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ABSTRACT: 

 

Quick post-disaster actions demand automated, rapid and detailed building damage assessment. Among the available technologies, 

post-event oblique airborne images have already shown their potential for this task. However, existing methods usually compensate 

the lack of pre-event information with aprioristic assumptions of building shapes and textures that can lead to uncertainties and 

misdetections. However, oblique images have been already captured over many cities of the world, and the exploitation of pre- and 

post-event data as inputs to damage assessment is readily feasible in urban areas. In this paper, we investigate the potential of multi-

temporal oblique imagery for detailed damage assessment focusing on two methodologies: the first method aims at detecting severe 

structural damages related to geometrical deformation by combining the complementary information provided by photogrammetric 

point clouds and oblique images. The developed method detected 87% of damaged elements. The failed detections are due to varying 

noise levels within the point cloud which hindered the recognition of some structural elements. We observed, in general that the façade 

regions are very noisy in point clouds. To address this, we propose our second method which aims to detect damages to building 

façades using the oriented oblique images. The results show that the proposed methodology can effectively differentiate among the 

three proposed categories: collapsed/highly damaged, lower levels of damage and undamaged buildings, using a computationally light-

weight approach. We describe the implementations of the above mentioned methods in detail and present the promising results achieved 

using multi-temporal oblique imagery over the city of L’Aquila (Italy).  

 

 

1. INTRODUCTION & RELATED WORKS 

Structural damage assessment is an imperative process to be 

carried out immediately after the disaster event for effective 

planning and execution of response and recovery actions. 

Assessing building damages over large areas affected by hazard 

events with ground observations is not efficient. Alternatively, 

remote sensing-based approaches have been recognized as useful 

means for assessing synoptic building damage. Detailed 

information of an affected area can be provided in a short time 

using a variety of sensors such as optical, SAR and LiDAR 

(Khoshelham et al., 2013; Miura et al., 2013; Uprety and 

Yamazaki, 2012). In particular airborne oblique images have 

been recognized as a valuable data source to assess building 

damages because, compared to traditional nadir views, they allow 

the complete inspection of the external outlines of the building, 

such as roofs and façades (Murtiyoso et al., 2014). Nowadays, 

airborne images are captured with high overlap, and the 

generated point clouds can be exploited in the damage 

assessment process as well (Sui et al., 2014). Geometrical 

deformations such as partial/complete collapse, pancake 

collapse, inclination, broken and dislocation of elements can be 

easily derived by 3D geometric information, while damages such 

as cracks and spalling can be inferred from the images directly. 

Several papers have highlighted the potential of synergistic use 

of 3D point cloud and images for building damage assessment 

(Gerke and Kerle, 2011; Vetrivel et al., 2015). However, only 

few studies have looked at the use of digital oblique aerial 

imagery for structural damage assessment, and were focused on 

(mono-temporal) post-event information (Gerke and Kerle, 2011; 

Vetrivel et al., 2015). The major limitation of this approach is that 
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damage is inferred based on a set of ontological assumptions: i.e. 

a surface with unusual radiometric or geometric characteristics is 

assumed to be damaged, while manmade objects are assumed to 

have a regular shape and uniform radiometric characteristics. 

These assumptions have limitation in complex environments, 

leading to a high rate of false alarms, which reduces their 

reliability and operational utility. In Vetrivel et al. (2015), 

damages presenting regular and uniform shapes (false negative), 

or intact regions characterized by cluttered and non-uniform 

radiometric distributions (false positive), were incorrectly  

classified due to these assumptions.  

The above uncertainties can be alleviated if pre-event data are 

available for reference. Many studies have demonstrated the 

potential of multi-temporal data for damage assessment, though 

with most focusing on nadir-view images (Dong and Shan, 2013; 

Murtiyoso et al., 2014). To our knowledge, no methods have been 

reported yet for identifying building damages using multi-

temporal oblique images and/or 3D point clouds.  

In this paper the first implementation of an automated algorithm 

for building damage assessment from multi-temporal oblique 

images is presented. Although geometrically more stable 

cameras are used nowadays in oblique airborne systems, many 

data sets are captured with less sophisticated camera systems, and 

image overlap is often restricted to 2-fold. Hence, for such 

configurations one has to cope with dense image matching point 

clouds of minor quality (relatively large random error margin, 

gaps). In particular façade regions are generally represented by 

sparse and very noisy 3D points, as they are more cluttered and 

often occluded (Rupnik et al., 2014). The proposed methods take 

advantage of both 2D and 3D information and efficiently cope 

with these problems. 
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The paper addresses two independent objectives:  

 The development of a methodology to identify severe 

building damages related to geometrical deformation, 

using multi-temporal oblique images and 3D point 

clouds. To this end three different change detection 

methods are proposed to identify building elements 

that are geometrically deformed between the two 

epochs. Subsequently, a change classification method 

is proposed to identify the geometric deformation of an 

element marked as damaged.  

 The analysis of multi-temporal oblique images for 

identifying the damages along façades which are often 

not well modelled in the generated point clouds.  

 

The detailed description of the methodologies and the results 

achieved on the test area of L’Aquila (Italy) will be presented in 

detail.  

 

2. DATA DESCRIPTION  

The data used are corresponding to the city of L’Aquila, Italy in 

which an earthquake occurred on 6th April 2009. The data consist 

of two airborne oblique acquisitions (August 2008 and May 

2009) covering the city with both oblique (4 cameras) and nadir 

(1 camera) imagery, captured by small format DSLR cameras. 

Images were acquired at a flying height of approximately 1000 

m allowing for an average ground sampling distance of 16 cm on 

oblique views. The flight was conducted considering a forward 

overlap between 60-70% and side overlap between 35-45%, 

allowing to derive a 3D point cloud. The registration was 

achieved computing tie-points from all the imagery, forcing both 

epochs to share a local coordinate system. Dense image matching 

was then performed separately on both epochs. 

 

3. POINT CLOUD BASED DAMAGE DETECTION AND 

CLASSIFICATION 

3.1 Methodology  

Any severe structural damage, such as partial or complete 

collapse, pancake collapse, dislocated or inclined elements, leads 

to the absence of the given elements in their actual 3D boundary 

in the pre-event data. These damaged elements are referred to 

missing elements. The missing structural elements can be 

identified by comparing the accurately co-registered multi-

temporal (pre and post-event) 3D point clouds. However, the 

absence of pre-event segments in post-event 3D point clouds may 

be due to many reasons, such as occlusion/a building part being 

exposed to a lower number of camera views, or poorly textured 

surfaces, leading to missing 3D points. On the other hand, an 

element can be missing because it was damaged or cleared 

deliberately. Therefore, it is important to infer the reasons for the 

absence of a pre-event element in the second epoch data after 

detecting them.  

The missing elements due to damage are detected using the pre- 

and post-event images and 3D point clouds derived from them by 

three pipeline processes (cf. Figure 1). As an initial step, the 

individual buildings in the area are delineated from the pre-event 

3D point cloud. Subsequently, the delineated buildings in the pre-

event data are compared to the post event 3D point cloud to detect 

changes. Finally, the changes are classified to isolate the changes 

caused by damage. The detailed methodology to carry out the 

aforementioned processes is described below.  

 

 

Figure 1. Overall workflow 

3.1.1 Building delineation from 3D point cloud: In remote 

sensing data, the roof segments are the most visible and least 

cluttered building elements. Moreover, they can be recognised 

based on simple geometric constraints. For instance, the roof 

segments are mostly elevated horizontal or slanted planar 

surfaces with respect to ground. Hence, in this study the roof-

based building delineation approach based on 3D point clouds is 

adopted. Moreover, this method has previously shown reliable 

results (Vetrivel et al., 2015). The procedure followed is 

described below.  

The 3D point cloud is segmented using planar segmentation as 

described by Vosselman (2012). The segments with Z component 

of the plane normal > TZ (0.4) and above height TH (3 m) are 

labelled as roof segments. The spatially connected roof segments 

are identified by defining the alpha shapes with an alpha radius 

of TR (0.3). Finally, the 3D points that are covered by single alpha 

shapes are delineated as roofs of a single building. Also, all the 

3D points that lie within the 2D boundary of the alpha shape are 

registered as the 3D points of the building, i.e. all 3D points that 

lie below the roof elements are also registered as the 3D points 

of the building. 

 

3.1.2 Change detection to identify the missing building 

elements in post event: The pre-event building elements that are 

missing in the post-event point cloud are identified using the 

following three approaches. To provide a clear understanding of 

the proposed methods, they are illustrated with examples from 

the data used and results obtained from our experimental study. 

Also, the pros and cons, and appropriate scenario that make a 

particular method suitable, are discussed. 

Voxel-based approach (VBA): A unit of 3D space that is 

occupied by a specific building element in the pre-event but not 

the post-event data is straight-forwardly identified and classified 

as a change. The 3D space defined by the delineated building in 

the pre-event point cloud is divided into voxels. The edge length 

of voxels is defined based on image ground resolution (0.5 m ~ 

three times the image ground resolution). The 3D points of the 

pre- and post-event point clouds that lie within the defined 3D 

boundary are added to the corresponding voxels. The voxels that 

contain pre-event but no post-event 3D points are classified as 

changed voxels. However, it is challenging to differentiate 

between the changed and unchanged voxels as there is a high 

probability that 3D points of the pre- and post-event epochs of 

the same building element may fall into different (adjacent) 

voxels, due to the varying noise level between the two point 
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clouds. To overcome this problem the spatial buffers along the 

horizontal and vertical directions with buffer thresholds of THB 

(0.5 m) and TVB (1.0 m), respectively, are created for each voxel 

occupied with the pre-event 3D points. These voxels are 

classified as unchanged voxels if post-event 3D points lie within 

the buffer area; otherwise they are classified as changed voxels. 

Finally, the pre-event 3D points of the changed voxels are 

detected as 3D points of missing building elements and 

considered for the further change classification process. The 

overall process of this approach is shown in Figure 2. 

 

Pros: In many cases photogrammetric point clouds are very 

noisy, hindering the recognition of individual building elements. 

In such cases, this approach is more suitable as it does not need 

any prior information or assumptions about the building, unlike 

the segment-based approaches discussed below.  

Cons: The presence of artefact 3D points, common in 

photogrammetric point clouds in unfavourable image flight 

configurations, strongly affect the performance of this approach. 

Moreover, in specific scenarios, it cannot detect or accurately 

delineate the missing portion of the element, since the voxels are 

classified in a binary fashion, i.e. whether or not they contain a 

certain element. Therefore, even if only a minor portion of a 

voxel is occupied by an element, it will be classified as occupied 

voxel. Hence this results in a failure to detect missing elements 

that characterises the remaining majority portion of the voxel. 

Since it does not consider the geometry of the elements it may 

fail to detect the damages in specific scenarios. For example, 

consider a horizontal roof segment is missing and the below 

vertical elements are visible. In such a case, this approach may 

fail as the 3D points of the vertical elements fall into the voxels 

of the missing elements when the voxel and its buffer sizes are 

significantly large. Moreover, this approach is computationally 

intensive. 

 

 

Figure 2.  Workflow of voxel-based approach 

Segment-based approach (SBA): In general, most buildings are 

made of a composition of planar segments. Hence, we anticipate 

that comparison of pre- and post-event data based on planar 

segments will help to precisely identify changes on element level. 

This would also lead to more object-oriented analysis compared 

the voxel-based approach. However, direct comparison of 3D 

segments that are obtained from independent segmentation of pre 

and post-event is not always practically possible. This is because, 

though the 3D point clouds of the two epochs are segmented 

using the same segmentation algorithm, in practice it is not 

always feasible to obtain the same segments even for 

corresponding areas. This is predominantly due to varying noise 

level between point clouds. Therefore, we propose a method 

where the pre-event point cloud alone is segmented and the 

corresponding segments in the post-event are derived based on 

the pre-event segments.  This is done by fitting a plane to pre-

event 3D segment and, subsequently, the post-event 3D points 

that lie within the plane-offset of TD (1.0 m) to be derived as post-

event segment. Then the missing (damaged) portions of pre-event 

segments are identified by comparing them with the 

corresponding derived post-event segments. Only the segments 

with an area greater than TA (5 m2) are considered for the change 

detection process. The overall procedure of this approach is 

shown in Figure 3. 

 

Pros: Compared to the voxel-based approach it is 1) less sensitive 

to artefacts, 2) more robust in detection and accurate delineation 

of missing elements, and 3) computationally less demanding.  

 

Cons: This approach fully depends on the performance of the 

planar segmentation algorithm. The planar segmentation fails to 

produce accurate segmentation for portions of point cloud 

corresponding to very high noise, and also for regions of non-

planar elements.  

 

 

Figure 3. Overall workflow of segment-based approach 

Composite segment-based approach (CSBA): The above 

segment-based approach is defined particularly for plane-based 

segmentation. Here, we develop an alternative segment-based 

approach that is independent of the segmentation methods. 

Pertaining to this, a composite segment-based approach is 

developed where the pre and post-event point clouds are merged 
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and segmented together using a plane-based segmentation 

algorithm (although any segmentation method can be used). 

Therefore, the corresponding segments in the two dataset share 

the same segment label, which facilitates direct comparison 

between them. Thereby the completely and partially missing 

elements can be identified in simple and faster way than in the 

above proposed methods. The proposed change detection 

strategy is described below.  

 The pre-event segments that have no corresponding 

segment in the post-event point cloud represent the 

completely missing segments. This can be obtained in 

a single step by a simple set difference: i.e. suppose sets 

A and B are the segment label lists of pre and post-event 

epoch, respectively, then the completely missing 

segments are obtained by A-B (set difference).  

 To identify the partially missing segments select the 

corresponding segments in the pre- and post-event data 

and define the boundary for the post-event 3D segment 

using the alpha shapes. The pre-event 3D points that lie 

outside the defined boundary are considered as the 

missing portion of the pre-event segment in the post-

event data. 

Pros: It is faster and simple than the other two proposed methods.  

 

Cons: The choice of segmentation algorithm is critical as it 

should detect building elements of different geometry (planar and 

no-planar) and robust to varying noise levels between the point 

clouds. It is also highly vulnerable to co-registration errors of 

multi-temporal point clouds.   

 

3.1.3 Change classification (inferring reason for change): 
In general, the disappearance of a building element due to 

damage will lead to two kinds of scenarios: 1) the absence of 

certain elements will create an opening, leading to a visibility of 

the element below it. Therefore, there will be a new surface (3D 

points) in the post-event data, corresponding to this disappeared 

element (cf. Figure 4), or 2) the disappearance of partial elements 

may create a hole in the structural element which appear darker 

due to poor radiometric reflection (cf. Figure 4). This is termed 

as structural holes and it will be a gap in the 3D point cloud. 

However, gaps in 3D point clouds may also be caused by mis/no 

matches in 3D point generation (e.g., poorly textured surfaces) 

and occlusions. Therefore, it is important to distinguish between 

these gaps to identify the ones caused by damage. As the image 

radiometry plays a major role here, we used pre- and post-event 

images in addition to point clouds for the change classification 

process. The procedure for inferring the reasons for the absence 

of pre-event element in post-event is described below.   

 

      

Figure 4. Example of element collapses leading to an opening 

with the surface below it visible (left) and not visible, i.e. 

structural holes (right) are highlighted in red circles.                                                                      

Case 1: Element missing due to occlusion/partial visibility:  
The pre-event 3D points missing in the post-event data due to 

occlusion can be identified by analysing the visibility of those 

points in the post-event camera views. This is done by adding the 

missing pre-event 3D points to the post-event point cloud. 

Subsequently, the visibility of 3D points in each post-event 

camera view is estimated using the Hidden Point Removal 

operator (HPR) (Katz et al., 2007). Finally, the newly added pre-

event 3D points that are visible in less than ‘N (3)’ camera views 

(post-event cameras) are removed by labelling them as occluded 

points, and the remaining pre-event 3D points are classified as 

visible points and considered for further change classification 

process.  

Case 2: Element missing due to damage and mis/no matches 

in 3D point generation: The change classification is preferred to 

be performed at segment level, as manmade objects are largely 

composed of planar/regular elements, thus it helps to reduce false 

decisions. The segment-based approaches will directly provide 

the 3D points of missing element in terms of segments. However, 

for the voxel-based approach, it will provide the collection of 

independent pre-event 3D points that are absent in the post-event 

situation. Therefore, the 3D points obtained from the latter are 

grouped into dis-jointed 3D segments based on their spatial 

connectivity, using the alpha shapes for further processing.  

A rule-based approach is adopted and a set of rules is defined to 

classify the missing elements into the aforementioned scenarios. 

This classification approach is independent from the methods 

used to detect missing elements and is described below. 

Element missing due to damage and the surface below it is 

visible: The rule for this class is defined below and illustrated in 

Figure 5.  

Rules: The post-event 3D points should be present within the 2D 

boundary (change boundary) of the missing pre-event 3D 

segment. Also the post-event points and pre-event 3D segment 

should be visible in the same post-event camera. Also the area 

covered by the post-event 3D points should be of similar size 

compared to the area of the missing pre-event segment (at least 

cover 30 %). 

 

Figure 5. Example for missing 3D segment classified as damaged 

and the surface below it is visible in post-event.   
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Pre-event element missing in post-event due to damage 

(structural hole) or mis/no matches in 3D point generation: 

In contrast to the above scenario, if the change-boundary does not 

contain a significant number of post-event 3D points then the 

radiometric characteristics of the change boundaries in the pre- 

and post-event data are compared by delineating them in the 

corresponding images. If they are not similar and if the post-event 

image surface appears significantly darker compared to the pre-

event one, then it is classified as damage (structural holes), 

otherwise it is classified as mis/no matches in 3D point 

generation. The grey-value (image pixel value) based histogram 

is used as a feature to compare the radiometric characteristics as 

it is well proven and widely used region-level image descriptors 

(Wenjing et al., 2006). 

 

 

Figure 6. Example for missing 3D segment classified as 

(structural hole) caused by damage. 

 

Figure 7. Example for missing 3D segment classified as mis/no 

matches in 3D point generation. 

Rules: If the correlation between the histograms of the pre and 

post-image regions is less than THD (0.75) they are considered to 

be radiometrically dissimilar. If the histogram peak of the post-

event image patch corresponds to grey values <TG (50 lower grey 

value) then the pre-event 3D segment is classified as element 

missing due to damage (structural holes) in the post-event.  If 

above constraints are not satisfied then the missing pre-event 

element is classified as element missing due to mis/no matches 

in 3D point generation.  The illustrations of these two classes are 

depicted in Figure 6 and Figure 7. 

 

3.2 Results  

3.2.1 Data used: three subsets of building blocks from 

different parts of the city were considered for the damage 

detection process, containing a total of 48 buildings. Of those 23 

building elements are identified as either completely or partially 

missing in the post event data due to damage. The pre-event 3D 

point clouds of the considered sub-blocks are shown in Figure 8.  

 

 

Figure 8. Pre-event 3D point clouds of the sub-blocks considered 

for damage assessment. 

3.2.2 Results of building delineation: All 48 buildings are 

detected using the method described in section 3.1.1 and they are 

categorized into three cases: 1) Buildings that were delineated 

with close approximation to the actual boundary (# 36); 2) 

buildings with some portions not delineated (# 7); 3) single 

buildings detected as multiple buildings, particularly the 

buildings with multi-level roofs. (#5). A sample result for 

building delineation is shown in Figure 9.  

 

 

Figure 9. Image subset of airborne image (left) and delineated 

buildings based on 3D point cloud are projected over the image 

(right). 

3.2.3 Results of the change detection methods to identify 

the missing building elements in post event: In this section, the 

overall results and the major inferences associated with each 

change detection method are summarized. The overall results are 

provided in Table 1. An example result of missing elements that 

were detected by the composite segment-based approach for a 

small block is depicted in Figure 10. 
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Figure 10. The detected missing pre-event segments using 

composite segment-based approach are projected as red points 

over a pre-event image (left), and outlined in the post-event 

(right) images with yellow circles. 

 

Method Detected 

damage 

(not detected) 

Missing elements due to:  

Occlusions Mis/no 

matches 

VBA 17 (6) 3 8 

SBA 20 (3) 1 3 

CSBA  20 (3) 1 2 

Table 1. The results of missing pre-event 3D segments detected 

by all three approaches. 

 

3.2.4 Results of change classification: For the change 

classification process, the missing elements identified by the 

segment-based approach were considered (cf. Table 1 ).  

Case 1: Element missing in the post-event data due to 

occlusion: only one segment that was very small (area < 5m2) 

was identified as missing in the post-event data due to occlusion 

(cf. Table 1), and it was classified correctly and removed from 

the further classification process.  

Case 2: Element missing due to damage and mis/no matches 

in 3D point generation: The results of the change classification 

process are provided in Table 2. In total all 20 elements that are 

missing due to damage were classified correctly. Among the 

three non-damaged missing elements two were correctly 

classified as mis/no matches in 3D point generation. The 

remaining one was misclassified as damage related to structural 

hole as it was affected by shadow in the post-event data.   

 

 Predicted 

Actual Damage Non-damage 

Damage 20 0 

Non-damage 1 2 

Recall =100% ; precision= 95.23% and accuracy= 95.6% 

Table 2. Results of classification of missing 3D segments 

detected by segment-based approach 

 

The final outcome of the overall process is the report for each 

building that shows the area and boundary map of each missing 

elements of the building due to damage. For example, Figure 11 

depicts the area and outline of each missing elements for a 

building shown in Figure 3. 

 

Figure 11. Outline of each missing segment of a building and 

their areas are annotated in m2 (left) and superimposed on the 

corresponding building in post-event (right). 

3.3 Discussion  

The pre- and post-event point clouds derived from the oblique 

images are noisy. However, the noise level varies from place to 

place as they are susceptible to the radiometric characteristics of 

the surface. Therefore, the places corresponding to very noisy 3D 

points were not segmented well, and because of this three (out of 

23) damaged elements were not detected by both segment-based 

approaches (cf. Table 1).  The voxel-based approach has not 

detected six damaged elements. This is due to its limitations that 

are highlighted in the cons of the voxel-based approach (cf. 

3.1.2). The change classification (cf. 3.1.3) is a straightforward 

approach which correctly classified the missing elements due to 

earthquake damages or man-made changes. The classification of 

mis/no matches failed just in one case, in correspondence of a 

shadowed building element that was wrongly classified as 

structural hole. 

 

4. MULTI-EPOCH FACADE IMAGE CORRELATION 

FOR DAMAGE ASSESSMENT 

The objective of the following method is to automatically detect 

building façade changes by comparing their radiometric values. 

It will lay the ground for further developments focusing first on 

the extraction and rectification of the image patches containing 

the façades, followed by the comparison itself, and considering 

three main categories: highly damaged or collapsed façades, 

lower levels of damage (changes), and undamaged buildings.  

 

4.1 Method 

To perform the multi-temporal comparison between the façades, 

these building elements must be, beforehand, extracted from the 

images. The pre-event 3D point cloud allows the identification 

and extraction of the points relative to the façades. These can be 

back-projected into the image, using the correspondent 

projection matrices, defining the boundaries of the image patches 

to extract. The 3D points corresponding to the façades will also 

be used to define the plane containing the façade by fitting a least 

square plane. Using this 3D plane and the extracted façade 

patches, these can be rectified using a homography matrix. An 

interpolation is performed on the gaps produced by the projection 

of the pixels to the real world façade plane (see Figure 12). 

Variable resolution and brightness can be detected according to 

the point of view of each image. These problems affect the results 

independently of the epoch of the images (same or different 

epoch). The comparison itself is made by determining the 

correlation coefficient between the rectified façade patches. This 

correlation coefficient is computed using a 7 by 7 pixels moving 

window, determining local (on each window position) and global 

(mean of the considered façade) values of the computed cross 

correlation. Nevertheless, only results of the inter-epoch 

correlation are not sufficient, since they do not have an actual 

meaning of change/no change, but just provide a correlation 

value of the pixels of the compared façades. To normalize the 

correlation values and increase the feasibility in the change 

detection, the correlation coefficient is first performed using 

different images of the same epoch as this value serves as 

reference to judge the multi-epoch comparison. The façades with 

a difference between intra- and inter-epoch correlation 

coefficients bigger than an imposed value will be considered as 

highly damaged or collapsed buildings. Again, this imposed 

value to limit the difference in the correlation values between 

epoch is based on the intra-epoch correlation results (see 4.2 

Results). The same for undamaged buildings where similar 

correlation coefficients in both the intra- and inter-epoch indicate 

the presence of an undamaged element. The correlation values 
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from the intermediate category, lower levels of damage, are still 

the most critical to be automatically interpreted, and they are 

classified as changes in the current method implementation.  

 

  

  

Figure 12. Example of two pre- and post-event subsets of oblique 

images containing the façade (above) and respective rectified 

images (below). 

 

4.2 Results  

This section presents the results according to the categories 

defined earlier. As explained before the intra-epoch radiometric 

comparison will serve as reference value for the inter-epoch 

comparison. The undamaged case will be assessed first (Figure 

13). It will be followed by an example posing the possible intra-

epoch differences between the extracted image patches from two 

distinct images (Figure 14), given the problems addressed in the 

previous section. The inter-epoch comparison will then be 

addressed considering damage related changes (Figure 15) and 

other changes (Figure 16). Finally, the collapsed building case 

will be depicted (Figure 17). 

Considering the façade presented in Figure 13, the correlation 

coefficient was 0.78 intra-epoch and 0.75 inter-epoch. This 

similarity can categorize this façade as unchanged and 

consequently not damaged. 

 

 

Figure 13. Same façade extracted from both epochs. a) and b) 

relative to pre-event and c) post event. 

Figure 14 represents another façade element in which the intra-

epoch correlation coefficient is lower than in the former example. 

The balconies which are not in the defined plane, are hence 

consequently wrongly rectified. Different illumination settings 

are also noticeable on the shadows of the shown rectified patches.  

The global correlation value on the façade is therefore very low 

(0.51) and the correlation values are extremely low (darker areas) 

in correspondent balconies and associated shadows (Figure 14, 

rightmost part) 

 

Figure 14. Pre-event rectified image patches and corresponding 

correlation coefficient. 

In Figure 15, the intra-epoch correlation coefficient is 0.52 and 

inter-epoch correlation is 0.40. In this case low correlation values 

are mainly due to the lack of texture in a large portion of the 

façade and different position of the shadows in the images; in the 

inter-epoch case, the value is further decreased by the presence 

of a large spalling area on the façade.  

 

Figure 15. Hazard-related changes. Same façade extracted from 

both epochs. a) and b) relative to pre-event and c) post event. 

Not all changes are damage related as can be seen in Figure 16. 

Here the intra- and inter-epoch correlation coefficients were 0.66 

and 0.33, respectively. Unlike the latter case, the changes which 

decreased the correlation coefficient are not hazard related and 

are due to the removal of banners present in the pre-event. 

 

 

Figure 16. Changes not hazard related. Same façade extracted 

from both epochs. a) and b) relative to pre-event and c) post 

event. 

However, correlation values are completely different in the case 

of complete collapses. The façade shown Figure 15 is considered 

in an inter-epoch comparison: the mean of the correlation 

coefficient drops drastically (from 0.51 to 0.04) indicating 

directly the presence of a collapsed building (Figure 17). This can 

be performed for several façades to confirm the outcome of the 

categorization, as collapsed, for the whole building. 

 

Figure 17. Total collapse example, rectified images on both 

epochs and correlation coefficient matrix.  

 

4.3 Discussion 

The results obtained above allow to confirm that the present 

methodology can differentiate between the three proposed 

categories, collapsed/highly damage, presence of lower levels of 

damage and undamaged buildings, using a computationally light 

approach. In the collapsed or highly damaged case this can even 

be confirmed using the available façade elements and also roof 

elements corresponding to a same building. Considering the 

undamaged/unmodified case, the correlation coefficient 

similarity will mostly indicate the presence of the same 

unchanged element. Although, as seen in Figure 14. Pre-event 

rectified image patches and corresponding correlation 

coefficient., the presence of balconies or other overhanging 

details will decrease the correlation between facades, since these 

were assumed flat in order to perform the image rectification. 

Analogously a very low correlation value can immediately 

indicate a high level of damage. Concerning the intermediate 

category, where the changes happened at a façade level, the 

definition of a correlation interval which includes these elements 

may not be so direct like the previously referred categories; 
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nonetheless, the multi-temporal component can certainly aid in 

the definition of such interval. 

 

5. CONCLUSION AND OUTLOOK 

In the presented paper, two independent methodologies were 

developed to identify the structural damages by utilizing both 2D 

and 3D information derived from multi-temporal, pre- and post-

event oblique images.  

The first method of the paper focussed on developing methods to 

identity structurally deformed elements due to damage using the 

pre- and post-event images and 3D point cloud. The developed 

methods produced significant results, particularly, the segment-

based approaches detected 87% (20 out of 23) of geometrically 

deformed elements, and all of them were correctly classified as 

damaged by the proposed change classification approach. 

However, while the proposed methods can identify the 

structurally deformed elements due to damage, they cannot infer 

the type of structural deformation, such as dislocation, 

inclination, complete collapse or pancake collapse. Generally, 

any missing structural element in the pre-event data will emerge 

as a new element (at least debris) in the post-event epoch. These 

newly emerged post-event elements can be identified by 

detecting the missing elements from the post- to pre-event data 

using any one of the proposed change detection methods. A 

semantic analysis by mapping of corresponding missing pre-

event and the newly emerged post-event elements would help to 

infer the specific reason of structural deformation. This would be 

the logical extension of this work.  

The planar segmentation was adopted to derive segments in the 

segment-based change detection approaches. It often failed to 

provide accurate segmentation for very noisy and non-planar 

regions in the 3D point cloud, which hindered the assessment for 

those regions. However, numerous point-cloud segmentation 

methods have been developed which utilize the contextual 

information, the image-radiometric and points cloud-geometric 

information in combination, and which provide better 

segmentation for noisy and non-planar regions (cf. Anh and Bac 

(2013)). Adopting such segmentation coupled with our proposed 

composite segment-based approach can yield better assessment. 

  

The second presented methodology aims at comparing building 

façades at an image level, in order to infer the presence of 

damages on them. A rough distinction between the three 

proposed damaged levels using a fast approach has been 

demonstrated. However, due to the variability of light conditions 

and different point of views, the correct selection of damages on 

the façades still remains a challenge. For now the method does 

not include a visibility analysis to automatically select building 

façades without occlusions in the images: this will be added in 

the following implementation. Actually, areas in which large 

variations of visibility changes occurred or showing non-planar 

elements like in-/extrusions can already indicate candidates for 

damaged areas. The ones that are present in just an epoch will 

have to be carefully assessed. These variations in the occlusion 

can have its origin in the data acquisition itself, another example 

can be vegetation changes or the modification of the urban 

configuration. A segmentation of the building façade (in 2D and 

3D) will be performed on the façades in order to detect and 

remove windows and balconies, restricting the change search on 

the facade walls. The shadow detection will be addressed as well. 

This method does not need the computation of point clouds from 

different epochs but only co-registered images. Already existing 

3D city models could be used to define (and rectify) the façade 

position, strongly reducing the time needed in the damage map 

generation since there is no need to generate a point cloud. It 

would also allow not only the integration of the damage results 

with the city model itself but also to ease an integration with 
damage maps from other sources. 
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