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ABSTRACT: 

 

There are many applications for 3D city models, e.g., in visualizations, analysis, and simulations; each one requiring a certain level of 

detail to be effective. The overall trend goes towards including various kinds of anthropogenic and natural objects therein with ever 

increasing geometric and semantic details. A few years back, the featured 3D building models had only coarse roof geometry. But 

nowadays, they are expected to include detailed roof superstructures like dormers and chimneys. Several methods have been proposed 

for the automatic reconstruction of 3D building models from airborne based point clouds. However, they are usually unable to reliably 

recognize and reconstruct small roof superstructures as these objects are often represented by only few point measurements, especially 

in low-density point clouds. In this paper, we propose a recognition and reconstruction approach that overcomes this problem by 

identifying and simultaneously reconstructing regularized superstructures of similar shape. For this purpose, candidate areas for 

superstructures are detected by taking into account virtual sub-surface points that are assumed to lie on the main roof faces below the 

measured points. The areas with similar superstructures are detected, extracted, grouped together, and registered to one another with 

the Iterative Closest Point (ICP) algorithm. As an outcome, the joint point density of each detected group is increased, which helps to 

recognize the shape of the superstructure more reliably and in more detail. Finally, all instances of each group of superstructures are 

modeled at once and transformed back to their original position. Because superstructures are reconstructed in groups, symmetries, 

alignments, and regularities can be enforced in a straight-forward way. The validity of the approach is presented on a number of 

example buildings from the Vaihingen test data set. 

 

 

1. INTRODUCTION 

For several years, 3D city models assume a central role in urban 

and regional planning, surveying, navigation, and 

telecommunications and also allow in the environmental field 

precise analyses and simulations of pollutant, flood and noise 

propagation, and solar potential. The application areas are 

therefore quite diverse and lead at the present time to an increased 

demand for such models. Depending on the application, different 

requirements (e.g. accuracy, level of detail, etc.) for 3D city 

models have to be met. For this purpose, several methods for the 

reconstruction of buildings have been introduced; an overview is, 

e.g., given in (Haala and Kada, 2010). The automation rate has 

nowadays increased so that also large urban areas can be 

automatically reconstructed from airborne point cloud data. 

Depending on the data quality (e.g. density, accuracy, 

completeness, etc.), modern reconstruction approaches are 

generally suited to generate realistic looking 3D building models 

with detailed roof and façade structures. 

However, problems with the existing automatic reconstruction 

approaches often occur if the given input data does not meet the 

desired or required quality criteria. In this case, only course and 

generalized models without details can be created. Measured 

points from roof superstructures (e.g. chimney, dormers, etc.) are 

thereby usually considered as noise and are therefore ignored 

during the reconstruction process. But for a detailed 3D city 

model and many analysis, complex superstructures on building 

roofs need to be reconstructed as well. Several approaches have 

been developed therefore that offer users the possibility to add 

them in a semi-automatic way or that utilize additional data 

sources like images (Rottensteiner and Briese, 2003; Habib et al., 

2010). But most of them are not applicable in practice for a large-

scale reconstruction process due, for example, to missing 

additional data sources. 

To solve this issue, we present in this paper a new approach for 

the fully-automatic reconstruction of regularized roof 

superstructures from low-density LIDAR data, which might 

feature partially occluded areas. The basic idea of the approach 

is to take advantage of the fact that often more than one instance 

of the same superstructure occurs on the same roof as e.g. 

mentioned in (Oude Elberink, 2008). Instead of reconstructing 

each superstructure independently from one another, our 

proposed approach detects first all instances of a roof 

superstructure and reconstructs them afterwards at once. For this 

purpose, a point cloud registration technique based on the 

Iterative Closest Point (ICP) algorithm (see section 3) is 

presented. It considers basic building knowledge (e.g. local 

directions, symmetries, repetitive structures, etc.) and increases 

locally the point density so that a more accurate model can be 

generated. For evaluation purposes, the proposed approach is 

tested on several buildings of residential areas in low-density 

point clouds (1.5-6 points/m²). It is shown that our method helps 

to find and reconstruct small rooftop details that would otherwise 

be missed. 
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2. RELATED WORK 

Up to now, not much research has so far explicitly dealt with the 

automatic reconstruction of small roof objects. One reason might 

be the fast development of sensors that provide nowadays denser 

and more accurate point clouds than before. Consequently, the 

processing of low-density point clouds becomes in many cases 

obsolete. However, if for example an urban area from a certain 

time has to be reconstructed, these new sensors cannot be 

utilized. Therefore, there will be always a demand for automatic 

reconstruction approaches that are able to handle and to 

reconstruct as many details as possible from low-density point 

clouds. 

An early reconstruction approach that tackles this problem for 

flat superstructures on top of flat building roofs is described in 

(Stilla and Jurkiewicz, 1999). It creates a histogram and makes 

use of the peaks to segment the height data and to recognize areas 

of possible superstructures. Minor peaks with a certain gap to the 

main and to other minor peaks are then examined regarding their 

extent and compactness. Afterwards, points of an accepted minor 

peak are approximated by a prismatic object. This approach is in 

practice only applicable to a small number of building roofs in an 

urban area and strongly depends on predefined parameters. 

Therefore, most research effort has been put to the following 

strategy: first, an initial model that consists of the main building 

components is reconstructed and then the best fitted parametric 

shapes from a predefined library are added during the (model-

driven) reconstruction of small roof objects. An example is given 

in (Brédif et al., 2007), in which the problems of reconstructing 

small objects on rooftops are discussed and which can be 

extended to point clouds. It presents a parametric roof 

superstructure reconstruction that makes use of a Minimum 

Description Length (MDL) energy minimization technique. 

Further examples that define different dormer shapes as 

superstructures, which are then placed on top of a base model, 

are presented in (Milde and Brenner, 2009) and (Vosselman and 

Dijkman, 2001). These model-driven approaches are generally 

better suited than data-driven methods due to the low number of 

input points. But on the one hand, they fail if the point density is 

too low and on the other hand the reconstruction capability is 

always limited to a predefined library. To weaken the latter 

disadvantage, the number of shapes in the predefined library can 

be extended causing an increased computational time.  

To reduce the impact of the exhaustive search on the 

computational time, some approaches integrate a coarse 

superstructure detection step to detect the shape type before a 

shape refinement step is carried out. For example, in (Satari, 

2012) a support vector machine (SVM) is used for the recognition 

of three predefined dormer types. It utilizes the gradient and 

azimuth values of the normal vectors of the superstructure and 

the underlying roof plane as a discriminating factor. Afterwards, 

the initial superstructure model is refined and added. Tested on a 

data set with an estimated density of 9 points/m², the overall 

qualitative and quantitative assessments confirmed to a certain 

extent the potential of this strategy. Another example for a coarse 

superstructure detection step is given in (Dornaika and Brédif, 

2008). 

For point clouds with a very high density, a generative statistical 

top-down approach for the reconstruction of superstructures is 

presented in (Huang et al., 2011). It searches for superstructures 

in the area above a base roof by using two simple parametric 

primitives (flat and gable roofs). The selection and the parameter 

estimation are driven by the Reversible Jump Markov Chain 

Monte Carlo technique. Tested on a data set with an average point 

density of about 25 points/m², roof superstructures have been 

reconstructed with an average z-error of 0.05 m. The success of 

the method is, however, highly dependent on the point density. 

Summarizing the previous research, it deals mainly with model-

driven approaches because they are usually more stable for sparse 

point clouds than data-driven approaches. To overcome the 

computational time caused by an exhaustive search technique, a 

coarse detection of the superstructure type can be performed. 

However, all approaches reconstruct superstructures 

independently, wherefore a more or less high point density is 

required to get an accurate model. 

 

3. REGISTRATION OF TWO POINT SETS BASED ON 

ITERATIVE CLOSEST POINT 

During the last decades, several registration approaches have 

been introduced to find a transformation that best represents the 

relative displacement between two surfaces with an overlapping 

area; examples are given in (Silva et al., 2005). In general, they 

can be roughly divided into coarse and fine registration 

techniques. In coarse registration methods no prior knowledge of 

the relative spatial position is required. For this purpose, they 

extract certain features from one point set and assign them to the 

extracted features of the other point set. Depending on the 

number of features and the assignment certainty, they usually 

provide only rough alignments. For a more precise alignment, 

prior knowledge regarding an initial transformation is used in 

fine registration approaches. One of the most common method is 

summarized in the following paragraphs. 

Iterative Closest Point is an algorithm employed to register two 

(partially) overlapping point sets in a common coordinate system 

(Besl and McKay, 1992). For this purpose, it iteratively 

minimizes the mean squared error (MSE) between the point sets 

by applying rigid transformations. Compared to other fine 

registration techniques, an exact point-to-point correspondence 

between the point sets is not required. Nowadays, there exist 

many variants of ICP. An overview is given in (Rusinkiewicz and 

Levoy, 2001), (Grün and Akca, 2005), and (Pomerleau et al., 

2015). 

Essentially, for two given point sets 𝐴 and 𝐵, which are already 

roughly registered, each iteration in ICP is composed of the 

following steps: 

1. Find for each point in 𝐴 the closest point in 𝐵. 

2. Estimate a transformation that minimizes the MSE of 

the point pairs from the previous step. 

3. Transform all points in 𝐵 by applying the obtained 

transformation. 

4. Start the next iteration with the first step again if a 

predefined stopping criteria is not fulfilled. 

In the first step, a correspondence search between points of 𝐴 to 

𝐵 is performed by a nearest-neighbor search. To improve the 

speed of ICP, several approaches have been developed to 

increase the performance of computing corresponding points, 

because this is the most time consuming part of ICP. Usually k-d 

trees (Bentley, 1975) are used to accelerate the search. Several 

variants of the k-d tree have been developed to improve the 

performance like a cached (Nüchter et al., 2007) or a GPGPU 

(Wu et al., 2015) version. 
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For the second step of each iteration, a rotation and translation is 

computed that minimize the MSE between both point sets. The 

objective function that has to be minimized for two given point 

sets 𝐴 =  {𝑎𝑖} and 𝐵 =  {𝑏𝑗} with 𝑖 =  {1, … , 𝑛} and 𝑗 =

 {1, … , 𝑚} is therefore: 

𝑓(𝑅, 𝑡) =  
1

𝑛
∑‖𝑎𝑖 − 𝑅𝑏𝑗 − 𝑡‖

2
𝑛

𝑖=1

 → 𝑚𝑖𝑛 (1) 

where 𝑏𝑗 is the closest point in 𝐵 to the point 𝑎𝑖 ∈ 𝐴, 𝑅 the 

rotation matrix and 𝑡 the translation vector. For the minimization 

of the objective function and the calculation of the rigid 

transformation, there exist already several methods; for example, 

singular value decomposition (SVD) is used in (Arun et al., 

1987), orthonormal matrices in (Horn et al., 1988) and dual 

quaternions in (Walker et al., 1991). 

Afterwards, the resulting rotation and translation can be directly 

applied in the third step to all points in 𝐵. Then, the algorithm 

starts again from the beginning if a lower MSE value than in the 

iteration before is received. Otherwise the algorithm terminates 

and a sequence of transformations is given that can be merged to 

a single rigid transformation, which minimizes the MSE with the 

final point correspondences at once. 

Due to the greedy nature of the ICP algorithm, it converges 

always to a local minimum but not necessarily to the global 

minimum. Therefore, to get useful results, it requires a good 

coarse a priori alignment of the given point clouds. Furthermore, 

the method as presented above is limited to rigid transformations 

(rotations and translations), so that it is for example not capable 

of handling scaling. 

 

4. RECONSTRUCTION PROCESS 

In this section the workflow of our fully automatic reconstruction 

approach for regularized roof superstructures is outlined. To 

perform it simultaneously with the reconstruction process of the 

building, it does not rely on an initial building model but it relies 

on a common segmentation result. Our reconstruction approach 

consists roughly of the following three steps: (1) detection of 

appropriate roof superstructure candidate points; (2) grouping of 

similar roof superstructures; (3) roof superstructure modeling and 

construction.  

To determine appropriate candidate points from the input data, 

our approach makes use of virtual points which are located below 

measured surface points. In conjunction with those surface points 

that belong to already detected segments, candidate areas of 

superstructures and their surface points are identified (see 

section 5). In the next step, a registration technique based on the 

ICP algorithm is carried out to transform candidate points, which 

hint to the same superstructure type, into a common coordinate 

system so that their areas overlap each other. This results in a 

higher point density for all superstructure types that possess more 

than one instance in the real building (see section 6). Afterwards, 

only one superstructure model is created for each superstructure 

type using feature-driven modeling techniques. Instances of it are 

then placed at the candidate areas. Finally, the whole building 

model is checked for overlapping instances and, if necessary, 

corrected (see section 7). The basic idea of this workflow is 

visualized in Figure 1.  

 
 

Figure 1. From top to bottom: segmentation result (unsegmented 

points in black); segmentation result after adding virtual points 

(red), and estimation of candidate areas; transformation result of 

the candidate points; roof superstructure reconstruction result; 

reconstruction result of the whole building. 

 

 

To proof the applicability, the proposed approach is integrated in 

the fully automatic building reconstruction approach presented in 

(Wichmann and Kada, 2014). It consists of the following four 

main steps: (1) segmentation of planar regions; (2) rule-based 

recognition of building features; (3) adjustment of half-spaces to 

emphasize regularities that are often present in real buildings; 

(4) construction of the final building model utilizing Boolean 

operations. An overview of the whole building reconstruction 

process is shown in Figure 2. 
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Figure 2. Overview of the proposed reconstruction approach of 

regularized superstructures in low-density point clouds that has 

been integrated in the building reconstruction approach presented 

in (Wichmann and Kada, 2014). 

 

 

5. DETECTION OF APPROPRIATE 

SUPERSTRUCTURE CANDIDATE POINTS  

A crucial point for the automatic reconstruction of 

superstructures is the detection of those points that belong to a 

superstructure. This task is challenging because it has to deal with 

a small number of points so that their surface shape is often not 

clearly recognizable during the reconstruction process of the base 

roof. Therefore, many problems might occur if the given point 

cloud is sparse and noisy. To improve the visualizing capabilities, 

the presented examples in this section are shown in a higher point 

density than in reality. 

For the detection of appropriate candidate points, our proposed 

approach utilizes virtual points as they are defined in (Kada and 

Wichmann, 2012). They have been originally introduced in their 

sub-surface segmentation method to enlarge small segments. As 

a result, those segment patches are merged together that share the 

same or similar plane properties but are disconnected due to the 

presence of superstructures. For our purpose only virtual points 

below unsegmented surface points are taken into account. Since 

these virtual points are located always below measured surface 

points, they can be used as an indicator for areas where 

superstructures are present in the x-y plane. Some examples are 

given in Figure 3. 

 
 

Figure 3. Segmented surface points enriched with virtual points 

(red). Unsegmented surface points are colorized in black. 

 

However, virtual points as defined above cannot be used alone as 

a reliable criterion for the presence of superstructures as shown 

in Figure 4. In fact their related surface points can be considered 

as a superset of points that are located on a superstructure. 

Therefore, a selection of these points is mandatory. 

 
 

Figure 4. Result of the subsurface segmentation. Virtual points 

are colorized in red. 

 

 

For this purpose, a connected component analysis (CCA) is 

carried out to separate the virtual points into different sets so that 

neighboring virtual points belong to the same point set. The 

number of point sets can be considered as the maximum number 

of superstructures on a base roof. Afterwards, a minimal 

bounding rectangle is calculated in the x-y plane for each point 

set. It represents the approximate area and the location of the 

potential superstructure, wherefore we use instead in the 

following the term candidate area. Point sets with a small 

candidate area are treated as outliers and discarded at this point. 

In order to verify whether a candidate area of a point set 

comprises a superstructure, the candidate area is slightly 

enlarged, inversely to the point density of the given input data. 

Then, all those surface points are selected that are located within 

the enlarged candidate area. Based on the selected surface points, 

another minimal bounding rectangle is calculated in the x-y plane 

and slightly enlarged. A candidate area is only considered as the 

location of a superstructure if the enlarged bounding rectangle of 

the surface points encloses all the virtual points of its point set. 

All other candidate areas and their point sets are discarded. 

Examples of the selection workflow are given in Figure 5 and 

Figure 6. 

 
 

Figure 5. From top to bottom: building overlaid with surface 

points and the CCA result; bounding rectangles (virtual points); 

bounding rectangles (surface points). 
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Figure 6. From top to bottom: building overlaid with surface 

points and the CCA result; bounding rectangles (virtual points); 

bounding rectangles (surface points). 

 

 

In the first example, all virtual points are enclosed by the enlarged 

minimal bounding rectangle of those surface points that are 

located within the enlarged minimal bounding rectangle of the 

virtual points. Therefore, the candidate area of this point set is 

considered as a location of a superstructure. In contrast, the point 

set in the second example is discarded because the enlarged 

bounding rectangle of the selected surface points does not 

enclose all virtual points in the candidate area. 

 

6. GROUPING OF SIMILAR SUPERSTRUCTURES 

Once all appropriate point sets are detected, all those sets are 

assigned to the same group that belong to the same type of 

superstructure. However, due to the low point density and the 

small size of the candidate areas, an automatic extraction of 

certain features or a shape fitting algorithm is usually not feasible 

to complete this task. 

Therefore, our proposed approach utilizes the ICP principles as 

explained in section 3 to increase the point density for each 

superstructure type. For this purpose, all remaining virtual points 

from the previous section are replaced by their related surface 

points and those candidate areas that feature a similar size are 

initially assigned to the same group. To start the ICP iterations 

for a group, an initial rough transformation in form of a rigid 

transformation is carried out for each of its point sets. The 

translations ensure that the centroids of the candidate areas of a 

group meet at one point. Furthermore, the rotations accomplish 

that the x-y normal vectors of the base roof segments, on which 

the point sets of a group are located, point afterwards in the same 

direction. Thereby certain angles are preferred for two point sets 

of the same group if they are located on the same base roof; e.g. 

0 degree if both point sets belong to the same segment and 180 

degree if the point sets belong to opposite segments. 

Furthermore, if two point sets are not located on the same base 

roof, additionally the direction of the base roof is taken into 

account. An example of the initial rough transformation process 

is shown in Figure 7. 

 
 

Figure 7. Example of the initial grouping and the initial rough 

transformation process. 
 

 

The fine registration process starts thereafter in each group to 

estimate the point correspondences of the point set with the 

highest and the second highest number of surface points. Then, a 

transformation that minimizes the MSE of the point 

correspondences is calculated and applied. But instead of a rigid 

transformation, our method restricts ICP to use only translations. 

Rotations are not considered during the fine registration process. 

The objective function that has to be minimized in each iteration 

for two given point sets 𝐴 =  {𝑎𝑖} and 𝐵 =  {𝑏𝑗} with 𝑖 =

 {1, … , 𝑛} and 𝑗 =  {1, … , 𝑚} is defined as 

𝑓( 𝑡) =  
1

𝑛
∑‖𝑎𝑖 − 𝑏𝑗 − 𝑡‖

2
𝑛

𝑖=1

 → 𝑚𝑖𝑛 (2) 

where 𝑏𝑗 is the closest point in 𝐵 to the point 𝑎𝑖 ∈ 𝐴 and 𝑡 the 

translation vector. Both point sets are merged if the final MSE 

value is lower than a predefined threshold and the fine 

registration process starts again. Otherwise the group is split and 

each of the point set is assigned to one group before the process 

starts again. In the latter case, the remaining point sets of the 

original group have to be tested for both groups but only the 

registration with the lower MSE value is taken. Once all point 

sets of a group are merged, the final groups whose point sets 

originated from the same group are registered and merged if the 

MSE value is lower than a predefined value. This threshold is 

reduced if the group merging supports the symmetric distribution 

of the original point sets on the base roof. An example, which 

separates the given point sets into the two groups G1,1 and G1,2, is 

given in Figure 8.  

 
 

Figure 8. Example workflow of the fine registration process. 
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First, all point sets in the given example are assigned to the same 

group because their candidate areas feature a similar size. Then, 

the surface points of the yellow and the purple point sets are 

tested if they belong to the same superstructure type. Due to their 

final MSE value, they are separated into different groups. 

Therefore, the remaining pink point set has to be tested for both 

groups and is finally assigned to the group of the yellow point 

set. This is at the same time the final result of the grouping 

process because the registration of both groups results in a too 

high MSE value. 

 

7. SUPERSTRUCTURE MODELING AND 

CONSTRUCTION 

The resulting groups of the previous section are considered 

during the subsequent modeling process as different 

superstructure types and the number of merged point sets in a 

group as the number of instances of it. Instead of reconstructing 

the superstructure of each original point set independently, all 

instances of a group are constructed at once. Due to the previous 

merging process, a higher point density than in the input data is 

already achieved if more than one instance of a superstructure 

type has been detected. Moreover, in this case also single gaps in 

the surface points of an instance, which might occur due to 

partially occluded areas, are automatically closed by the surface 

points of other instances. 

Therefore, several features like ridge lines can now be directly 

extracted in each group. Taking into account the extracted 

features, points of planar regions are segmented and planes 

estimated. An adjustment of these planes is carried out to 

emphasize on the one side rectangularity, if the direction of the 

normal vector projected onto the x-y plane is close to a certain 

angle, and on the other side symmetries, which is for example 

often present in the rooftop slope of a saddleback superstructure. 

Afterwards, half-space modeling, which is a form of solid 

modeling (Mäntylä, 1988; Foley et al., 1990), is carried out for 

the construction of the superstructure model. For this, the 

adjusted planes are formulated as hyperplanes whose normal 

vectors have positive z-values and each of these hyperplanes are 

used to create half-spaces. Further half-spaces are added by 

taking the existing half-spaces into account so that their limiting 

hyperplanes correspond to the vertical surfaces of the 

superstructure. Equal eave heights in the final model are favored. 

Then, instances of the so far defined model are created and placed 

in each candidate area of the original point set of the group. The 

location of an instance is defined by the inverse rigid 

transformation of the previous section, which consists of the 

initial rough transformation and the translations during the 

iterations. In conjunction with the surface of the base roof, the 

final superstructure model is created. Special care has to be taken 

that the superstructure models do not overlap each other. In such 

a case, the facade hyperplanes of the overlapping models are 

translated accordingly. 

 

8. RESULTS 

For evaluation purposes, the proposed approach is tested both on 

generated data (1.5-4 points/m²) and on several buildings located 

in residential parts of the Vaihingen test data set (4-6 points/m²), 

which is provided by the German Society for Photogrammetry, 

Remote Sensing and Geoinformation (DGPF) (Cramer, 2010). At 

the moment, our implementation is limited to those 

superstructures that are located on a single roof plane. For this 

dominant kind of superstructures, the approach presented in this 

paper is in general suitable for their automatic reconstruction in 

low-density point clouds. Some results are presented in Figure 9 

and Figure 10. As shown, it is generally able to reconstruct 

superstructures that would otherwise be missed.  

 

 
 

Figure 9. Left: Top view of the segmentation results. 

Unsegmented points are colorized in black. Right: The resulting 

building model reconstructed by our proposed approach. 

 

 

 
 

Figure 10. Some reconstructed buildings of the Vaihingen test 

data set. 
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In particular, our approach provides accurate models if many 

instances of the same superstructure type are present. In this case, 

also partially occluded superstructures can be reconstructed, as 

shown in Figure 11. These models are furthermore always 

topological correct and reflect regularities that are usually present 

in man-made objects. 

 

 
 

Figure 11. Left: Top view of the segmentation result. 

Unsegmented points are colorized in black. Right: The resulting 

building model reconstructed by our proposed approach. 

 

 

However, special care has to be taken, so that a superstructure 

model is not placed in an area of point outliers. The size of a 

candidate area is often a quite sufficient indication but it cannot 

deal with an accumulation of outliers that might occur in reality.  

 

9. CONCLUSION 

In this paper, we present a fully automatic reconstruction 

approach for building superstructures from low density point 

clouds. In contrast to already existing approaches, which usually 

reconstruct superstructures individually and independently in a 

model-driven way, our proposed approach helps to find and 

reconstruct several rooftop details that would otherwise be 

missed. For this purpose, surface points that belong to the same 

superstructure type are transformed using an ICP based 

registration technique so that they overlap each other. The 

resulting point density is, depending on the number of instances 

of a superstructure type, higher than in the input data so that 

features are more likely to be recognized. Therefore, the 

presented approach is especially suited to large buildings with 

many superstructures of the same type. In this case, 

superstructures can be reconstructed in point clouds with a point 

density of ~1.5 points/m². Furthermore, symmetries, alignments, 

and regularities can be enforced in a straight-forward way 

because superstructures are reconstructed in groups. 

However, further research is needed to extend the reconstruction 

capabilities in low density point clouds. For example, the 

proposed approach is limited to superstructures that belong to a 

single roof segment. Superstructure point sets that do not comply 

with this condition cannot be registered at the moment. 

Furthermore, in some cases a low rotation during the iterations of 

the grouping process could help to get other point 

correspondences so that only a reduced number of iterations is 

needed. But the conditions for a rotation and the allowed rotation 

circumference have still to be investigated. 
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