axis. We then randomly pick point
triplets (Xi, Yi)i=1..3 and solve the linear equation system:2X1 2Y1 −1

2X2 2Y2 −1
2X3 2Y3 −1

tu
v

 =

X2
1 + Y 2

1

X2
2 + Y 2

2

X2
3 + Y 2

3

 (2)

w.r.t. the variables t, u, v. The cylinder center is given by (t, u),
while the radius r is expressed by: r =

√
t2 + u2 − v. Follow-

ing the RANSAC principle, we pick the cylinder parameters re-
sulting in the greatest number of inlier points within a prescribed
threshold δ. As a final step, we rotate the obtained center back
to the original coordinate system and find the intersection of the
now completely characterized cylinder with the DTM. The inter-
section point is the putative detected tree location.

3.4 Z axis adjustment

As explained in Section 2, the reference planes for calculating
tree heights and positions must be equalized within the terrestrial
and ALS point clouds if any planimetric and vertical distance
comparisons are to be meaningful. To achieve this, we make
use of tree gravitropism and assume that the principal direction
shared by most of the trees corresponds to the World Z axis. We
therefore calculate the spatial median of all candidate stems and
align this direction with the Z axis. This boils down to a rotation
of the putative tree locations from the previous step. We subse-
quently filter out candidate stems whose principal axis angular
deviation w.r.t. the median axis is above a threshold αz = 5◦.

4 COREGISTRATION

After applying the methods outlined in the previous section, the
Z axes of the coordinate systems describing the terrestrial and
ALS tree positions are parallel. This leaves the in-plane rota-
tion angle, the planimetric offset as well as the vertical shift to
be determined. This section explains the details of our proposed
approach for calculating these parameters.

4.1 Stem descriptor

We introduce a tree stem descriptor which characterizes the spa-
tial relationship of a stem to other trees within the same plot. The

descriptors will then be used to find trees with similar proper-
ties across different plots. For each tree stem, the descriptor is
constructed through forming a list of pairs Di = (di,xy; di,z)
of planimetric as well as vertical distances to the remaining trees
(Figure 4). The list is then sorted in an ascending order based on
the planimetric distance. We make use of the aforementioned as-
sumptions about parallel Z axes of the tree position CSs. Thus,
the descriptor is invariant to rotations about the Z axis and ar-
bitrary translations. We chose to split the tree position distances
into a vertical and 2D component in the hope of increasing dis-
criminative capacity compared to the 3D distance. In this way, we
can incorporate DTM variability information into the descriptor.

4.2 Similarity measure

Our notion of stem descriptor similarity is based on radial basis
functions K such that K(x, y) = K(||x− y||). In the following,
we will refer to them as kernels. We begin by defining partial
similarity s between two distance pairs Di = (di,xy; di,z) and
Dj = (dj,xy; dj,z):

s(Di, Dj) = K(
||di,xy − dj,xy||

hxy
)K( ||di,z − dj,z||

hz
) (3)

The structure of the similarity function matches the descriptor’s
structure by factoring into two components corresponding to the
difference in planimetric and vertical distances between the com-
pared pairs. The kernel K is the same for both components, but
the bandwidths hxy, hz for, respectively, the planimetric and ver-
tical component are independent. Recalling that our stem de-
scriptors are ordered lists of distance pairs, we now define the
complete similarity S between two descriptors F = (Fi)i=1..m

and G = (Gj)j=1..n:

(a) (b)

Figure 4: Tree stems on DTM with marked stem descriptor dis-
tances. (a) side view - Z distance, (b) top view - XY distance.

S(F,G) = T (m,n)

T (i, j) = max


T (i− 1, j − 1) + s(Fi, Gj)

T (i− 1, j) + pg

T (i, j − 1) + pg

T (i− 2, j − 2) + s(Fi−1, Gj) + s(Fi, Gj−1)

The formulation given above is based on the algorithm by Needle-
man and Wunsch (1970) for aligning DNA sequences. The algo-
rithm finds the optimal (maximum-similarity) alignment between
the input sequences by recursively solving the problem on shorter
subsequences and combining the smaller problem’s solution with
the elements as the currently processed position. In each move
(i, j), 4 options are considered: (i) match Fi with Gj , combine
with best match of F1..i−1 and G1..j−1, (ii) match Fi with gap,
combine with best match of F1..i−1 and G1..j , (iii) match Gj

with gap, combine with best match of F1..i and G1..j−1, (iv)
transpose Fi−1, Fi, match with Gj , Gj−1, combine with best
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match of F1..i−2 and G1..j−2. The gap penalty pg is not signifi-
cant in our setting (pg = 0). The total matching score is defined
as the score of the full-length sequences F1..m and G1..n. Note
that by splitting the tree distance into two components, we in-
creased discriminative power at the cost of the ability to uniquely
sort the descriptor elements (due to 2 dimensions). Therefore, the
sorted sequence-based matching is an approximation of the opti-
mal matching without ordering. On the other hand, computing
this exact matching requires graph based methods whose com-
putational complexity of O(max(m,n)3) far exceeds that of the
Needleman-Wunsch algorithm (O(m∗n)). This makes the exact
method impracticable even for moderate datasets (100-200 trees).

4.3 Graph matching

We compute the descriptor similarity S between all pairs of de-
scriptors F a, Gb such that the F a correspond tom trees from the
terrestrial dataset, while Gb represent n tree positions from the
ALS point cloud. We define a bipartite graphG = ((V1, V2), E),
where E ⊆ V1 × V2, such that V1 and V2 are respectively the
set of descriptors F a and Gb. The graph’s weighting function
w : E → R is then defined as w(a, b) = S(F a, Gb). We
then find a maximum weight matching using the standard Kuhn-
Munkres method, known in literature as the Hungarian algorithm.
Note that since in general the number of trees in both plots may
differ, only min(m,n) trees will be matched. These tree posi-
tions will be considered as tiepoints in the subsequent steps.

4.4 Rigid transformation

For two fixed, equal length lists P1, P2 of corresponding plani-
metric tree positions, the 2D rigid transformation which aligns P1

to P2 may be computed using algorithm due to Kabsch (1976).
First, the centroids c1, c2 are determined, followed by the covari-
ance matrixB between the (centered) tree positions. Let V SWT

be the singular value decomposition of B. Then, the optimal
(least-squares) rotation R and translation txy are given by:

R =WV T , txy = −Rc1 + c2

4.5 Determination of tiepoint subset

As a result of the graph matching procedure, all trees within the
smaller of the two datasets (terrestrial, ALS) will be matched.
However, it is expected that a considerable part of the correspond-
ing pairs C will be invalid, because some of the trees simply do
not have true matches in the other dataset. Therefore, it is neces-
sary to find a subset of true correspondences that will determine
the final CS transformation. While for a small number of tiepoint
candidates (trees in the plot) all 2min(m,n) subsets may be ex-
amined, this approach is computationally intractable in the gen-
eral case because of the exponential computational complexity.
We propose a heuristic algorithm which iteratively augments the
current best set of tiepoints by exploring the solution’s neighbor-
hood, starting from a small initial solution (k0 tiepoints) obtained
from exhaustive search. The algorithm is given in Listing 1. The
error(T ) function represents the average deviation between the
matched tiepoints in set T ⊆ C obtained after applying the trans-
formation calculated as described in Section 4.4. The function
matchedInRange(T,C, r) calculates the transformation on T and
returns all correspondences from C \ T whose distance between
the matched points is below r. The algorithm can be viewed as a
hybrid between exhaustive search and a greedy strategy, with the
parameter τ controlling the maximum size of the tiepoint subset
which gets replaced during the search. A value of τ = 1 corre-
sponds exactly to greedily picking the tiepoint whose introduc-
tion into the best solution T (i− 1) results in the best T (i). As τ

Algorithm 1 Finding optimal tiepoint subset
1: function BESTTIEPOINTSUBSET(C,k,τ )
2: T (k0)← exhaustiveSearch(C, k0, τ)
3: for i = k0 + 1..k do
4: for j = 1..min(τ, i− k0) do
5: Cr ← matchedInRange(T (i− j), C, dthr)
6: T j

i ← argminD⊆Cr,|D|=j error(T (i− j) ∪D)

7: T (i)← T j′

i , j′ ← argminj error(T j
i )

8: return (T (k0), . . . , T (k))

is increased, the computational effort increases but a larger area
of the solution space is visited. The algorithm returns the list of
optimal tiepoint subsets for each processed k value. Note that due
to the threshold dthr , only matches whose points lie reasonably
close are considered as tiepoint candidates, so the algorithm may
terminate prematurely if no more candidates compatible with the
current best transform are found.

4.6 Vertical offset calculation

In the final step, the optimal vertical offset is determined on the
set of tiepoints T obtained from the previous phase of the coregis-
tration as the median of signed deviations zALS

i − zterri between
ALS and terrestrial tiepoint heights.

5 EXPERIMENTS

5.1 Data acquisition

The study area is located in the northern interior of the Coast
Range in western Oregon (45.301502◦N, 123.380802◦W ). The
site has a mean canopy height of 35.9 m and an average height
to live crown base of 23.7 m and is characterized by pure silvi-
cultural stands of Douglas-fir with vine maple (Acer circinatum
Pursh) present in the understory. The plot is situated at 484.3 m
elevation with a slope of 23% and dimensions of 76x121 m2.

ALS data The LiDAR data was collected by Quantum Spatial
on April 17th, 2011 using a discrete-return Leica ALS60 config-
ured to a pulse rate of > 105 kHz, at an altitude AGL of 900
m. The processed point cloud had a mean ground density of 0.87
points/m2, and mean pulse density of 10.18 points/m2. The point
cloud was segmented into 169 individual trees (Figure 5(a)).

Terrestrial photographs We conducted a ground-level imag-
ing survey on May 5th, 2014 using a Canon PowerShot S100
digital compact camera with a focal length of 5.2 mm. We col-
lected a total of 443 images at a mean altitude AGL of 1 m, cov-
ering a calculated area of 2747 m2 at a ground surface resolution
of 8.7 mm/pixel, with 1 pixel of error and a point density of 3305
points/m2. See Figure 6 for an example terrestrial image.

Initial data processing To compute the photogrammetric point
cloud, we first filtered out images of poor quality due to motion
and out-of-focus blurring. We then carried out structure-from
motion (SfM) dense reconstruction using Agisoft Photoscan Pro-
fessional, whose processing pipeline consists of a proprietary im-
plementation of the scale-invariant feature transform (SIFT), a
bundle adjustment, and a dense matching algorithm. The result-
ing point cloud is depicted in Figure 5(b).

5.2 Scenario simulation

To obtain greater insight into the performance of our proposed
coregistration method, we designed a simulation procedure which
generates test scenarios with similar properties to our real test

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-347-2016

 
351



(a) (b)

Figure 5: Target area - (a) ALS point cloud (color by single trees),
(b) terrestrial point cloud (RGB)

Figure 6: Sample ground-level photograph of target plot

site. The simulation starts by generating m 3D stem positions,
where m equals tree count in the ALS dataset. The z coordi-
nate is taken as the ALS DTM height at the 2D position, while
the planimetric tree locations are created on the basis of a ker-
nel density estimation model of the 2 nearest neighbor (2NN)
distances between trees in the ALS point cloud (obtained using
manually marked tree positions). This way, the distributions of
the distances to the two nearest neighboring trees are approxi-
mately equal in the real and simulated data (15% tolerance). We
then pick a randomly-oriented rectangle containing a subset of
the generated locations, with dimensions equal to those of the
terrestrial point cloud, which will represent the artificial terres-
trial scenario. To account for the fact that not all trees captured
by ALS are also present in the terrestrial dataset, we randomly re-
move a percentage of the created ALS tree positions. Then, more
locations are generated according to the KDE of the terrestrial
point cloud’s 2NN distribution so that the total number of trees
within the picked rectangle approaches n (tree count in the real
terrestrial data). As a result, we obtain two associated sets of m
and n 3D tree positions which can be used as validation data after
adding the required amount of noise. Note that the simulated sce-
narios are related to the real data through both the 2NN distance
distribution, and the z distribution from the real DTM.

5.3 Reference data and evaluation criterion

We utilized two quality measures: (i) quality of found matches,
computed as the ratio of point pairs correctly matched by our
method to the actually matching point pair count, and (ii) mean
planimetric distance of matched points after transformation (sep-
arately on tiepoints only and on all matching points). For the
simulated data, all correspondences, true tree positions etc. were
known by construction. For the real data, we did not have access
to field measurements of ground-truth tree positions. Therefore,
we manually marked the tree tops (ALS) and stem positions (ter-
restrial) in both datasets based on visual inspection, resulting in
169 tree locations in the former and 59 in the latter. Our sub-
jective estimate of the positioning error w.r.t. true tree locations

is 0.7 m (ALS) and 0.35 m (terrestrial). We then constructed a
list of 32 matching tree pairs which were present in both datasets
using initial coregistration results. The mean matched point dis-
tance for the real dataset was calculated w.r.t. these 32 pairs. The
automatic stem detection routine (Section 3) found 44 of the 59
trees in the ground dataset, out of which 24 were manually linked
with an ALS tree position. Note that due to lack of stem points
as well as overstory cover and general structure of the ALS point
cloud, it was not possible to obtain an estimate of the correctly
detected tree ratio for the ALS dataset. The mean deviations be-
tween the manual and automatic tree positions were 0.32 m and
0.46 m respectively for ALS and terrestrial data.

5.4 Parameter settings

The DTM threshold dDTM was 1 m to filter out ground veg-
etation. Based on the photogrammetric point cloud density, the
voxel width, connected component distance, SAC model distance
and min. point count were set to dvox = 1 cm, dcc = δ = 5 cm,
and ncc = 200. The min. trunk height hcc was 1.5 m, and the
max. tiepoint matching distance dthr = 1 m. The Gaussian ker-
nel was used in the role of the similarity measure K.

5.5 Detailed experiments

Evaluation on simulated data We carried out experiments on
simulated scenarios to determine the dependence of the match
quality as well as the mean matched point distance on the amount
of noise present in the data. For this purpose, we created sce-
narios with additive uniform noise on each 2D input position set
having mean values of 5 to 75 cm, with sizes matching the real
data: 170 and 60 locations respectively in the simulated ALS and
terrestrial dataset, and about 30 trees occurring in both (true cor-
respondences). For each noise pair (ALS, terrestrial), 50 sce-
narios were evaluated. Two amplitudes of uniformly distributed
vertical noise were tested: 0-1 m and 0-0.5 m. All experiments
were done in 3 configurations of the similarity measure (Eq. 3):
split 2D-vertical, uniform 3D (single 3D distance), only 2D.

Evaluation on real data First, we investigated the influence of
the tiepoint set size on the matching distance. This was done by
randomly sampling subsets of the true correspondences starting
at 3 tiepoints (up to the maximum number of matched points),
calculating the CS transformation based on the subset and record-
ing the mean matched point distance. For each tiepoint set size,
the results are averaged over 200 random samplings. The second
experiment corresponded to an application of our method in a
real-world scenario, where no prior knowledge (amount of noise,
true correspondences) is available. We executed the full pipeline
of calculating the tree matching and finding the optimal tiepoint
subset (Section 4), through a grid search on the kernel bandwidths
hxy, hz on a range of 0.1 to 1.5 m. As the result of the grid
search, we picked the kernel configuration which led to the maxi-
mum number of matched tiepoints (Algorithm 1). We performed
this both for the set of tree positions from manual labeling and
the automatically detected positions (Section 3).

6 RESULTS AND DISCUSSION

Simulated data

We first analyze the results obtained from simulated data. In
Figure 7(a), the mean matched point ratio is shown. Apparently,
splitting the tree distance into a 2D and vertical component has a
significant effect on the matching quality: for the uniform 2D and
3D distances, the ratio of correctly matched points drops below
0.3 already when the sum of the noise means µ1+µ2 exceeds 0.2
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m, whereas this threshold rises to 0.65 m and 1 m in case of the
split distance for vertical noise mean µz equal to respectively 0.25
m and 0.5 m. These differences are even more pronounced in Fig-
ure 7(b), which depicts the mean distance between the true corre-
sponding points after coregistration. For the 2D and 3D distance,
the coregistration fails when one of the noise means exceeds 0.15
m. The failure is a consequence of poor point matching, which in
turn leads to the coordinate transformation being based on wrong
correspondences and results in matching distances exceeding 20
m. On the other hand, the split distance (2D+Z) exhibits stable re-
sults when max(µ1, µ2) is below 0.45 m and 0.65 m for the two
respective µz values, with mean matched point distances usually
within the interval [(µ1 + µ2)/2;max(µ1, µ2)].

Tree position matching quality - simulated data

2D+Z(µz=0.25m)
2D+Z(µz=0.5m)
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Mean matched tree position distances [m] - simulated data
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Figure 7: Results for simulated data as a function of tree posi-
tion noise means: (a) avg. correctly matched point ratio, (b) avg.
matched point distance [m]. µz indicates vertical noise mean.

Real data

We now turn to the real data obtained through ALS and pho-
togrammetric techniques (Section 5.1). In the second experiment,
we examined the influence of the number of tiepoints used to cal-
culate the coordinate transformation on the final matched point
distance. For this purpose, we used correspondences between
the ALS and terrestrial tree positions that were manually deter-
mined through visual inspection. Two such correspondence sets
were derived, one for the reference tree positions marked manu-
ally, and the other for the automatically detected tree positions.
In case of the reference positions (Figure 8(a)), we observe that
on average (blue 4 curve), the mean matched distance over all
32 corresponding tree positions based on 3 tiepoints (TP) is not
satisfactory, exceeding 1.1 m, whereas at 6 TP, the distance drops
below 0.7 m and declines steadily to reach 0.63 cm at 20 TP.
In contrast to the matched distance averaged over multiple runs,
the orange (x) curve shows the result taken for the single tiepoint
set whose mean inter-TP distance was minimal among all runs.
It is interesting to note that result of 1.4 m for 3 TP is worse
than average 1.1 m, which indicates that the mean matched dis-
tance over tiepoints only is not always correlated with the mean
matched distance over all points. For the automatically detected
positions (Figure 8(b)), the average (4) trend is similar, while
the min (x) curve behaves somewhat differently. For 3 TP, a good

result (0.71 m) is achieved, but in the range of 4-8 TP, random
fluctuations appear, with the mean distance deteriorating to 0.88
m and then returning below 0.7 m. The trend fully settles for
15 TP, after which point it becomes indistinguishable from the
average curve. We conclude that it may be worthwhile to con-
duct the coregistration using 10-15 TP, since in the real scenario
the true correspondences are unknown and only the mean TP dis-
tance guides the coregistration process. The last experiment eval-
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Figure 8: Mean coregistration distance on tiepoints (TP) and all
matched points (All) for real data when true correspondences are
known, by tiepoint set size

uates the real-world application with no prior knowledge of cor-
respondences. The final mean matched distances of the set of all
matched points (all) and tiepoints only (TP) are depicted in Fig-
ure 9. We conducted the grid search on kernel bandwidths as de-
scribed in Section 5.5 and picked the kernel pair which resulted in
the most tiepoint pairs matched by Algorithm 1. This can be seen
as an objective, unsupervised measure of matching quality, since
a large number of matching pairs is unlikely to arise randomly.
For the two-part kernel (2D+Z), a total of 17 and 18 matching
TP were found respectively for the manual reference and auto-
matic tree positions. In case of the uniform distance kernel (3D),
for the manual positions a subset of 7 TP was found, while for
the automatic positions all configurations failed. This aligns well
with the simulation results (Figure7), which essentially predicted
a breakdown of the uniform kernel for position deviations ex-
ceeding 15 cm. The fact that a 3D kernel solution existed for
manual positions suggests that their determination through visual
inspection was reasonably precise (at least 7 trees with deviations
< 15 cm in both ALS and terrestrial data). Returning to the two-
part kernel, the attained matched point distances were similar for
manual and automatic positions at, respectively, 62 and 66 cm.
This suggests that the quality of automatically detected positions
was slightly inferior, but still sufficient for coregistration. At 6
TP, near-optimal matched distance is achieved and adding more
TP yields only a small decrease (up to 2 cm for all found TP).
On the other hand, as the number of TP increases, the mean TP
distance converges to the matching quality on all corresponding
points, therefore using more TP yields a better estimate of the true
coregistration error. The vertical position error was 42 cm, which
is within expected limits given our DTM accuracy (grid size 20
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cm) and slope of 23%. Finally, although the true accuracies of the
stem positions are unknown, we can roughly estimate the noise
means µ1, µ2 by finding the point on the simulated matched dis-
tance surface (Figure 7(b)) which best matches our result of 66
cm. The closest matches were mean values of 0.35 m/0.25 m for
µz = 0.25 m and 0.4 m/0.25 m for µz = 0.5 m. The coregistered
tree planimetric positions obtained via our method on the test plot
are shown in Figure 10.
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Figure 9: Results of kernel bandwidth grid search for real data -
mean matched point distance curves by tiepoint count for manual
reference (ref.) and automatically detected (det.) positions
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Figure 10: Coregistered tree positions on test plot (axes in m).

7 CONCLUSIONS

We presented a method for coregistering ALS and terrestrial pho-
togrammetric point clouds in forested areas. The method finds
corresponding trees in both point clouds using mutual distances
between stem positions within the plot. We showed that incor-
porating DTM variability into the distance metric can yield im-
proved discriminative capabilities compared to a purely planimet-
ric variation, which leads to enhanced quality of the tree match-
ing. Evaluations on real and simulated data indicate that a good
correspondence quality (average planimetric distance of 66 cm
between matched tree centers) may be achieved, considering the
limited accuracy of tree center detection for ALS data. This
agreement between terrestrial and ALS tree distances confirms
that the real-world scale assumption for the photogrammetric point
cloud is valid in practice. Furthermore, the proposed simulation
procedure is tailored to the target area’s properties (inter-tree dis-
tances, DTM shape), and therefore may be used to assess the suit-
ability and expected accuracy of our method for a particular new
area. Our results could be a step towards a new generation of
cheap systems for surveying the forest understory based on hand-
held terrestrial photogrammetry. As a future step, we would like
to increase the tree center calculation accuracy particularly for
the ALS data, as it is currently the dominating error source. Also,
precise field measurements could provide a basis for better quan-
tifying the coregistration error.
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the height structure and composition of a boreal forest using an
individual tree crown approach applied to photogrammetric point
clouds. Forests 6(11), pp. 3899.
Theiler, P. W., Wegner, J. D. and Schindler, K., 2014. Keypoint-
based 4-points congruent sets automated marker-less registration
of laser scans. ISPRS J. Photogramm. Remote Sens. 96, pp. 149.
Wand, M. P. and Jones, C., 1994. Multivariate plug-in bandwidth
selection. Computational Statistics 9(2), pp. 97–116.
Weinmann, M. and Jutzi, B., 2015. Geometric point quality as-
sessment for the automated, markerless and robust registration of
unordered TLS point clouds. ISPRS Annals of Photogramme-
try, Remote Sensing and Spatial Information Sciences II-3/W5,
pp. 89–96.
Yang, B., Zang, Y., Dong, Z. and Huang, R., 2015. An automated
method to register airborne and terrestrial laser scanning point
clouds. ISPRS J. Photogramm. Remote Sens. 109, pp. 62–76.
Yone, Y. and Oguma, H., 2014. A forest measurement method by
using high density point cloud data derived from video images.
In: Proceedings of ForestSat.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprsannals-III-3-347-2016

 
354




